ure

Pure Language and Library
Documentation
Release 0.59

Albert Graf (Editor)

February 26, 2014

ii

Contents

1

The Pure Manual

1.1

1.2

1.3

1.4

Introduction
1.1.1 FurtherReading
1.1.2 Typographical Conventions
InvokingPure e
121 Options e
122 Overviewof Operation.
123 Compiling Scripts. L o
124 Tagging Scripts
12,5 Running Interactively
1.2.6 Verbosity and Debugging Options
12.7 CompilationOptions
Code GenerationOptions
Conditional Compilation
WarningOptions o
128 StartupFiles
129 Environment oo
PureOverview e
1.3.1 LexicalMatters
1.3.2 Definitions and Expression Evaluation.
Variablesin Equations
1.3.3 ExpressionSyntax oo
Primary Expressions
Simple Expressions oo
Special Expressions o oo
134 SpecialForms o
135 Toplevel
136 ScopingRules
RuleSyntax e
141 Patterns
The “Head = Function” Rule
ConstantPatterns o o L.
The Anonymous Variable

1.5

1.6

1.7

Non-Linear Patterns and Syntactic Equality 47

Special Patterns Lo oo 48
142 TypeTags e 49
143 GeneralRules o 52
144 SimpleRules. o . 54
145 TypeRules 55
Examples 60
1.5.1 Hello,World e 60

Passing Parameters 61

Executable Scripts oo 61

Compiled Scripts o 62
152 Running the Interpreter 63
153 BasicExamples o o . 67
154 Defining Functions L. 72
155 PatternMatching o oL 76
1.5.6 Local Functions and Variables 79
157 DataTypes. e 82
158 Recursion e 85

A NumericRootFinder 89

The Same-Fringe Problem 91
159 Higher-Order Functions 95
1.5.10 ListProcessing e 97
1.5.11 String Processing 103
1.5.12 List Comprehensions 106
1.5.13 Lazy Evaluationand Streams 108
1.5.14 Matricesand Vectors o . 111
1.5.15 Symbolic Matrices 118
1516 RecordData 120
1517 TheQuote o i e e 124
Declarations e 126
1.6.1 Symbol Declarations 126
1.6.2 Interface Types 130
1.6.3 Modulesand Imports L oo L 135
1.64 Namespaces ittt 137

Using Namespaces 139

Symbol Lookup and Creation 140

PrivateSymbols L 143

Namespace Brackets 144

Hierarchical Namespaces 146

Scoped Namespaces, 147
Macros 149
171 OptimizationRules 149
172 Recursive Macros i o oo 151
1.7.3 User-Defined Special Forms 152
174 MacroHygiene 0 ... 153
1.7.5 Built-in Macros and Special Expressions 154
1.7.6 Advanced Optimization 159

1.7.7 Reflection e 161

1.8 ExceptionHandling 163
19 Standard Library 165
1.10 Clnterface o . i i e e e e e 167
1.10.1 Extern Declarations 167
1.10.2 VariadicCFunctions i 169
1103 CTIypes . . o v v 170
BasicCTypes 170

Pointer Types 171

Pointers and Matrices 172

Pointer Examples L o oL 173

1.10.4 Importing Dynamic Libraries 175
1.10.5 Importing LLVM Bitcode 175
1.10.6 InlineCode @ . . . e e 178
1.10.7 Interfacingto C++ 180
1.10.8 InterfacingtoFaust 181

1.11 Interactive Usage e 187
1.11.1 Command Syntax o .. 188
1112 OnlineHelp o 190
1.11.3 Interactive Commands 191
1.11.4 Specifying Symbol Selections 195
1.11.5 Theshow Command 196
1.11.6 Definition Levels 198
1.11.7 Debugging 201
1.11.8 LastResult e 207
1.11.9 Pretty-Printing o o 207
1.11.10 User-Defined Commands 209
1.11.11 Interactive Startupo 212

1.12 Batch Compilation 212
1.12.1 Example 214
1.12.2 Options Affecting CodeSize 216
1.12.3 Other Output Code Formats. 218
1.12.4 Calling Pure Functions FromC 220

1.13 Caveatsand Notes e 221
1.13.1 Etymology 221
1.13.2 Backward Compatibility 221
1.13.3 ErrorRecovery 224
1.13.4 Splicing Tuples and Matrices 224
1.135 Withandwhen 225
1.13.6 Non-Linear Patterns 226
1.13.7 “As” Patterns e e 227
1.13.8 “Head = Function” Pitfalls. 227
1.13.9 Defined Functions e 229
1.13.10Stack Size and Tail Recursion 231
1.13.11 Handling of Asynchronous Signals 232
1.13.12Recursive Types L 232
1.13.13Interfaces e e 234

1.13.14 Numeric Calculations o i i it i i 236

1.13.15Constant Definitions e 236
1.13.16 External CFunctions e 239
1.13.17 Calling Special Forms 239
1.13.18Laziness o i e e e e e e e e e e e e e 239
1.13.19Name Capture. 241

1.14 Author e e e 242
1.15 Acknowledgements L o oo 242
116 Copying o e 243
1.17 Referencesand Links 244
Pure Library Manual 247
2.1 Prelude e e e 247
211 Constantsand Operators 247
212 PreludeTypes 249
2.1.3 BasicCombinators 250
214 ListsandTuples. 252
215 Slicing e 257
21.6 HashPairs e 258
2.1.7 ListFunctions e e 259
Common List Functions 259
ListGenerators i e 261

Zipand Friends L o o o 261

218 StringFunctions. L o o 262
Basic String Functionso L oo L 262

Low-Level Operations 265

2.1.9 Matrix Functions e 267
Matrix Construction and Conversions 268

Matrix Inspection and Manipulation 271

Pointers and Matrices 274

2.1.10 Record Functions e 275
2111 Primitives o o e e e e e e e e e e e e e e 277
Special Constants 277

Arithmetic e 278
CONVErSiONS v v v v e e e e e e e e e e e e e e e e 280

Predicates e 281

Inspection 283

Evaland Friends 289

Expression Serialization 293

Other Special Primitives 294

Pointer Operations, 294

Sentries e e e e e 295

Tagged Pointers 298

Expression References 300

Pointer Arithmetic e 301

2.2 Mathematical Functions e 302

221 Imports. e 302

222 BasicMathFunctions. i e 302

223 ComplexNumbers, 304

224 Rational Numberso 305

225 Semantic Number Predicatesand Types 306

23 Enumerated Types 307
24 ContainerTypes e 309
241 Arrays ... 310
Imports. 310

Operations e 310

Examples 311

242 Heaps e 312
Imports. 312

Operations e 312

Examples 313

243 Dictionaries e e e e e e e e e 313
Imports. 314

Operations 314

Examples 316

244 SetsandBags o 318
Imports. 319

Operations 319

Examples 321

25 SystemlInterface L L 322
251 Imports. 322

252 ErrmmoandFriends 322

253 POSIXLocale e e 323

254 SignalHandling, 323

255 TimeFunctions e 324

25.6 ProcessFunctions e 327
25.7 Basicl/Olnterface 0 e 328

258 StatandFriends e 332

259 ReadingDirectories. o oo 333
2.5.10 ShellGlobbing 333
25.11 RegexMatching o 333
BasicExamples oo oo 336

Regex Substitutions and Splitting 337
EmptyMatches L o 338
Submatches 338

2.5.12 Additional POSIX Functions 339
2513 OptionParsing L o 340

3 pure-avahi: Pure Avahi Interface 343
31 Copying e 343
32 Imstallation e e 344
33 Usage e 344
3.4 Publishing Services L 344
3.5 Discovering Services e 345

36 Example

pure-doc

41 Copying o e
42 Installation o L
43 Usage o o e
4.4 Literate Programming
45 Hyperlink Targets and Index Generation.
4.6 Generating and Installing Local Documentation
47 PormattingTips o

pure-ffi

51 Copying e
5.2 Imstallation e e e
53 Usage e
54 TODO e e e

pure-gen: Pure interface generator
6.1 Synopsis
6.2 Options e
621 General Options
6.2.2 PreprocessorOptions. 0 .
6.2.3 GeneratorOptions
624 OutputOptions e
6.3 Description. e
6.4 Filtering
6.5 NameMangling L
6.6 GeneratingCCode o
6.7 DealingwithCStructs
6.8 Notes e
6.9 Example
6.10 License e
6.11 Authors o e
6.12 See AlSO e

pure-readline

pure-sockets: Pure Sockets Interface

8.1 Imstallation e
82 Usage e
8.2.1 Creating and Inspecting Socket Addresses
8.2.2 Creating and Closing Sockets
8.2.3 Establishing Connections
8.2.4 SocketI/O e
8.2.5 SocketInformation
83 Example
pure-stidict

347
347
348
348
350
350
351
353

355
355
356
356
357

359
359
359
359
360
360
361
362
363
364
364
366
368
369
369
369
369

371

373
373
373
374
375
375
375
376
376

379

Vi

10

11

91 Copying e
92 Inmstallation
93 Usage e
94 IYpes e
95 Operations e
951 BasicOperations
952 Comparisonst
953 Set-LikeOperations.
954 List-LikeOperations,
955 Iterators
9.5.6 Low-LevelOperations
957 Pretty-Printing
9.6 Examples

pure-stllib

101 Copying o e
10.2 Installation e e
103 Usage o oo i e
10.4 Documentation e e e e
10.5 Changes e

pure-stimap
111 Copying oo e
11.2 Introduction e e e e
11.2.1 Supported Containers
11.2.2 Interface e e
11.3 Installation e e
114 Examples o e
11.5 Quick Start o e e e e e
11.5.1 Example Containers
11.5.2 Constructors o i e e e e e
1153 Ranges i e
11.5.4 Inserting and Replacing Elements
11.5.5 Access o i i e e e e e e e e
11.5.6 ErasingElements
11.5.7 CoNVersions v v v v i e e e e e e e e e e e e e
11.5.8 Functional Programming
11.6 Concepts e
11.6.1 Containersand Elements
11.62 Ranges e
11.6.3 Tterators i e e e e e e e e
11.6.4 Selecting Elements UsingKeys
11.6.5 C++Implementation
11.7 Modules e e e e
11.7.1 ThestlhmapModule
11.72 ThestlmapModule
11.7.3 ThestlmmapModule

vii

11.8 Container Operations 408

11.8.1 Container Construction 408
11.8.2 Information e 409
11.8.3 Modification o e e e e 410
11.8.4 AccessingElements. 413
11.8.5 CoNVersionS v v v v v v e e e e e e e e e e e e e 415
11.8.6 Functional Programming 416
11.8.7 Comparison 417
11.8.8 Set Algorithms o o o 419
11.89 DirectCCalls e e 420

11.9 Tterators o i e e e e e e e e e e e e 420
1191 Concepts o o e 420
1192 Exceptions o e 422
11.9.3 Functions i e e e e 422
1194 Examples 424
11.10Backward Compatibilty 425
11.10.1 pure-stlmap-0.2 425
11.10.2pure-stlmap-0.3 425

12 pure-stlvec 427
121 Copyingo e 427
12.2 Installation e 427
12.3 OVEIVIEW . . . o o e e e e e e e e e e e e e e e e e e 428
12.3.1 Modules e e e 428
12.3.2 Simple Examples o oo L 428
12.3.3 Members and Sequences of Members 430
12.3.4 STL Iterators and Value Semantics 430
1235 IteratorTuples 431
12.3.6 Predefined Iterator TupleIndexes 432
12.3.7 Back InsertIterators 432
12.3.8 DataStructure e e 432
1239 Types oo 433
12.3.10 Copy-On-Write Semantics 433
12.3.11 Documentation e e e e e 434
12.3.12Parameter Names 0 i i it e e e e e 434

124 ErrorHandling 435
12.4.1 ExceptionSymbols o o oL 435
1242 Examples e 436

12.5 Operations Included in the sttvecModule 437
1251 Imports. e 437
12.5.2 Operations in the Global Namespace 437
12.5.3 Operations in the stt Namespace 439
1254 Examples e 440

12.6 STL Nonmodifying Algorithms 440
12.6.1 Imports. e 440
12.6.2 Operations 440
12.6.3 Examples 441

viii

13

12.7 STL Modifying Algorithms 441

1271 Imports. e 441
1272 Operations 442
1273 Examples 444
12.8 STL Sort Algorithms 444
1281 Imports. e 444
1282 Operations ot 444
12.8.3 Examples 445
129 STL Merge Algorithms 445
1291 Imports. 445
129.2 Operations o 446
1293 Examples 446
12.10STL Heap Algorithms 447
12101 Imports oL 447
1210.20perations 447
12103 Examples 447
12.11Min/Max STL Algorithms o L 447
12111 Imports oo 448
1211.20perations 448
12113 Examples 448
12.12STL Numeric Algorithms o 448
12121 Imports. . . . o o 449
121220perations L 449
12123 Examples 449
12.13Reference Counting L Lo 449
12.14Backward Compatibilty oo L. 449
12141 pure-stlvec-0.2. L L 450
12.142pure-stlvec-0.3 L 450
12143 pure-stlvec-0.4 L 450
Gnumeric/Pure: A Pure Plugin for Gnumeric 451
13.1 Introduction e e e e e 451
132 Copying o e 452
13.3 Installation e e e e 452
134 Setup L e 454
13,5 BasicUsage e 454
13.6 Interactive PureShell 455
13.7 Defining Your Own Functions 457
13.7.1 Creatinga SimplePlugin 457
13.72 ThepluginxmlFile 458
13.7.3 LoadingthePlugin 460
1374 SpicingItUp 461
13.8 Gnumeric/Pure Interface e 462
13.8.1 Function Descriptions 462
13.8.2 Conversions Between Pure and Gnumeric Values 465
13.9 Advanced Features 466
13.9.1 Calling Gnumeric fromPure 466

13.9.2 Accessing SpreadsheetCells 466

13.9.3 Asynchronous DataSources 468
13.9.4 Triggers e 469
13.9.5 SheetObjects 470
139.6 OpenGLInterface 471

14 Pure-GLPK - GLPK interface for the Pure programming language 475
14.1 Installation L 475
142 ErrorHandling o 476
14.3 Further Information and Examples 477
14.4 Interface description oo o 477
14.5 Descriptions of interface functions 477
14.5.1 Basic APIroutines 477
Problem creating and modifying routines 477

Problem retrieving routines o L 486

Row and column searching routines 492

Problem scaling routines L. 494

LP basis constructing routines o oL 496

Simplex method routines L. 499
Interior-point method routines 508

Mixed integer programming routines 511

Additional routines L Lo o o 519

14.5.2 Utility APIroutines 520
Problem data reading/writing routines 520

Routines for MathProgmodels 523

Problem solution reading/writing routines 526

1453 Advanced APIroutines 530
LPbasisroutines 530

Simplex tableauroutines Lo oo oL 537

14.5.4 Branch-and-cut APIroutines 542
Basicroutines Lo o oo 542

The search tree exploring routines 546

The cutpoolroutines 549

14.5.5 Graph and network APIroutines 551
Basic graphroutines 551

Graph analysisroutines 554

Minimum cost flow problem, 555

Maximum flow problem o oL 561

14.5.6 Miscellaneousroutines 563
Library environmentroutines 563

15 Gnuplot bindings 567
151 Copying o e 567
15.2 Introduction L 567
15.3 FunctionReference 567
15.3.1 Open / Closing Functions 567
15.3.2 Low-LevelCommands 568

16

17

15.3.3 PlotCommands v v v i e e e
1534 PlotOptions
15.3.5 Private Functions e

pure-gsl - GNU Scientific Library Interface for Pure
16.1 Polynomials
16.1.1 Routines i e e e e e e e e e
16.1.2 Examples e
16.2 Special Functions L
16.2.1 AiryFunctions
16.22 Examples
16.2.3 Bessel Functions e
16.2.4 Examples e
16.2.5 Clausen Functions,
16.2.6 Examples e
16.2.7 Colomb Functions,
16.2.8 Examples
16.2.9 Coupling Coefficients
16.210Examples
16.2.11 Dawson Function e
16.212Examples L
16.2.13Debye Functions oo
16214 Examples L
16.2.15Dilogarithmo o o
16216 Examples
16.217Examples
16.3 Matrices e e e e e e e e e e
16.3.1 MatrixCreation e
16.3.2 Matrix Operators and Functions
16.3.3 Singular Value Decomposition
16.4 Least-Squares Fitting oo .
16.4.1 Routines i e e e e
1642 Examples e
16.5 Statistics o e e e e e e
16.5.1 Routines e e e e e
1652 Examples
16.6 Random Number Distributions
16.6.1 Routines e e e e e e e
16.6.2 Examples e
16.7 Sorting e
16.7.1 Routines i e e e e e e e
16.7.2 Examples

pure-mpfr

171 Copying o e
172 Installation e e
173 Usage o o oo e

Xi

18

19

17.3.1 Precisionand Rounding 621

17.3.2 MPFRNumbers e e 621
17.3.3 Conversions v v v v i e e e e e e e e e e e 622
17.3.4 Arithmetic e 623
17.3.5 MathFunctions e 623
17.3.6 Complex Number Support 624

174 Examples e 624
pure-octave 627
18.1 Introduction e e 627
182 Copying e 627
183 Installation e e 628
18.4 BasicUsage e 628
18.5 Direct FunctionCalls e 629
18.6 Data Conversions o o v i i i e e e e e 630
18.7 Calling BackIntoPure 633
18.8 GnuplotInterface 633
189 Caveatsand Notes i i i e 634
Pure-Rational - Rational number library for the Pure programming language 635
19.1 Copying o e 636
19.2 Installation e 636
19.3 Introduction e e 636
19.3.1 TheRational Module 636
19.3.2 The Files and the Default Prelude 637
math.pureand OtherFiles, 637
rationalpure. L L L L 637
rat_intervalpure L L oo 637

19.3.3 Notation 0 o e e e e e 637

19.4 TheRational Type 638
19.4.1 Constructors v i i e e e e e e 638
19.4.2 ‘Deconstructors’ i i i e e e 638
1943 Typeand ValueTests 639

19.5 Arithmetic o e e e e 640
19.5.1 Operators e 640
1952 Moreon Division e e e e e 641
19.5.3 Relations — Equality and Inequality Tests 642
19.5.4 Comparison Function 642

19.6 Mathematical Functions e 642
19.6.1 Absolute Valueand Sign 643
19.6.2 Greatest Common Divisor (GCD) and Least Common Multiple (LCM) 643
19.6.3 Extrema (Minima and Maxima) 645

19.7 Special Rational Functions 645
19.71 Complexity 645
Complexity Relations 645
Complexity Comparison Function 646
Complexity Extrema, 646

Xii

Other Complexity Functions 647

19.7.2 Mediants and Farey Sequences 647
19.7.3 Rational Type Simplification. 648

198 Q->Z—Rounding L 649
19.8.1 RoundingtoInteger 649
19.8.2 Integer and FractionParts 650

19.9 RoundingtoMultiples o L. 650
19.10Q -> R —Conversion / Casting 652
19.11R->Q — Approximation 652
19111 Intervals L 652
Interval Constructors and ‘Deconstructors” 653

Interval Type Tests o 653

Interval Arithmetic Operators and Relations 654
IntervalMaths o 657

19.11.2 Least Complex Approximation within Epsilon 657
19.11.3 Best Approximation with Bounded Denominator 658
19.12Decompositiono 660
19.13Continued Fractions L o oL 660
19.13.1 Introductiono 660
19.13.2 Generating Continued Fractions 660
Exact 660

Inexact 660

19.13.3 Evaluating Continued Fractions 661
Convergents e 661
19.14Rational Complex Numbers 662
19.14.1 Rational Complex Constructors and ‘Deconstructors” 662
19.14.2 Rational Complex Type and Value Tests 664
19.14.3 Rational Complex Arithmetic Operators and Relations 665
19.14.4 Rational ComplexMaths 666
19.14.5 Rational Complex Type Simplification 667
19.155tring Formatting and Evaluation 668
19.15.1 The Naming of the String Conversion Functions 668
19.15.2 Internationalisation and Format Structures 668
19.15.3Digit Grouping 670
19154 Radices 670
19155 Error Terms 670
19.16Q <-> Fraction String (“i+n/d”) oo oo 671
19.16.1 Formatting to Fraction Strings 671
19.16.2 Evaluation of Fraction Strings 672
19.17Q <-> Recurring Numeral Expansion String (“LFR”) 672
19.17.1 Formatting to Recurring Expansion Strings 673
19.17.2 Evaluation of Recurring Expansion Strings 674
19.18Q <-> Numeral Expansion String (“LF x 10E”), 675
19.18.1 Formatting to Expansion Strings 675
Functions for Fixed Decimal Places 675

Functions for Significant Figures 676

Functions for Scientific Notation and Engineering Notation 677

20

21

19.18.2 Evaluation of Expansion Strings
19.19Numeral String -> Q — Approximation

Computer Algebra with Pure: A Reduce Interface
20.1 Copying oo
20.2 Installation L
20.3 Low-LevelInterface L
20.4 High-LevelInterface
20.4.1 Starting and StoppingReduce.o L.
20.4.2 Maintenance Operations
20.4.3 Evaluation e
20.5 BasicExamples
20.6 Examplesby Topic
20.6.1 Differentiation. L Lo o oo
20.6.2 Integration
20.6.3 Length, MapandSelect
20.6.4 Partial Fractions. o o
2065 Solving e
20.6.6 Evenand Odd Operators
20.6.7 Linear Operators
20.6.8 Non-commuting Operators
20.6.9 Symmetric and Antisymmetric Operators
20.6.10 Creating /Removing Variable Dependencies
20.6.11 Internal Order of Variables
20.6.12 Parts of Algebraic Expressions
20.6.13 Polynomials and Rationals
20.6.14Substitution Lo Lo
20.6.15Assignment e
20.6.16 Matrix Calculations o oL
20.6.17Limits
20.6.18 Ordinary differential equationssolver
20.6.19 Series Summation and Products 0L
20.6.20Taylor Series
20.6.21 Boolean Expressions oo
20.6.22 Mathematical Functions
20.6.23 DefiniteIntegrals o o oo
20.6.24 Declarations, Switches and Loading
20.6.25Plotting e
20.6.26References L

Pure-CSV - Comma Separated Value Interface for the Pure Programming Language

21.1 Installation e e e

212 Usage . . . o o o
2121 Handling Errors. o
21.2.2 CreatingDialects
2123 OpeningCSV Files
21.2.4 File Reading Functions

Xiv

21.2.5 File Writing Functions

21.2.6 Examples .

22 pure-fastcgi: FastCGI module for Pure

23

24

22.1 Copying
22.2 Installation
223 Usage

Pure-ODBC - ODBC interface for the Pure programming language

23.1 Copying
23.2 Installation

23.3 Opening and Closing a Data Source
23.4 Getting Information abouta Data Source
23.5 Executing SQL Queries o
23.6 Low-Level Operations

23.7 Lazy Processing . .
23.8 Error Handling . .
23.9 Caveats and Bugs .

23.10Further Information and Examples

Pure-Sql3

24.1 Introduction

241.1 SimpleExample o
2412 MoreExamples o
24.1.3 SQLite Documentation
24.1.4 Sqlite3 - The SQLite Command-Line Utility

242 Copying
24.3 Installation
24.4 Data Structure . . .

24.5 Core Database Operations
24.5.1 Database Connections
Opening a Database Connection
Failure to Open a Database Connection
Testingadb_ptr.
Closing a Database Connection

24.5.2 Prepared Statements 0oL
Constructing Prepared Statements
Testingastmt_ptr.
Executing Prepared Statements,
Executing Lazily
Executing Directly onadb_ptr
Executing Against a Busy Database
Grouping Execution with Transactions.
Finalizing Prepared Statements

24.5.3 Exceptions .

SQLite ErrorCodes e

24.6 Advanced Features

723
723
723
724

727
728
728
728
730
731
733
734
735
736
736

737
737
737
738
738
738
739
739
739
740
740
740
741
741
742
742
743
744
744
745
746
746
746
747
748
748
749

XV

25

26

27

28

29

30

24.6.1 Custom SQL Functions.
Scalar SQL Functions
Aggregate SQL Functions,

24.6.2 Accessing the Rest of SQLite’s C Interface

24.6.3 Custom Binding Types for Prepared Statements

247 ThreadingModes L

Pure-XML - XML/XSLT interface

25.1
25.2
25.3
254

25.5

Copying o o e
Installation L e e e

Usage o e e
DataStructure e e
2541 TheDocumentTree ittt i e e
2542 DocumentTypes o
Operations e
25.5.1 Document Operations
25.5.2 Traversing Documents
25.5.3 NodeInformation. i
2554 NodeManipulation. L.
2555 Transformations. o i i i i i e e e

pure-g2

Pure OpenGL Bindings

27.1
27.2
27.3
27.4

Copying e
Installation e e e

Usingthe GLBindings
Regenerating the Bindings,

Pure GTK+ Bindings

28.1
28.2
28.3

Copying o o e

Installation o e e
Usage o e e

pure-tk

29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9

Introduction e e
Copying e
Installation e e e
BasicUsage e e
Callbacks o e e e e e
TheMainLoop
Accessing Tel Variables o oo o
Conversions Between Pureand Tcl Values
Tipsand Tricks o

faust2pd: Pd Patch Generator for Faust

30.1
30.2

Copying o o e
Requirements

XVi

31

32

30.3
30.4
30.5
30.6
30.7
30.8

30.9

Installation
Quickstart e e e e e
Control Interface e
Examples
Wrapping DSPs with faust2pd
Conclusion o e e e
30.8.1 Acknowledgements00 ..
Appendix: faustxml Lo oo o
309.1 Usage. oo i i i i e
30.9.2 DataStructure
3093 Operations e

pd-faust

31.1
31.2
31.3

31.4

Copying o o e

Installation
Usage o e e
31.3.1 The fdsp~and fsynth~Objects
31.32 GUISubpatches
3133 Examples
31.34 OperatingthePatches
31.3.5 External MIDI and OSC Controllers
31.3.6 Tweakingthe GUILayout
31.3.7 RemoteControl e
CaveatsandBugs o

pd-pure: Pd loader for Pure scripts

32.1
32.2

32.3
32.4

325
32.6

Copying e
Installation e e e e e

3221 pd-pureonWindows L oo oo
Usage o o
Control Objects
32.4.1 SimpleObjects e
3242 Creation Arguments,
3243 The[pure]Object o
32.44 Configuring Inletsand Outlets
32.4.5 Variadic Creation Functions
324.6 LocalState
AudioObjects L e
Advanced Features e
32.6.1 AsynchronousMessages
32.6.2 WirelessMessaging
32.6.3 Reading and Writing AudioData
32.6.4 Controlling the Runtime
3265 Livecoding
32.6.6 RemoteControl e
32.6.7 CompilingObjects
32.6.8 Programming Interface,

33 pure-audio 827

33.1 Installation e e e e 827
33.2 LICeNSEe v o e e e e e e 828

34 pure-faust 829
341 Copying o i 829
34.2 Installation e e e e 830
343 Usage o o e 830
34.4 Faust2 Compatibility o o 834
345 Acknowledgements L L Lo 834

35 pure-liblo 835
35.1 Copying o i 835
352 Description e 835

36 pure-lilv: Pure Lilv Interface 837
36.1 Copying o i i 837
36.2 Installation e e e 837
36.3 Description e 837

37 pure-midi 841
37.1 Installation e e e e 841
372 LICENSE . . . v o i e e e e e e e e e e e e e e e 842

38 Installing Pure (and LLVM) 843
38.1 QuickSummary 843
38.2 BasicInstallation e 845
38.3 EmacsPure Mode e e 851
384 TeXmacsPlugin 852
38.5 Installing an LLVM-capable C/C++ Compiler. 853
3851 clang 853

3852 llvm-gcc 853

3853 dragonegg 854

38.6 Installing From Development Sources 855
38.7 Other Build and Installation Options 856
38.7.1 InstallationPath. 856

38.7.2 Tool Prefixand LLVM Version 857

38.7.3 Versioned Installations, 857

38.7.4 Separate Build Directory 858

38.7.5 Compiler and Linker Options 858

38.7.6 Predefined Build Types 858

38.7.7 Running Pure From The Source Directory 860

3878 OtherTargets 860

38.7.9 Pkg-configSupport o 860

38.8 SystemNotes 861
38.8.1 AllPlatforms« . @ e 861

38.82 LLVM2.5 . . . e e e e e 861

XViii

38.8.3 LLVM33 ..
3884 LLVM34 ..
38.8.5 PowerPC . . .
38.8.6 Linux
38.8.7 MacOS X ..
388.8 BSD
38.8.9 MS Windows

39 Running Pure on Windows

40 Using PurePad
40.1 Getting Started . . .
40.2 Editing Scripts
40.3 Running Scripts . . .
40.4 Using theLog
40.5 Locating Source Lines

41 Reporting Bugs
Module Index

Index

865

867
867
869
869
870
871

873

875

877

Xix

XX

Pure Language and Library Documentation, Release 0.59

This manual collects all of Pure’s online documentation: The Pure Manual which covers the
Pure language and the operation of the Pure interpreter; the Pure Library Manual which de-
scribes the standard library modules included in the distribution of the Pure interpreter;
all available documentation for the various addon modules which can be downloaded as
separate packages from the Pure website; and an appendix with installation instructions and
additional information for Windows users.

Most of the Pure documentation is distributed under the GNU Free Documentation License.
The authors of the current edition are listed below. (This just lists the primary section au-
thors in alphabetical order; please check the different parts of this manual for additional
authorship and licensing information.)

o Albert Graf (The Pure Manual; Pure Library Manual; various addon manuals)

Rob Hubbard (Pure-Rational - Rational number library for the Pure programming language)

Kay-Uwe Kirstein (Gnuplot bindings)

Eddie Rucker (Pure-CSV - Comma Separated Value Interface for the Pure Programming Lan-
quage; pure-gsl - GNU Scientific Library Interface for Pure)

Jiri Spitz (Pure-GLPK - GLPK interface for the Pure programming language)
¢ Peter Summerland (Pure-5Sql3, pure-stlimap, pure-stlvec)

The Pure programming system is free and open source software. The interpreter runtime,
the standard library and most of the addon modules are distributed under the GNU Lesser
General Public License or the 3-clause BSD License which allow for commercial applica-
tions. Some parts of the system also use the GNU General Public License (typically because
they interface to other GPL'ed software such as Gnumeric, GSL and Octave). Details about
authorship and license conditions can be found in the sources or in the various manual sec-
tions.

For more information, discussions, feedback, questions, suggestions etc. please see:
* Pure website: http:/ /purelang.bitbucket.org
¢ Pure mailing list: http://groups.google.com/group/pure-lang

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.opensource.org/licenses/bsd-license.php
http://www.gnu.org/copyleft/gpl.html
http://purelang.bitbucket.org
http://groups.google.com/group/pure-lang

Pure Language and Library Documentation, Release 0.59

Chapter

The Pure Manual

Version 0.59, February 26, 2014
Albert Grif <aggraef@gmail.com>

Copyright (c) 2009-2014 by Albert Graf. This document is available under the GNU Free
Documentation License. Also see the Copying section for licensing information of the soft-
ware.

This manual describes the Pure programming language and how to invoke the Pure inter-
preter program. To read the manual inside the interpreter, just type help at the command
prompt. See the Online Help section for details.

There is a companion to this manual, the Pure Library Manual which contains the description
of the standard library operations. More information about Pure and the latest sources can
be found under the following URLs:

* Pure website: http:/ /purelang.bitbucket.org
¢ Pure mailing list: http://groups.google.com/group/pure-lang

Information about how to install Pure can be found in the document Installing Pure (and
LLVM).

1.1 Introduction

Pure is a functional programming language based on term rewriting. This means that all
your programs are essentially just collections of symbolic equations which the interpreter
uses to reduce expressions to their simplest (“normal”) form. This makes for a rather power-
ful and flexible programming model featuring dynamic typing and general polymorphism.
In addition, Pure programs are compiled to efficient native code on the fly, using the LLVM
compiler framework, so programs are executed reasonably fast and interfacing to C is very
easy. If you have the necessary 3rd party compilers installed then you can even inline func-
tions written in C and a number of other languages and call them just like any other Pure

3

mailto:aggraef@gmail.com
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://purelang.bitbucket.org
http://groups.google.com/group/pure-lang

Pure Language and Library Documentation, Release 0.59

function. The ease with which you can interface to 3rd party software makes Pure useful for
a wide range of applications from symbolic algebra and scientific programming to database,
web and multimedia applications.

The Pure language is implemented by the Pure interpreter program. Just like other pro-
gramming language interpreters, the Pure interpreter provides an interactive environment
in which you can type definitions and expressions, which are executed as you type them at
the interpreter’s command prompt. However, despite its name the Pure interpreter never
really “interprets” any Pure code. Rather, it acts as a frontend to the Pure compiler, which
takes care of incrementally compiling Pure code to native (machine) code. This has the bene-
fit that the compiled code runs much faster than the usual kinds of “bytecode” that you find
in traditional programming language interpreters.

You can use the interpreter interactively as a sophisticated kind of “desktop calculator” pro-
gram. Simply run the program from the shell as follows:

$ pure

—\ | | ——] =\ Pure 0.59 (x86_64-unknown-linux-gnu)

| [| [| 7/ Copyright (c) 2008-2013 by Albert Graef
/A N D W (Type 'help’ for help, 'help copying’

—| for license information.)
Loaded prelude from /usr/lib/pure/prelude.pure.
>

The interpreter prints its sigh-on message and leaves you atits “>"” command prompt, where
you can start typing definitions and expressions to be evaluated:

> 17/12+23;

24.4166666666667

> fact n = if n>0 then nxfact (n-1) else 1;
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Typing the quit command or the end-of-file character (Ctrl-d on Unix systems) at the be-
ginning of the command line exits the interpreter and takes you back to the shell.

The interpreter can actually be invoked in a number of different ways. Instead of typing
definitions and evaluating expressions in an interactive fashion as shown above, you can
also put the same code in an (ASCII or UTF-8) text file called a Pure program or script
which can then be executed by the interpreter in “batch mode”, or compiled to a standalone
executable which can be run directly from the command line. As an aid for writing script
files, a bunch of syntax highlighting files and programming modes for various popular text
editors are included in the Pure sources.

More information about invoking the Pure interpreter can be found in the Invoking Pure
section below. This is followed by a description of the Pure language in Pure Overview and
subsequent sections, including an extensive Examples section which can serve as a mini-
tutorial on Pure. The interactive facilities of the Pure interpreter are discussed in the Inter-
active Usage section, while the Batch Compilation section explains how to translate Pure

4 1.1 Introduction

Pure Language and Library Documentation, Release 0.59

programs to native executables and a number of other object file formats. The Caveats and
Notes section discusses useful tips and tricks, as well as various pitfalls and how to avoid
them. The manual concludes with some authorship and licensing information and pointers
to related software.

1.1.1 Further Reading

This manual is not intended as a general introduction to functional programming, so at least
some familiarity with this programming style is assumed. If Pure is your first functional
language then you might want to look at the Functional Programming wikipedia article to
see what it is all about and find pointers to current literature on the subject. In any case we
hope that you'll find Pure helpful in exploring functional programming, as it is fairly easy
to learn but a very powerful language.

As already mentioned, Pure uses term rewriting as its underlying computational model,
which goes well beyond functional programming in some ways. Term rewriting has long
been used in computer algebra systems, and Michael O’Donnell pioneered its use as a pro-
gramming language already in the 1980s. But until recently implementations have not really
been efficient enough to be useful as general-purpose programming languages; Pure strives
to change that. A good introduction to the theory of the term rewriting calculus and its
applications is the book by Baader and Nipkow.

1.1.2 Typographical Conventions
Program examples are always set in typewriter font. Here’s how a typical code sample may

look like:

fact n = if n>0 then nxfact(n-1) else 1;

These can either be saved to a file and then loaded into the interpreter, or you can also just
type them directly in the interpreter. If some lines start with the interpreter prompt “> ”
this indicates an example interaction with the interpreter. Everything following the prompt
(excluding the “> ” itself) is meant to be typed exactly as written. Lines lacking the “> "
prefix show results printed by the interpreter. Example:

> fact n = if n>0 then nxfact(n-1) else 1;
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Similarly, lines starting with the “$ ” prompt indicate shell interactions. For instance,

$ pure

indicates that you should type the command pure on your system’s command line.

The grammar notation in this manual uses an extended form of BNF (Backus-Naur form),
which looks as follows:

1.1.1 Further Reading 5

http://en.wikipedia.org/wiki/Functional_programming

Pure Language and Library Documentation, Release 0.59

expression = “{" expr_list (";"” expr_list)x [";"] “}"
expr_list = expression (‘,’ expression)x*

Parentheses are used to group syntactical elements, while brackets denote optional elements.
We also use the regular expression operators * and + to denote repetitions (as usual, * de-
notes zero or more, + one or more repetitions of the preceding element). Terminals (literal
elements such as keywords and delimiters) are enclosed in double or single quotes.

These EBNF rules are used for both lexical and syntactical elements, but note that the former
are concerned with entities formed from single characters and thus tokens are meant to be
typed exactly as written, whereas the latter deal with larger syntactical structures where
whitespace between tokens is generally insignificant.

1.2 Invoking Pure

The Pure interpreter can be invoked from the shell in one of two different ways:

pure [options ...] [-x] script [args ...]
pure [options ...] [-b|-c|-i] [script ...] [-- args ...]

Use pure -h to get help about the command line options. Just the pure command without
any command line parameters invokes the interpreter in interactive mode, see Running
Interactively below for details.

The first form above is used if the interpreter is invoked on exactly one script file, which is
loaded and executed, after which the interpreter exits. Any arguments following the script
name are not processed by the interpreter, but are passed to the executing script by means
of the argv variable. This is also known as script mode, and is commonly used if a script
is to be run as a standalone program. Script mode can also be indicated explicitly with the
-x option, but this is optional unless you want to combine it with one of the -b, -c and
-1 options discussed below. If the -x option is present, it must be followed by the name
of a script to be executed. Also note that in script mode, all interpreter options need to be
specified before the script name; all remaining arguments (including options) are simply
passed to the executing script.

The second form is used if there may be any number of scripts which are to be executed in
batch mode (-b, -c) or interactive mode (-1i), respectively. In this case all options on the
command line will be processed by the interpreter, up to the - - option (if any), which stops
option processing and indicates that the remaining arguments should be passed in the argv
variable. Any non-option arguments (before the - - option, if any) are interpreted as scripts
which should be loaded by the interpreter. If no scripts are specified, or if the -i option
is present, the interpreter starts in interactive mode (after loading the given scripts, if any).
Otherwise, if one of the -b and -c options is specified, the given scripts are run in batch
mode, after which the interpreter exits. (In the case of -c, the interpreter then also dumps
the program as a native executable, performing batch compilation, see Compiling Scripts
below.)

6 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.59

Batch mode is also entered if the interpreter is invoked with one of the - -ctags and - -etags
options. However, in this case the given scripts are not executed at all, but only parsed in
order to produce a vi or emacs tags file, see Tagging Scripts below.

Here are some common ways to invoke the interpreter:

pure Runs the interpreter interactively, without any script. Only the prelude gets loaded.
pure -g Runs the interpreter interactively, with debugging support.

pure -b script ... Runs the given scripts in batch mode.

pure -i script ... Runs the given scripts in batch mode as above, but then enters the
interactive command loop. (Add -g to also get debugging support, and -q to suppress
the sign-on message.)

pure script [arg ...] Runs the given script with the given parameters. The script name
and command line arguments are available in the global argv variable.

pure -c script [-o prog] Batch compilation: Runs the given script, compiling it to a na-
tive executable prog (a.out by default).

pure --etags script ... [-T TAGS] Parses the given scripts and produces an emacs
tags file. (Use - -ctags to create a vi tags file instead. In either case, the actual name of
the tags file can be set with the -T option.)

The following commands provide helpful information about the interpreter, after which the
interpreter exits immediately:

pure --help Print a short help message describing the command line syntax and available
options. This can also be abbreviated as pure -h.

pure --version Print version information.

Depending on your local setup, there may be additional ways to run the Pure interpreter. In
particular, if you have Emacs Pure mode installed, then you can just open a script in Emacs
and run it with the C-c C-k keyboard command. For Emacs aficionados, this is probably
the most convenient way to execute a Pure script interactively in the interpreter. Pure mode
actually turns Emacs into a full IDE (integrated development environment) for Pure, which
offers a lot of convenient features such as syntax highlighting, automatic indentation, online
help and different ways to interact with the Pure interpreter.

1.2.1 Options

The interpreter accepts various options which are described in more detail below.

-b

Batch mode (execute the given scripts and exit).
-C

Batch compilation (compile the given scripts to a native binary).
--ctags

1.2.1 Options 7

Pure Language and Library Documentation, Release 0.59

--etags
Create a tags file in ctags (vi) or etags (emacs) format.

--disable optname
Disable source option (conditional compilation).

--eager-jit
Enable eager JIT compilation. This requires LLVM 2.7 or later, otherwise this flag will
be ignored.

--enable optname
Enable source option (conditional compilation).

--escape char
Interactive commands are prefixed with the specified character. Permitted prefixes are:
P $%&*, 1<>@\|.
-fPIC
-fpic
Create position-independent code (batch compilation).
-9
Enable symbolic debugging.
-h
--help
Print help message and exit.

Interactive mode (read commands from stdin after sourcing the given scripts, if any).

-I directory
Add a directory to be searched for included source scripts.

-L directory
Add a directory to be searched for dynamic libraries.

-1 libname
Library to be linked in batch compilation.

--main name
Name of main entry point in batch compilation.

--noediting
Disable command-line editing.

-n
--noprelude
Do not load the prelude.

--norc
Do not run the interactive startup files.

-o filename
Output filename for batch compilation.

8 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.59

-q
Quiet startup (suppresses sign-on message in interactive mode).
-T filename
Tags file to be written by - -ctags or - -etags.
- -texmacs
Run Pure inside TeXmacs.
-u
Do not strip unused functions in batch compilation.
-v[levell
Set verbosity level.
--version
Print version information and exit.
-w
Enable compiler warnings.
-X

Script mode (execute a script with the given command line arguments).

Stop option processing and pass the remaining command line arguments in the argv
variable.

Besides these, the interpreter also understands a number of other command line switches
for setting various compilation options; please see Compilation Options below for details.

Note: Option parsing follows the usual (Unix) conventions, but is somewhat more rigid
than the GNU getopt conventions. In particular, it is not possible to combine short options,
and there are no abbreviations for “long” options. Mixing options and other command line
parameters is generally possible, but note that all option processing stops right after -x and
- - (or the first non-option parameter in script mode), passing the remaining parameters to
the executing script in the Pure argv variable.

As usual, if an option takes a required argument, the argument may be written either as a
separate command line parameter immediately following the option (as in -I directory or
- -enable optname), or directly after the option (-Idirectory or - -enable=optname; note the
equals sign in the case of a long option). Options with optional arguments work in the same
fashion, but in this case the argument, if present, must be written directly behind the option.

1.2.2 Overview of Operation

If any source scripts are specified on the command line, they are loaded and executed, after
which the interpreter exits. Otherwise the interpreter enters the interactive read-eval-print
loop, see Running Interactively below. You can also use the - i option to enter the interactive
loop (continue reading from stdin) even after processing some source scripts.

1.2.2 Overview of Operation 9

Pure Language and Library Documentation, Release 0.59

Options and source files are processed in the order in which they are given on the command
line. Processing of options and source files ends when either the -- or the -x option is
encountered, or after the first script (non-option) argument in script mode (i.e., if none of the
options -b, -1, --ctags and --etags is present). In either case, any remaining parameters
are passed to the executing script by means of the global argc and argv variables, denoting
the number of arguments and the list of the actual parameter strings, respectively. In script
mode this also includes the script name as argv!0.

Script mode is useful, in particular, to turn Pure scripts into executable programs by includ-
ing a “shebang” like the following as the first line in your main script. (This trick only works
with Unix shells, though.)

#!/usr/local/bin/pure

The following variables are always predefined by the interpreter:

variable argc

variable argv
The number of extra command line arguments and the arguments themselves as a list
of strings; see above. These are useful if a script is usually run non-interactively and
takes its input from the command line.

variable compiling
A flag indicating whether the program is executed in a batch compilation (- c option),
see Compiling Scripts below.

variable version

variable sysinfo
The version string of the Pure interpreter and a string identifying the host system.
These are useful if parts of your script depend on the particular version of the inter-
preter and the system it runs on. (An alternative way to deal with version and system
dependencies is to use conditional compilation; see Conditional Compilation.)

If available, the prelude script prelude.pure is loaded by the interpreter prior to any other
definitions, unless the -n or - -noprelude option is specified. The prelude is searched for in
the directory specified with the PURELIB environment variable. If the PURELIB variable is not
set, a system-specific default is used. Relative pathnames of other source scripts specified on
the command line are interpreted relative to the current working directory. In addition, the
executed program may load other scripts and libraries via a using declaration in the source,
which are searched for in a number of locations, including the directories named with the -
and - L options; see the Declarations and C Interface sections for details.

1.2.3 Compiling Scripts

The interpreter compiles scripts, as well as definitions that you enter interactively, automati-
cally. This is done in an incremental fashion, as the code is needed, and is therefore known as
JIT (just in time) compilation. Thus the interpreter never really “interprets” the source pro-
gram or some intermediate representation, it just acts as a frontend to the compiler, taking
care of compiling source code to native machine code before it gets executed.

10 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.59

Pure’s LLVM backend does “lazy JIT compilation” by default, meaning that each function
(global or local) is compiled no sooner than it is run for the first time. With the - -eager-jit
option, however, it will also compile all other (global or local) functions that may be called by
the compiled function. (The PURE_EAGER_JIT environment variable, when set to any value,
has the same effect, so that you do not have to specify the --eager-jit option each time
you run the interpreter.) Eager JIT compilation may be more efficient in some cases (since
bigger chunks of compilation work can be done in one go) and less efficient in others (e.g.,
eager JITing may compile large chunks of code which aren’t actually called later, except in
rare circumstances).

Note that the eager JIT mode is only available with LLVM 2.7 or later; otherwise this option
will be ignored.

It is also possible to compile your scripts to native code beforehand, using the - ¢ batch com-
pilation option. This option forces the interpreter to batch mode (unless -1 is specified as
well, which overrides -c). Any scripts specified on the command line are then executed as
usual, but after execution the interpreter takes a snapshot of the program and compiles it
to one of several supported output formats, LLVM assembler (.11) or bitcode (.bc), native as-
sembler (.s) or object (.0), or a native executable, depending on the output filename specified
with -o. If the output filename ends in the .1l extension, an LLVM assembler file is created
which can then be processed with the LLVM toolchain. If the output filename is just ’-, the
assembler file is written to standard output, which is useful if you want to pass the gener-
ated code to the LLVM tools in a pipeline. If the output filename ends in the .bc extension,
an LLVM bitcode file is created instead.

The .1l and .bc formats are supported natively by the Pure interpreter, no external tools are
required to generate these. If the target is an .s, .0 or executable file, the Pure interpreter
creates a temporary bitcode file on which it invokes the LLVM tools opt and llc to create a
native assembler file, and then uses the C/C++ compiler to assemble and link the resulting
program (if requested). You can also specify additional libraries to be linked into the exe-
cutable with the -1 option. If the output filename is omitted, it defaults to a.out (a.exe on
Windows).

The C/C++ compiler invoked by the batch compiler is normally gec by default, but you
can change this with the CC and CXX environment variables. The LLVM tools opt and llc
are usually located on the PATH or in a system-specific directory determined at installation
time. It is also possible to use custom versions of these programs with the batch compiler,
by placing them into the Pure library directory, as specified at installation time or by the
PURELIB environment variable. (Note that this lets you use the batch compiler on systems
which don’t have the LLVM toolchain installed. In fact, you could even deploy a stand-alone
version of the interpreter together with the requisite LLVM tools on systems which don’t
have LLVM installed at all, by linking both the Pure runtime and the opt and llc programs
statically against LLVM.)

The - c option provides a convenient way to quickly turn a Pure script into a standalone ex-
ecutable which can be invoked directly from the shell. One advantage of compiling your
script is that this eliminates the JIT compilation time and thus considerably reduces the
startup time of the program. Another reason to prefer a standalone executable is that it
lets you deploy the program on systems without a full Pure installation (usually only the

1.2.3 Compiling Scripts 11

Pure Language and Library Documentation, Release 0.59

runtime library is required on the target system). On the other hand, compiled scripts also
have some limitations, mostly concerning the use of the built-in eval function. Please see
the Batch Compilation section for details.

The -v64 (or -v0100) verbosity option can be used to have the interpreter print the com-
mands it executes during compilation, see Verbosity and Debugging Options below. When
creating an object file, this also prints the suggested linker command (including all the dy-
namic modules loaded by the script, which also have to be linked in to create a working
executable), to which you only have to add the options describing the desired output file.

1.2.4 Tagging Scripts

Pure programs often have declarations and definitions of global symbols scattered out over
many different source files. The - - ctags and - -etags options let you create a tags file which
allows you to quickly locate these items in text editors such as vi and emacs which support
this feature.

If --ctags or --etags is specified, the interpreter enters a special variation of batch mode
in which it only parses source files without executing them and collects information about
the locations of global symbol declarations and definitions. The collected information is
then written to a tags file in the ctags or etags format used by vi and emacs, respectively.
The desired name of the tags file can be specified with the - T option; it defaults to tags for
--ctags and TAGS for - -etags (which matches the default tags file names used by vi and
emacs, respectively).

The tags file contains information about the global constant, variable, macro, function and
operator symbols of all scripts specified on the command line, as well as the prelude and
other scripts included via a using clause. Tagged scripts which are located in the same di-
rectory as the tags file (or, recursively, in one of its subdirectories) are specified using relative
pathnames, while scripts outside this hierarchy (such as included scripts from the standard
library) are denoted with absolute pathnames. This scheme makes it possible to move an
entire directory together with its tags file and have the tags information still work in the new
location.

1.2.,5 Running Interactively

If the interpreter runs in interactive mode, it repeatedly prompts you for input (which may
be any legal Pure code or some special interpreter commands provided for interactive us-
age), and prints computed results. This is also known as the read-eval-print loop and is
described in much more detail in the Interactive Usage section. To exit the interpreter, just
type the quit command or the end-of-file character (Ctrl-d on Unix) at the beginning of the
command line.

The interpreter may also source a few additional interactive startup files immediately be-
fore entering the interactive loop, unless the - -norc option is specified. First .purerc in the
user’s home directory is read, then .purerc in the current working directory. These are ordi-
nary Pure scripts which can be used to provide additional definitions for interactive usage.

12 1.2 Invoking Pure

http://en.wikipedia.org/wiki/Ctags

Pure Language and Library Documentation, Release 0.59

Finally, a .pure file in the current directory (usually containing a dump from a previous in-
teractive session) is loaded if it is present.

When the interpreter is in interactive mode and reads from a tty, unless the --noediting
option is specified, commands are usually read using readline or some compatible replace-
ment, providing completion for all commands listed under Interactive Usage, as well as for
symbols defined in the running program. When exiting the interpreter, the command history
is stored in ~/.pure_history, from where it is restored the next time you run the interpreter.

The interpreter also provides a simple source level debugger when run in interactive mode,
see Debugging for details. To enable the debugger, you need to specify the -g option when
invoking the interpreter. This option causes your script to run much slower, so you should
only use this option if you want to run the debugger.

1.2.6 Verbosity and Debugging Options

The - v option is useful for debugging the interpreter, or if you are interested in the code your
program gets compiled to. The level argument is optional; it defaults to 1. Seven different
levels are implemented at this time. Only the first two levels will be useful for the average
Pure programmer; the remaining levels are mostly intended for maintenance purposes.

1 (0x1, 001) denotes echoing of parsed definitions and expressions.

2 (0x2, 002) adds special annotations concerning local bindings (de Bruijn indices, subterm
paths; this can be helpful to debug tricky variable binding issues).

4 (0x4, 004) adds descriptions of the matching automata for the left-hand sides of equations
(you probably want to see this only when working on the guts of the interpreter).

8 (0x8, 010) dumps the “real” output code (LLVM assembler, which is as close to the native
machine code for your program as it gets; you definitely don’t want to see this unless
you have to inspect the generated code for bugs or performance issues).

16 (0x10, 020) adds debugging messages from the bison(1) parser; useful for debugging the
parser.

32 (0x20, 040) adds debugging messages from the flex(1) lexer; useful for debugging the
lexer.

64 (0x40, 0100) turns on verbose batch compilation; this is useful if you want to see exactly
which commands get executed during batch compilation (-c).

These values can be or’ed together, and, for convenience, can be specified in either decimal,
hexadecimal or octal. Thus Oxff or 0777 always gives you full debugging output (which
isn’t likely to be used by anyone but the Pure developers). Some useful flag combinations
for experts are (in octal) 007 (echo definitions along with de Bruijn indices and matching
automata), 011 (definitions and assembler code), 021 (parser debugging output along with
parsed definitions) and 0100 (verbose batch compilation).

Note that the -v option is only applied after the prelude has been loaded. If you want
to debug the prelude, use the -n option and specify the prelude.pure file explicitly on the

1.2.6 Verbosity and Debugging Options 13

Pure Language and Library Documentation, Release 0.59

command line. Verbose output is also suppressed for modules imported through a using
clause. As a remedy, you can use the interactive show command (see the Interactive Usage
section) to list definitions along with additional debugging information.

1.2.7 Compilation Options

Besides the options listed above, the interpreter also understands some additional command
line switches and corresponding environment variables to control various compilation op-
tions.

Code Generation Options

These options take the form --opt and - -noopt, respectively, where opt denotes the option
name (see below for a list of supported options). By default, these options are all enabled;
--noopt disables the option, --opt reenables it. In addition, for each option opt there is
also a corresponding environment variable PURE_NOOPT (with the option name in uppercase)
which, when set, disables the option by default. (Setting this variable to any value will do,
the interpreter only checks whether the variable exists in the environment.)

For instance, the checks option controls stack and signal checks. Thus - -nochecks on the
command line disables the option, and setting the PURE_NOCHECKS environment variable
makes this the default, in which case you can use - - checks on the command line to reenable
the option.

Each code generation option can also be used as a pragma (compiler directive) in source
code so that you can control it on a per-rule basis. The pragma must be on a line by itself,
starting in column 1, and takes the following form (using - -nochecks as an example):

#! --nochecks // line-oriented comment may go here

Currently, the following code generation options are recognized:

--checks

--nochecks
Enable or disable various extra stack and signal checks. By default, the interpreter
checks for stack overflows and pending signals on entry to every function, see Stack
Size and Tail Recursion and Handling of Asynchronous Signals for details. This is
needed to catch these conditions in a reliable way, so we recommend to leave this
enabled. However, these checks also make programs run a little slower (typically
some 5%, YMMYV). If performance is critical then you can disable the checks with the
--nochecks option. (Even then, a minimal amount of checking will be done, usually
on entry to every global function.)

--const

--noconst
Enable or disable the precomputing of constant values in batch compilation (cf. Com-
piling Scripts). If enabled (which is the default), the values of constants in const defi-
nitions are precomputed at compile time (if possible) and then stored in the generated

14 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.59

executable. This usually yields faster startup times but bigger executables. You can
disable this option with - -noconst to get smaller executables at the expense of slower
startup times. Please see the Batch Compilation section for an example.

--fold

--nofold
Enable or disable constant folding in the compiler frontend. This means that constant
expressions involving int and double values and the usual arithmetic and logical op-
erations on these are precomputed at compile time. (This is mostly for cosmetic pur-
poses; the LLVM backend will perform this optimization anyway when generating
machine code.) For instance:

> foo x = 2%3xX;
> show foo
foo X = 6xX;

Disabling constant folding in the frontend causes constant expressions to be shown as
you entered them:

> #! --nofold

> bar x = 2x3xXx;
> show bar

bar x = 2%x3xXx;

The same option also determines the handling of type aliases at compile time, see Type
Rules.

--symbolic

--nosymbolic
Enable or disable symbolic mode. Pure’s default behaviour is to evaluate function ap-
plications in a symbolic fashion using the equations (rewriting rules) supplied by the
programmer, cf. Definitions and Expression Evaluation. This means that it is not nor-
mally an error if there is no equation which applies to the given function application to
be evaluated; rather, the unevaluated function becomes a “constructor symbol” which
is applied to the provided arguments to form a literal (“normal form”) term which
stands for itself. E.g., here’s what you get if you try to add an (undefined) symbol and
a number:

> a+l;
a+l

The --nosymbolic option changes this behaviour so that if a global function has any
defining equations, then an attempt to invoke the function on a combination of argu-
ments for which there is no applicable equation, raises an exception. So if the inter-
preter is invoked with - -nosymbolic then you'll see this instead:

> a+l;
<stdin>, line 1: unhandled exception ’'failed_match’ while evaluating ’'a+1’

This behaviour is more in line with traditional languages where it is an error if a “de-
fined function” cannot be evaluated in case of argument mismatch. It makes it eas-

1.2.7 Compilation Options 15

Pure Language and Library Documentation, Release 0.59

ier to spot argument mismatch errors which might well go unnoticed if a program
is executed in Pure’s default symbolic mode. However, it also makes it impossible
to perform symbolic expression evaluations which is one of the key features of term
rewriting as a programming language.

Much of Pure’s library and many programming examples assume Pure’s default mode
of symbolic evaluation, so that it is generally not advisable to run the interpreter with a
global - -nosymbolic option, except maybe for debugging purposes. More commonly
--nosymbolic is used as a pragma in source code where it only applies to a specific col-
lection of function definitions. In addition, there’s a - - defined pragma which enables
you to mark individual functions as “defined functions”, see below.

--tc

--notc
Enable or disable tail call optimization (TCO). TCO is needed to make tail-recursive
functions execute in constant stack space, so we recommend to leave this enabled.
However, at the time of this writing LLVM’s TCO support is still bug-ridden on some
platforms, so the - -notc option allows you to disable it. (Note that TCO can also be
disabled when compiling the Pure interpreter, in which case these options have no
effect; see the installation instructions for details.)

Note: All of the options above also have a corresponding “option symbol” so that they can
be queried and set using the facilities described under Conditional Compilation below. (The
symbol is just the name of the option, e.g., checks for the - - checks, - -nochecks option and

pragma.)

Besides these, there are the following special pragmas affecting the evaluation of some global
function or macro, which is specified in the pragma. These pragmas can only be used in
source code, they cannot be controlled using command line options or environment vari-
ables. Note that the given symbol fun may in fact be an arbitrary symbol (not just an iden-
tifier), so that these pragmas can also be applied to special operator symbols (cf. Lexical
Matters). Also note that each of these pragmas also implicitly declares the symbol, so if a
symbol needs any special attributes then it must be declared before any pragmas involving
it (cf. Symbol Declarations).

--eager fun

Instruct the interpreter to JIT-compile the given function eagerly. This means that na-
tive code will be created for the function, as well as all other (global or local) functions
that may be called by the compiled function, as soon as the function gets recompiled.
This avoids the hiccups you get when a function is compiled on the fly if it is run for the
first time, which is particularly useful for functions which are to be run in realtime (typ-
ically in multimedia applications). Please note that, in difference to the - -eager-jit
option, this feature is available for all LLVM versions (it doesn’t require LLVM 2.7 or
later).

--required fun
Inform the batch compiler (cf. Compiling Scripts) that the given function symbol fun
should never be stripped from the program. This is useful, e.g., if a function is never

16 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.59

called explicitly but only through eval. Adding a - - required pragma for the function
then makes sure that the function is always linked into the program. Please see the
Batch Compilation section for an example.

--defined fun

--nodefined fun
These pragmas change the behaviour of global functions defined in a Pure program.
The --defined pragma marks the given function or operator symbol as a “defined
function” so that an exception is raised if the function is applied to a combination
of arguments for which there is no applicable equation. This works similarly to the
--nosymbolic pragma (see above), but allows you to mark individual functions as
“defined”. For instance:

> #! --defined +
> a+l;
<stdin>, line 2: unhandled exception ’'failed_match’ while evaluating 'a+1’

The - -defined status of a function can be changed at any time (causing the function
to be recompiled on the fly if necessary), and the --nodefined pragma restores the
default behaviour of returning a normal form upon failure:

> #! --nodefined +
> a+l;
a+l

More information and examples for common uses of the - -defined and - -nosymbolic
pragmas can be found under Defined Functions in the Caveats and Notes section.

--quoteargs fun
This pragma tells the macro evaluator (cf. Macros) that the given macro should receive
its arguments unevaluated, i.e., in quoted form. This is described in more detail in the
Built-in Macros and Special Expressions section.

Conditional Compilation

As of version 0.49, Pure also provides a rudimentary facility for denoting optional and al-
ternative code paths. This is supposed to cover the most common cases where conditional
compilation is needed. (For more elaborate needs you can always use real Pure code which
enables you to configure your program at runtime using, e.g., the eval function.)

Pure’s conditional compilation pragmas are based on the notion of user-defined symbols
(which can be really any text that does not contain whitespace or any of the shell wildcard
characters *?[]) called compilation options. By default, all options are undefined and enabled.
An option becomes defined as soon as it is set explicitly, either with an environment variable
or one of the - -enable and - -disable pragmas, see below.

You can define the value of an option by setting a corresponding environment variable
PURE_OPTION_OPT, where OPT is the option symbol in uppercase. The value of the environ-
ment variable should either be 0 (disabled) or 1 (enabled).

1.2.7 Compilation Options 17

Pure Language and Library Documentation, Release 0.59

Options can be enabled and disabled in Pure scripts with the following pragmas, which are
also available as command line options when invoking the Pure interpreter:

--enable option

--disable option
Enable or disable the given option, respectively. Note that an option specified in the
environment is overridden by a value specified with these options on the command
line, which in turn is overridden by a corresponding pragma in source code.

The actual conditional compilation pragmas work in pretty much the same fashion as the
C preprocessor directives #if, #ifdef etc. (except that, as already mentioned, an option is
always enabled if it is undefined).

--ifdef option

--ifndef option
Begins a code section which should be included in the program if the given option is
defined or undefined, respectively.

--if option

--ifnot option
Begins a code section which should be included in the program if the given option is
enabled or disabled, respectively.

--else
Begins an alternative code section which is included in the program if the correspond-
ing - -ifdef, --ifndef, --if or --ifnot section was excluded, and vice versa.

--endif
Ends a conditional code section.

Conditional code sections may be nested to an arbitrary depth. Each --ifdef, --ifndef,
--1f or --ifnot pragma must be followed by a matching --endif. The --else section is
optional; if present, it applies to the most recent - -ifdef, - -ifndef, --if or - -ifnot section
not terminated by a matching - -endif. Unmatched conditional pragmas warrant an error
message by the compiler.

Conditional code is handled at the level of the lexical analyzer. Excluded code sections are
treated like comments, i.e., the parser never gets to see them.

The --ifdef and --ifndef pragmas are typically used to change the default of an option
without clobbering defaults set by the user through an environment variable or a command
line option. For instance:

#! --ifndef opt
#! --disable opt
#! --endif

Here’s a (rather contrived) example which shows all these pragmas in action. You may
want to type this in the interpreter to verify that the code sections are indeed included and
excluded from the Pure program as indicated:

18 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.59

// disable the ’'bar’ option
#! --disable bar

#! --ifdef foo
1/2; // excluded
#! --endif

#! --ifndef bar
1/3; // excluded

#! --endif

#! --1if foo

foo x = x+1; // included
#! --1if bar

bar x = x-1; // excluded
#! --else

bar x = x/2; // included
#! --endif // bar
#! --endif // foo

// reenable the ’bar’ option
#! --enable bar

#! --if bar
bar 99; // included
#! --endif // bar

#! --ifnot foo
baz x = 2xx; // excluded
#! --endif // not foo

A few options are always predefined as “builtins” by the interpreter. This includes all of the
options described under Code Generation Options and Warning Options, so that these can
also be queried with --if, --ifnot and set with - -enable, - -disable. For instance:

#! --ifnot checks

puts "This program uses deep recursion, so we enable stack checks here!";
#! --enable checks

#! --endif // not checks

#! --if warn

puts "Beware of bugs in the above code.";

puts "I have only proved it correct, not tried it.";
#! --endif // warn

Moreover, the following options are provided as additional builtins which are useful for
handling special compilation requirements as well as system and version dependencies.

* The compiled option is enabled if a program is batch-compiled. This lets you pick al-
ternative code paths depending on whether a script is compiled to a native executable
or not. Please see the example at the end of the Batch Compilation section for details.

* The interactive and debugging options are enabled if a program runs in interactive

1.2.7 Compilation Options 19

Pure Language and Library Documentation, Release 0.59

(-1) and/or debugging (-g) mode, respectively. These options are read-only; they can-
not be changed with - -enable, - -disable. Example:

#! --1if interactive

puts "Usage: run ’'main filename’";
#! --else

main (argv!l);

#! --endif

* The version-x.y option indicates a check against the version of the host Pure inter-
preter. x.y indicates the required (major/minor) version. You can also use x.y+ to
indicate version x.y or later, or x.y- for version x.y or earlier. By combining these,
you can pick code depending on a particular range of Pure versions, or you can re-
verse the test to check for anything later or earlier than a given version:

#! --if version-0.36+

#! --1if version-0.48-

// code to be executed for Pure versions 0.36..0.48 (inclusive)
#! --endif

#! --endif

#! --ifnot version-0.48-
// code to be executed for Pure versions > 0.48
#! --endif

¢ Last but not least, the interpreter always defines the target triplet of the host system
as an option symbol. This is the same as what sysinfo returns, so you can check for a
specific system like this:

#! --if x86_64-unknown-1linux-gnu
// 64 bit Linux-specific code goes here
#! --endif

It goes without saying that this method isn’t very practical if you want to check for a
wide range of systems. As a remedy, the --if and --ifnot pragmas treat shell glob
patterns in tests for option symbols in a special way, by matching the pattern against
the host triplet to see whether the condition holds. This allows you to write a generic
test, e.g., for Windows systems like this:

#! --if x-mingw32
// Windows-specific code goes here
#! --endif

Warning Options

The -w option enables some additional warnings which are useful to check your scripts for
possible errors. In particular, it will report implicit declarations of function and type sym-
bols, which might indicate undefined or mistyped symbols that need to be fixed, see Symbol
Lookup and Creation for details.

20 1.2 Invoking Pure

Pure Language and Library Documentation, Release 0.59

This option can also be controlled on a per-rule basis by adding the following pragmas to
your script:

--warn
--nowarn
Enable or disable compiler warnings. The -w flag sets the default for these pragmas.

--rewarn
Reset compiler warnings to the default, as set with the -w flag (or not).

The latter pragma is useful to enable or disable warnings in a section of code and reset it to
the default afterwards:

#! --warn
// Code with warnings goes here.
#! --rewarn

(The same could also be achieved with conditional compilation, but only much more clum-
sily. However, note that - - rewarn only provides a single level of “backup”, so nesting such
sections is not supported.)

1.2.8 Startup Files

The interpreter may source various files during its startup. These are:

~/.pure_history
Interactive command history.

~/.purerc, .purerc, .pure
Interactive startup files. The latter is usually a dump from a previous interactive ses-
sion.

prelude.pure
Standard prelude. If available, this script is loaded before any other definitions, unless
-n was specified.

1.2.9 Environment

Various aspects of the interpreter can be configured through the following shell environment
variables:

cc

CXX
C and C++ compiler used by the Pure batch compiler (pure -c) to compile and link
native executables. Defaults to gcc and g++, respectively.

BROWSER
If the PURE_HELP variable is not set (see below), this specifies a colon-

separated list of browsers to try for reading the online documentation. See
http:/ /catb.org/~esr/BROWSER/.

1.2.8 Startup Files 21

http://catb.org/~esr/BROWSER/

Pure Language and Library Documentation, Release 0.59

PURELIB
Directory to search for library scripts, including the prelude. If PURELIB is not set, it
defaults to some location specified at installation time.

PURE_EAGER_JIT
Enable eager JIT compilation (same as - -eager-jit), see Compiling Scripts for details.

PURE_ESCAPE
If set, interactive commands are prefixed with the first character in the value of this
variable (same as - -escape), see Interactive Usage for details.

PURE_HELP
Command used to browse the Pure manual. This must be a browser capable of dis-
playing html files. Default is w3m.

PURE_INCLUDE
Additional directories (in colon-separated format) to be searched for included scripts.

PURE_LIBRARY
Additional directories (in colon-separated format) to be searched for dynamic libraries.

PURE_MORE
Shell command to be used for paging through output of the show command, when the
interpreter runs in interactive mode. PURE_LESS does the same for evaluation results
printed by the interpreter.

PURE_PS
Command prompt used in the interactive command loop (“> " by default).

PURE_STACK
Maximum stack size in kilobytes (0 = unlimited). A reasonable default is provided
(currently this is always 8192K - 128K for interpreter and runtime, which should work
on most modern PCs). If you're still getting segfaults due to stack overflow then you’ll
either have to reduce this value or increase the actual stack space available to programs.

Besides these, the interpreter also understands a number of other environment variables
for setting various compilation options (see Compilation Options above) and commands to
invoke different LLVM compilers on inline code (see Inline Code).

1.3 Pure Overview

Pure is a fairly simple yet powerful language. Programs are basically collections of term
rewriting rules, which are used to reduce expressions to normal form in a symbolic fash-
ion. For convenience, Pure also offers some extensions to the basic term rewriting calculus,
like global variables and constants, nested scopes of local function and variable definitions,
anonymous functions (lambdas), exception handling and a built-in macro facility. These are
all described below and in the following sections.

Most basic operations are defined in the standard prelude. This includes the usual arithmetic
and logical operations, as well as the basic string, list and matrix functions. The prelude is

22 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

always loaded by the interpreter, so that you can start using the interpreter as a sophisti-
cated kind of desktop calculator right away. Other useful operations are provided through
separate library modules. Some of these, like the system interface and the container data
structures, are distributed with the interpreter, others are available as separate add-on pack-
ages from the Pure website. A (very) brief overview of some of the modules distributed with
the Pure interpreter can be found in the Standard Library section.

In this section we first give a brief overview of the most important elements of the Pure lan-
guage. After starting out with a discussion of the lexical syntax, we proceed by explaining
definitions and expressions, which are the major ingredients of Pure programs. After study-
ing this section you should be able to write simple Pure programs. Subsequent sections then
describe the concepts and notions introduced here in much greater detail and also cover the
more advanced language elements which we only gloss over here.

1.3.1 Lexical Matters

Pure is a free-format language, i.e., whitespace is insignificant (unless it is used to delimit
other symbols). Thus, in contrast to “layout-based” languages like Haskell, you must use
the proper delimiters (;) and keywords (end) to terminate definitions and block structures.
In particular, definitions and expressions at the toplevel have to be terminated with a semi-
colon, even if you're typing them interactively in the interpreter.

Comments use the same syntax as in C++: // for line-oriented, and /* ... x/ for multiline
comments. The latter must not be nested. Lines beginning with #! are treated as comments,
too; as already discussed above, on Unix-like systems this allows you to add a “shebang” to
your main script in order to turn it into an executable program.

A few ASCII symbols are reserved for special uses, namely the semicolon, the “at” symbol
@, the equals sign =, the backslash \, the Unix pipe symbol |, parentheses (), brackets [] and
curly braces {}. (Among these, only the semicolon is a “hard delimiter” which is always a
lexeme by itself; the other symbols can be used inside operator symbols.) Moreover, there
are some keywords which cannot be used as identifiers:

case const def else end extern if
infix infix1 infixr interface 1let namespace nonfix
of otherwise outfix postfix prefix private public
then type using when with

Pure fully supports the Unicode character set or, more precisely, UTF-8. This is an ASCII ex-
tension capable of representing all Unicode characters, which provides you with thousands
of characters from most of the languages of the world, as well as an abundance of special
symbols for almost any purpose. If your text editor supports the UTF-8 encoding (most
editors do nowadays), you can use all Unicode characters in your Pure programs, not only
inside strings, but also for denoting identifiers and special operator symbols.

The customary notations for identifiers, numbers and strings are all provided. In addition,
Pure also allows you to define your own operator symbols. Identifiers and other symbols
are described by the following grammar rules in EBNF format:

1.3.1 Lexical Matters 23

Pure Language and Library Documentation, Release 0.59

symbol n= identifier | special

identifier := letter (letter | digit)=*
special = punct+

letter = “AT|LLTZ et L M2
digit RES “"]...]"9"

punct u= S el k-l I Sl Tl I Vil I

Pure uses the following rules to distinguish “punctuation” (which may only occur in de-
clared operator symbols) and “letters” (identifier constituents). In addition to the punctua-
tion symbols in the 7 bit ASCII range, the following code points in the Unicode repertoire
are considered as punctuation: U+00A1 through U+00BF, U+00D7, U+00F7, and U+20D0
through U+2BFFE. This comprises the special symbols in the Latin-1 repertoire, as well as
the Combining Diacritical Marks for Symbols, Letterlike Symbols, Number Forms, Arrows,
Mathematical Symbols, Miscellaneous Technical Symbols, Control Pictures, OCR, Enclosed
Alphanumerics, Box Drawing, Blocks, Geometric Shapes, Miscellaneous Symbols, Dingbats,
Miscellaneous Mathematical Symbols A, Supplemental Arrows A, Supplemental Arrows B,
Miscellaneous Mathematical Symbols B, Supplemental Mathematical Operators, and Mis-
cellaneous Symbols and Arrows. This should cover almost everything you’'d ever want to
use in an operator symbol. All other extended Unicode characters are effectively treated as
“letters” which can be used as identifier constituents. (Charts of all Unicode symbols can be
found at the Code Charts page of the Unicode Consortium.)

The following are examples of valid identifiers: foo, foo_bar, FooBar, BAR, bar99. Case is
significant in identifiers, so Bar and bar are distinct identifiers, but otherwise the case of
letters carries no meaning. Special symbols consist entirely of punctuation, such as ::=.
These may be used as operator symbols, but have to be declared before they can be used
(see Symbol Declarations).

Pure also has a notation for qualified symbols which carry a namespace prefix. These take
the following format (note that no whitespace is permitted between the namespace prefix
and the symbol):

qualified_symbol [qualifier] symbol
qualified_identifier := [qualifier] identifier
qualifier [identifier] "::"” (identifier "::")x

Example: foo: :bar.

Number literals come in three flavours: integers, bigints (denoted with an L suffix) and
floating point numbers (indicated by the presence of the decimal point and/or a base 10
scaling factor). Integers and bigints may be written in different bases (decimal, binary, octal
and hexadecimal), while floating point numbers are always denoted in decimal.

24 1.3 Pure Overview

http://www.unicode.org/charts/
http://www.unicode.org/

Pure Language and Library Documentation, Release 0.59

number u= integer | integer “L” | float
integer n= digit+

| IIOH ("X"l"x") heX,dlglt+

| MOH (llBIIl"b") binidigit_'_

| “0" oct_digit+

oct_digit = “OM ... |"T7"
hex_digit := “OU .. "9 "A" . | "F" | "a"]|
bin_digit = “er|"L”
float = digit+ [".” digit+] exponent

| digit*x ".” digit+ [exponent]
exponent = (“E”|"e”) ["+"|"-"] digit+

Examples: 4711, 4711L, 1.2e-3. Numbers in different bases: 1000 (decimal), 6x3e8 (hex-
adecimal), 01750 (octal), 0b1111101000 (binary).

String literals are arbitrary sequences of characters enclosed in double quotes, such as
"Hello, world!".

an

string = charx ‘"’

Special escape sequences may be used to denote double quotes and backslashes (\", \\), con-
trol characters (\b, \f, \n, \r, \t, these have the same meaning as in C), and arbitrary Uni-
code characters given by their number or XML entity name (e.g., \169, \0xa9 and \©
all denote the Unicode copyright character, code point U+00A9). As indicated, numeric es-
capes can be specified in any of the supported bases for integer literals. For disambiguating
purposes, these can also be enclosed in parentheses. E.g., "\ (123)4" is a string consisting of
the character \123 followed by the digit 4. Strings can also be continued across line ends by
escaping the line end with a backslash. The escaped line end is ignored (use \n if you need
to embed a newline in a string). For instance,

"Hello, |\
world.\n"

denotes the same string literal as

"Hello, world.\n"

1.3.2 Definitions and Expression Evaluation

The real meat of a Pure program is in its definitions. In Pure these generally take the form
of equations which tell the interpreter how expressions are to be evaluated. For instance,
the following two equations together define a function fact which computes, for each given
integer n, the factorial of n:

fact 0 = 1;
fact n::int = nxfact (n-1) if n>0;

1.3.2 Definitions and Expression Evaluation 25

http://www.w3.org/TR/xml-entity-names/

Pure Language and Library Documentation, Release 0.59

The first equation covers the case that n is zero, in which case the result is 1. The second
equation handles the case of a positive integer. Note the n::int construct on the left-hand
side, which means that the equation is restricted to (machine) integers n. This construct is
also called a “type tag” in Pure parlance. In addition, the n>0 in the condition part of the
second equation ensures that n is positive. If these conditions are met, the equation becomes
applicable and we recursively compute fact (n-1) and multiply by n to obtain the result.
The fact function thus computes the product of all positive integers up to n, which is indeed
just how the factorial is defined in mathematics.

To give this definition a try, you can just enter it at the command prompt of the interpreter
as follows:

> fact 0 = 1;

> fact n::int = nxfact (n-1) if n>0;
> fact 10;

3628800

On the surface, Pure is quite similar to other modern functional languages like Haskell and
ML. But under the hood it is a much more dynamic language, more akin to Lisp. In par-
ticular, Pure is dynamically typed, so functions can process arguments of as many different
types as you like. In fact, you can add to the definition of an existing function at any time.
For instance, we can extend our example above to make the fact function work with floating
point numbers, too:

> fact 0.0 = 1.0;

> fact n::double = nxfact (n-1) if n>0;
> fact 10.0;

3628800.0

Here we employed the constant 0.0 and the double type tag to define the factorial for the
case of floating point numbers. Both int and double are built-in types of the Pure language.
Our earlier definition for the int case still works as well:

> fact 10;
3628800

In FP parlance, we say that a function like fact is polymorphic, because it applies to dif-
ferent argument types. More precisely, the kind of polymorphism at work here is ad-hoc
polymorphism, because we have two distinct definitions of the same function which be-
have differently for different argument types.

Note that in this specific case, the two definitions are in fact very similar, to the point that
the right-hand sides of the definitions are almost the same. Observing these similarities, we
may also define fact in a completely generic way:

> clear fact
> fact n = 1 if n==0;
> fact n = nxfact (n-1) if n>0;

(Note that before we can enter the new definition, we first need to scratch our previous
definition of fact, that’s what the clear fact command does. This is necessary because, as

26 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

we already saw, the interpreter would otherwise just keep adding equations to the definition
of fact that we already have.)

Our new definition doesn’t have any type tags on the left-hand side and will thus work with
any type of numbers:

> fact 10; // int

3628800

> fact 30.0; // floating point

2.65252859812191e+32

> fact 50L; // bigint
30414093201713378043612608166064768844377641568960512000000000000L

Let’s now take a look at how the equations are actually applied in the evaluation process.
Conceptually, Pure employs term rewriting as its underlying model of computation, so the
equations are applied as rewriting rules, reading them from left to right. An equation is
applicable if its left-hand side matches the target term to be evaluated, in which case we can
bind the variables in the left-hand side to the corresponding subterms in the target term.
Equations are tried in the order in which they are written; as soon as the left-hand side of
an equation matches (and the condition part of the equation, if any, is satisfied), it can be
applied to reduce the target term to the corresponding right-hand side.

For instance, let’s take a look at the target term fact 3. This matches both equations of our
generic definition of fact from above, with n bound to 3. But the condition 3==0 of the first
equation fails, so we come to consider the second equation, whose condition 3>0 holds. Thus
we can perform the reduction fact 3 ==> 3xfact (3-1) and then evaluate the new target
term 3xfact (3-1) recursively.

At this point, we have to decide which of the several subterms we should reduce first. This
is also called the reduction strategy and there are different ways to go about it. For instance,
we might follow the customary “call-by-value” strategy where the arguments of a function
application are evaluated recursively before the function gets applied to it, and this is also
what Pure normally does. More precisely, expressions are evaluated using the “leftmost-
innermost” reduction strategy where the arguments are considered from left to right.

So this means that on the right-hand side of the second equation, first n-1 (being the ar-
gument of fact) is evaluated, then fact (n-1) (which is an argument to the * operator),
and finally fact (n-1) is multiplied by n to give the value of fact n. Thus the evaluation
of fact 3 actually proceeds as follows (abbreviating reductions for the built-in arithmetic
operations):

fact 3 => 3xfact 2 => 3*2xfact 1 => 3*x2x1lxfact 0 => 3*x2x1x1l => 6.

We mention in passing here that Pure also has a few built-in “special forms” which take
some or all of their arguments unevaluated, using “call by name” argument passing. This is
needed to handle some constructs such as logical operations and conditionals in an efficient
manner, and it also provides a way to implement “lazy” data structures. We’ll learn about
these later.

One of the convenient aspects of the rewriting model of computation is that it enables you to
define a function by pattern matching on structured argument types. For instance, we might

1.3.2 Definitions and Expression Evaluation 27

Pure Language and Library Documentation, Release 0.59

compute the sum of the elements of a list as follows:

> sum [] = 0;
> sum (X:XS) = X+sum XS;

This discriminates over the different cases for the argument value which might either be
the empty list [] or a non-empty list of the from x:xs where the variables x and xs refer to
the head element and the rest of the list, respectively. (The “:” infix operator is Pure’s way
of writing Lisp’s “cons”; this works the same as in other modern FPLs and is discussed in
much more detail later.)

Let’s give it a try:

> sum (1..10);
55

Note that 1. .10 denotes the list of all positive integers up to 10 here, so we get the sum of
the numbers 1 thru 10 as the result, which is indeed 55. (The “. .” operation is provided in
Pure’s prelude, i.e., it is part of the standard library:.)

Due to its term rewriting semantics, Pure actually goes beyond most other functional lan-
guages in that it can do symbolic evaluations just as well as “normal” computations:

> square X = X*X;
> square 4;

16

> square (a+b);
(a+b)*(a+b)

In fact, leaving aside the built-in support for some common data structures such as numbers
and strings, all the Pure interpreter really does is evaluate expressions in a symbolic fash-
ion, rewriting expressions using the equations supplied by the programmer, until no more
equations are applicable. The result of this process is called a normal form which represents
the “value” of the original expression. Moreover, there’s no distinction between “defined”
and “constructor” function symbols in Pure, so any function symbol or operator can be used
anywhere on the left-hand side of an equation, and may act as a constructor symbol if it hap-
pens to occur in a normal form term. This enables you to work with algebraic rules like
associativity and distributivity in a direct fashion:

> (X+y)*z = Xkz+y*z; Xk(y+z) = Xky+X*Z;
> xk(y*xz) = (xky)*xz; X+(y+z) = (X+y)+z;
> square (a+b);
axa+axb+b*xa+bxb

The above isn’t possible in languages like Haskell and ML which always enforce that only
“pure” constructor symbols (without any defining equations) may occur as a subterm on
the left-hand side of a definition; this is also known as the constructor discipline. Thus
equational definitions like the above are forbidden in these languages. Pure doesn’t enforce
the constructor discipline, so it doesn’t keep you from writing such symbolic rules if you
need them.

Another way of looking at this is that Pure allows you to have constructor equations. For

28 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

instance, the following equation makes lists automatically stay sorted:

> X:y:xs = y:x:xs if x>y;
> [13,7,9,7,11+[1,9,7,5];
[1,1,5,7,7,7,9,9,13]

This isn’t possible in Haskell and ML either because it violates the constructor discipline;
since “:” is a constructor it can’t simultaneously be a defined function in these languages.
Pure gives you much more freedom there.

This symbolic mode of evaluation is rather unusual outside of the realm of symbolic algebra
systems, but it provides the programmer with a very flexible model of computation and is
one of Pure’s most distinguishing features. In some cases, however, the unevaluated normal
forms may also become a nuisance since they may obscure possible programming errors.
Therefore Pure provides special - -nosymbolic and - - defined pragmas (cf. Code Generation
Options) which force functions to be treated as defined functions, so that they become more
like functions in traditional untyped languages such as Lisp and Python which raise an
exception under such conditions. This is described in more detail under Defined Functions
in the Caveats and Notes section.

Variables in Equations

Taking another look at the examples above, you might wonder how the Pure interpreter fig-
ures out what the parameters (a.k.a. “variables”) in an equation are. This is quite obvious
in rules involving just variables and special operator symbols, such as (x+y)*z = xxz+yx*z.
However, what about an equation like foo (foo bar) = bar? Since most of the time we
don’t declare any symbols in Pure, how does the interpreter know that foo is a literal func-
tion symbol here, while bar is a variable?

The answer is that the interpreter considers the different positions in the left-hand side ex-
pression of an equation. Basically, a Pure expression is just a tree formed by applying ex-
pressions to other expressions, with the atomic subexpressions like numbers and symbols
at the leaves of the tree. (This is true even for infix expressions like x+y, since in Pure these
are always equivalent to a function application of the form (+) x y which has the atomic
subterms (+), x and y at its leaves.)

Now the interpreter divides the leaves of the expression tree into “head” (or “function”)
and “parameter” (or “variable”) positions based on which leaves are leftmost in a function
application or not. Thus, in an expression like f x y z, f is in the head or function position,
while x, y and z are in parameter or variable positions. (Note that in an infix expression like
x+y, (+) is the head symbol, not x, as the expression is really parsed as (+) x y, see above.)

Identifiers in head positions are taken as literal function symbols by the interpreter, while
identifiers in variable positions denote, well, variables. We also refer to this convention
as the head = function rule. It is quite intuitive and lets us get away without declaring
the variables in equations. (There are some corner cases not covered here, however. In
particular, Pure allows you to declare special “nonfix” symbols, if you need a symbol to be
recognized as a literal even if it occurs in a variable position. This is done by means of a
nonfix declaration, see Symbol Declarations for details.)

1.3.2 Definitions and Expression Evaluation 29

Pure Language and Library Documentation, Release 0.59

1.3.3 Expression Syntax

Like in other functional languages, expressions are the central ingredient of all Pure pro-
grams. All computation performed by a Pure program consists in the evaluation of expres-
sions, and expressions also form the building blocks of the equational rules which are used

to define the constants, variables, functions and macros of a Pure program.

Typical examples of the different expression types are summarized in the following table.
Note that lambdas bind most weakly, followed by the special case, when and with con-
structs, followed by conditional expressions (if-then-else), followed by the simple expres-
sions. Operators are a part of the simple expression syntax, and are parsed according to
their declared precedences and associativities (cf. Symbol Declarations). Function applica-
tion binds stronger than all operators. Parentheses can be used to group expressions and

override default precedences as usual.

Type Example Description
Block \X y->2%X-y anonymous function (lambda)

case f u of x,y = x+y end case expression

x+y when x,y = f u end local variable definition

f u with f (x,y) = x+y end local function definition
Conditional | if x>0 then x else -x conditional expression
Simple X+y, -X, X mod y operator application

sin x,max a b function application
Primary 4711, 4711L,1.2e-3 number

"Hello, world!\n" string

foo, x, (+) function or variable symbol

[1,2,31,(1,2,3) list and tuple

{1,2;3,4} matrix

[x,-y | x=1..n; y=1..m; X<yl

list comprehension

{i==j | i=1..n; j=1..m}

matrix comprehension

The formal syntax of expressions is as follows. (Note that the rule and simple_rule ele-
ments are part of the definition syntax, which is explained in the Rule Syntax section.)

30

1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

au n

expr n= “\" prim_expr+ “->
“case” expr “of” rules “end”
expr “when” simple_rules “end”

I
I
| expr “with” rules “end”
I
|

expr

“if"” expr “then” expr “else” expr
simple_expr
simple_expr u= simple_expr op simple_expr
| op simple_expr
| simple_expr op
| application
application n= application prim_expr
| prim_expr
prim_expr n= qualified_symbol
| number
string
“(" op)"
left_op right_op
simple_expr op
op simple_expr

|
|
|
|
|
| “(" expr ")"
|
|
|
|
|

M(II H)"

ll(" ")"

M(II II)II

left_op expr right_op
II[II exprs ll]"

ll{" exprs (";" exprs)* [";"] ll}"

“I" expr “|" simple_rules “]"
“{" expr “|" simple_rules “}"
exprs = expr (”,"” expr)*
op = qualified_symbol
left_op = qualified_symbol
right_op = qualified_symbol
rules = rule (";” rule)x [";"]
simple_rules := simple_rule (";"” simple_rule)x* [";"]

Primary Expressions

The Pure language provides built-in support for machine integers (32 bit), bigints (imple-
mented using GMP), floating point values (double precision IEEE 754) and character strings
(UTF-8 encoded). These can all be denoted using the corresponding literals described in
Lexical Matters. Truth values are encoded as machine integers; as you might expect, zero
denotes false and any non-zero value true, and the prelude also provides symbolic constants
false and true to denote these. Pure also supports generic C pointers, but these don’t have
a syntactic representation in Pure, except that the predefined constant NULL may be used
to denote a generic null pointer; other pointer values need to be created with external C
functions.

Together, these atomic types of expressions make up most of Pure’s primary expression

1.3.3 Expression Syntax 31

Pure Language and Library Documentation, Release 0.59

syntax. Pure also provides built-in support for some types of “compound primaries” (lists,
tuples and matrices). We also list these here since they are typically denoted in some kind of
bracketed form, even though some related non-primary expression types such as x:y or x,y
really belong to the simple expressions.

Numbers: 4711, 4711L, 1.2e-3

The usual C notations for integers (decimal: 1000, hexadecimal: 0x3e8, octal: 01750)
and floating point values are all provided. Integers can also be denoted in base 2 by
using the 0b or 0B prefix: 0b1111101000. Integer constants that are too large to fit into
machine integers are promoted to bigints automatically. Moreover, integer literals im-
mediately followed by the uppercase letter L are always interpreted as bigint constants,
even if they fit into machine integers. This notation is also used when printing bigint
constants, to distinguish them from machine integers.

Strings: "Hello, world!\n”
String constants are double-quoted and terminated with a null character, like in C.
In contrast to C, strings are always encoded in UTF-8, and character escapes in Pure
strings have a more flexible syntax (borrowed from the author’s Q language) which
provides notations to specify any Unicode character. Please refer to Lexical Matters for
details.

Function and variable symbols: foo, foo_bar, BAR, foo::bar

These consist of the usual sequence of letters (including the underscore) and digits,
starting with a letter. Case is significant, thus foo, Foo and FO00 are distinct identifiers.
The “_* symbol, when occurring on the left-hand side of an equation, is special; it de-
notes the anonymous variable which matches any value without actually binding a
variable. Identifiers can also be prefixed with a namespace identifier, like in foo: :bar.
(This requires that the given namespace has already been created, as explained under
Namespaces in the Declarations section.)

Operator symbols: +, ==, not

For convenience, Pure also provides you with a limited means to extend the syntax of
the language with special operator symbols by means of a corresponding fixity dec-
laration, as discussed in section Symbol Declarations. Besides the usual infix, prefix
and postfix operators, Pure also provides outfix (bracket) and nonfix (nullary opera-
tor) symbols. (Nonfix symbols actually work more or less like ordinary identifiers, but
the nonfix attribute tells the compiler that when such a symbol occurs on the left-hand
side of an equation, it is always to be interpreted as a literal, cf. The “Head = Function”
Rule.)

Operator (and nonfix) symbols may take the form of an identifier or a sequence of
punctuation characters, which may optionally be qualified with a namespace prefix.
These symbols must always be declared before use. Once declared, they are always
special, and can’t be used as ordinary identifiers any more. However, like in Haskell,
by enclosing an operator in parentheses, such as (+) or (not), you can turn it into an
ordinary function symbol.

Lists: [x,y,z], x:xs
Pure’s basic list syntax is the same as in Haskell, thus [] is the empty list and x:xs
denotes a list with head element x and tail list xs. The infix constructor symbol “:” is

32 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

declared in the prelude. It associates to the right, so that x:y: z is the same as x: (y:z).
The usual syntactic sugar for list values in brackets is also provided, thus [x,y,z] is
exactly the same as x:y:z:[]. (This kind of list value is also called a “proper” list.
Pure also permits “improper” list values such as 1:2:3 with a non-list value in the tail.
These aren’t of much use as ordinary list values, but are frequently used in patterns or
symbolic expressions such as x:y where the tail usually is a variable.)

Lists can be nested to an arbitrary depth. Also note that, in contrast to Haskell, lists
are not required to be homogeneous, so in general they may contain an arbitary mix
of element types. E.g., [1,2.0, [x,y]] is a three-element list consisting of an integer, a
floating point number and a nested list containing two symbols.

Pure also provides a notation for arithmetic sequences such as 1. .5, which denotes the
list [1,2,3,4,5]. Note the missing brackets; Pure doesn’t use any special syntax for
arithmetic sequences, the “..” symbol is just an ordinary infix operator declared and
defined in the prelude. Sequences with arbitrary stepsizes can be written by denoting
the first two sequence elements using the “:* operator,asin 1.0:1.2..3.0. To prevent
unwanted artifacts due to rounding errors, the upper bound in a floating point se-
quence is always rounded to the nearest grid point. Thus, e.g., 0.0:0.1..0.29 actually
yields [0.0,0.1,0.2,0.3],as does 0.0:0.1..0.31.

Tuples: (x,y,2z)

Pure’s tuples are a flat variant of lists which are often used as aggregate function ar-
guments and results when no elaborate hierarchical structure is needed. They are con-
structed using the infix “pairing” operator *,, for which the empty tuple () acts as
a neutral element (i.e., (),x is just x, as is x, ()). Pairs always associate to the right,
meaning that x,y,z = x,(y,z) = (x,y),z, where x, (y,z) is the normalized repre-
sentation. These rules imply that tuples can’t be nested and that there are no “true”
1-tuples distinct from their single members; if you need this then you should use lists
instead (cf. Splicing Tuples and Matrices).

Note that the parentheses are not really part of the tuple syntax in Pure, they’re just
used to group expressions. So (x,y,z) denotes just x,y, z. But since the *,” operator
has a low precedence, the parentheses are often needed to include tuples in other con-
texts. In particular, the parentheses are required to set off tuple elements in lists and
matrices. E.g., [(1,2),3,(4,5)] denotes a three element list consisting of two tuples
and an integer.

Mathematically, Pure’s notion of tuples corresponds to a monoid with an associative
binary operation ‘,” and neutral element (). This is different from the usual definition
of tuples in mathematical logic, which are nestable and correspond to Pure’s notion
of lists. So in Pure you can take your pick and use either flat tuples or nestable lists,
whatever is most convenient for the problem at hand.

Matrices: {1.0,2.0,3.0}, {1,2;3,4}, {cos t,-sin t;sin t,cos t}
Pure also offers matrices, a kind of two-dimensional arrays, as a built-in data structure
which provides efficient storage and element access. These work more or less like their
Octave/MATLAB equivalents, but using curly braces instead of brackets. Component
values may either be individual elements (“scalars”) or submatrices which are com-
bined to form a larger matrix, provided that all dimensions match up. Here, a scalar

1.3.3 Expression Syntax 33

Pure Language and Library Documentation, Release 0.59

is any expression which doesn’t yield a matrix; these are considered to be 1x1 sub-
matrices for the purpose of matrix construction. (Note that this “splicing” behaviour
pertains to matrix construction only; nested matrix patterns are always matched liter-

ally.)

The comma arranges submatrices and scalars in columns, while the semicolon ar-
ranges them in rows. So, if both x and y are n x m matrices, then {x,y} becomes an
n x 2*m matrix consisting of all the columns of x followed by all the columns of y. Like-
wise, {x;y} becomes a 2xn x m matrix (all the rows of x above of all rows of y). For
instance, {{1;3},{2;4}} is another way to write the 2x2 matrix {1,2;3,4}. Row vec-
tors are denoted as 1 x n matrices ({1, 2, 3}), column vectors as n x 1 matrices ({1;2;3}).
More examples can be found in the Matrices and Vectors section.

Pure supports both numeric and symbolic matrices. The former are homogeneous ar-
rays of double, complex double or (machine) int matrices, while the latter can contain
any mixture of Pure expressions. Pure will pick the appropriate type for the data at
hand. If a matrix contains values of different types, or Pure values which cannot be
stored in a numeric matrix, then a symbolic matrix is created instead (this also in-
cludes the case of bigints, which are considered as symbolic values as far as matrix
construction is concerned). Numeric matrices use an internal data layout that is fully
compatible with the GNU Scientific Library (GSL), and can readily be passed to GSL
routines via the C interface. (The Pure interpreter does not require GSL, however, so
numeric matrices will work even if GSL is not installed.)

Comprehensions: [x,y | x=1..n; y=1..m; x<y], {f x | x=1..n}

Pure provides both list and matrix comprehensions as a convenient means to construct
list and matrix values from a “template” expression and one or more “generator” and
“filter” clauses. The former bind a pattern to values drawn from a list or matrix, the
latter are just predicates determining which generated elements should actually be
added to the result. Comprehensions are in fact just syntactic sugar for a combination
of lambdas, conditional expressions and certain list and matrix operations, but they
are often much easier to write.

Thus, for instance, [f x | x=1..n] is pretty much the same as map f (1..n), while
[x | x=xs; x>0] correspondsto filter (>0) xs. However, comprehensions are con-
siderably more general in that they allow you to draw values from different kinds of
aggregates including lists, matrices and strings. Also, matrix comprehensions alter-
nate between row and column generation so that most common mathematical abbre-
viations carry over quite easily. Patterns can be used on the left-hand side of generator
clauses as usual, and will be matched against the actual list or matrix elements; any
unmatched elements are filtered out automatically, like in Haskell.

More details and examples can be found in the Examples section; in particular, see List
Comprehensions and Matrices and Vectors.

34

1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

Simple Expressions

The rest of Pure’s expression syntax mostly revolves around the notion of function appli-
cations. For convenience, Pure also allows you to declare pre-, post-, out- and infix opera-
tor symbols, but these are in fact just syntactic sugar for function applications; see Symbol
Declarations for details. Function and operator applications are used to combine primary
expressions to compound terms, also referred to as simple expressions; these are the data
elements which are manipulated by Pure programs.

As in other modern FPLs, function applications are written simply as juxtaposition (i.e., in
“curried” form) and associate to the left. This means that in fact all functions only take a
single argument. Multi-argument functions are represented as chains of single-argument
functions. For instance, in f x y = (f x) vy first the function f is applied to the first ar-
gument ¥, yielding the function f x which in turn gets applied to the second argument y.
This makes it possible to derive new functions from existing ones using partial applications
which only specify some but not all arguments of a function. For instance, taking the max
function from the prelude as an example, max 0 is the function which, for a given x, returns
x itself if it is nonnegative and zero otherwise. This works because (max 0) x = max 0 xis
the maximum of 0 and x.

One major advantage of having curried function applications is that, without any further
ado, functions become first-class objects. That is, they can be passed around freely both as
parameters and as function return values. Much of the power of functional programming
languages stems from this feature.

Operator applications are written using prefix, postfix, outfix or infix notation, as the decla-
ration of the operator demands, but are just ordinary function applications in disguise. As
already mentioned, enclosing an operator in parentheses turns it into an ordinary function
symbol, thus x+y is exactly the same as (+) x y. For convenience, partial applications of
infix operators can also be written using so-called operator sections. A left section takes the
form (x+) which is equivalent to the partial application (+) x. A right section takes the form
(+x) and is equivalent to the term flip (+) x. (This uses the flip combinator from the pre-
lude which is defined as flip f x y = f y x.) Thus (x+) yisequivalent to x+y, while (+x)
y reduces to y+x. For instance, (1/) denotes the reciprocal and (+1) the successor function.
(Note that, in contrast, (-x) always denotes an application of unary minus; the section (+-x)
can be used to indicate a function which subtracts x from its argument.)

The common operator symbols like +, -, *, / etc. are all declared at the beginning of the
prelude, see the Pure Library Manual for a list of these. Arithmetic and relational operators
mostly follow C conventions. However, since !, & and | are used for other purposes in Pure,
the logical and bitwise operations, as well as the negated equality predicates are named a
bit differently: ~, & and || denote logical negation, conjunction and disjunction, while the
corresponding bitwise operations are named not, and and or. Moreover, following these
conventions, inequality is denoted ~=. Also note that & and || are special forms which are
evaluated in short-circuit mode (see Special Forms below), whereas the bitwise connectives
receive their arguments using call-by-value, just like the other arithmetic operations.

1.3.3 Expression Syntax 35

Pure Language and Library Documentation, Release 0.59

Special Expressions

Some special notations are provided for conditional expressions as well as anonymous func-
tions (lambdas) and local function and variable definitions. The latter are also called block
expressions since they introduce local bindings of variable and function symbols which may
override other global or local bindings of these symbols. This gives rise to a kind of block
structure similar to Algol-like programming languages. Please check Scoping Rules below
for more information about this.

The constructs described here are called “special” because, in contrast to the other forms
of expressions, they cannot occur in normal form terms as first-class values (at least not
literally; there is an alternative quoted representation of special expressions, however, which
can be manipulated with macros and functions for meta programming purposes, cf. Built-in
Macros and Special Expressions).

Conditional expressions: if x then y else z
Evaluates to y or z depending on whether x is “true” (i.e., a nonzero integer). A
failed_cond exception is raised if the condition is not an integer.

Lambdas: \x -> vy
These denote anonymous functions and work pretty much like in Haskell. A lambda
matches its argument against the left-hand side pattern x and then evaluates the right-
hand side body y with the variables in x bound to their corresponding values. Pure
supports multiple-argument lambdas (e.g, \x y -> xxy), as well as pattern-matching
lambda abstractions such as \ (x,y) -> xxy. A failed_match exception is raised if the
actual arguments do not match the given patterns.

Case expressions: case x of u = v; ... end
Matches an expression, discriminating over a number of different cases, similar to the
Haskell case construct. The expression x is matched in turn against each left-hand side
pattern u in the rule list, and the first pattern which matches x gives the value of the
entire expression, by evaluating the corresponding right-hand side v with the variables
in the pattern bound to their corresponding values. A failed_match exception is raised
if the target expression doesn’t match any of the patterns.

When expressions: x when u = v; ... end

An alternative way to bind local variables by matching a collection of subject terms
against corresponding patterns, similar to Aardappel’s when construct. A single bind-
ing x when u = v endis equivalent to the lambda expression (\u -> x) v or the case
expression case v of u = x end, so it matches v against the pattern u and evaluates x
with the variables in u bound to their corresponding values (or raises a failed_match
exception if v doesn’t match u). However, a when clause may contain multiple defini-
tions, which are processed from left to right, so that later definitions may refer to the
variables in earlier ones. (This is exactly the same as several nested single definitions,
with the first binding being the “outermost” one.)

With expressions: x with u = v; ... end
Defines local functions. Like Haskell’s where construct, but it can be used anywhere in-
side an expression (just like Aardappel’s where, but Pure uses the keyword with which

36 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

better lines up with case and when). Several functions can be defined in a single with
clause, and the definitions can be mutually recursive and consist of as many equations
as you want. Local functions are applied in the same way as global ones, i.e., the ar-
gument patterns of each rule are matched against the actual function arguments and
the first rule which matches has its right-hand side evaluated with the variables in the
argument patterns bound to their corresponding values. If none of the rules match
then the function application remains unevaluated (it becomes a normal form), so no
exception is raised in this case. (This is in contrast to a lambda which otherwise is
pretty much like a nameless local function defined by a single rule.)

The block constructs are similar to those available in most modern functional languages. In
Pure these constructs are all implemented in terms of the basic term rewriting machinery,
using lambda lifting to eliminate local functions, and the following equivalences which re-
duce lambdas as well as case and when expressions to special kinds of local functions or local
function applications:

\X1 ... Xn ->y

= fwith f x1 ... xn=y; f _ ... _ = throw failed_match end

case x of yl = z1; ...; yn = zn end

= f x with f y1 =2z1; ...; fyn=2zn; f _ = throw failed_match end

X when y = z end

= f zwith fy=x; f_ = throw failed_match end
x when yl = z1; ...; yn = zn end
= x when yn = zn end ... when yl = z1 end

Note that by convention these constructs report a failed_match exception in case of argu-
ment mismatch. So they’re treated like defined functions, which is somewhat at odds with
the term rewriting semantics. This is done for convenience, however, so that the programmer
doesn’t have to deal with unevaluated applications of nameless block constructs in normal
form terms. The case of named local functions is considered different because it effectively
represents a local rewriting system which should be treated accordingly, in order to allow
for symbolic evaluation.

1.3.4 Special Forms

As already mentioned, some operations are actually implemented as special forms which
process some or all of their arguments using call-by-name.

if x then y else z
The conditional expression is a special form with call-by-name arguments y and z; only
one of the branches is actually evaluated, depending on the value of x.

X &&y

x|y
The logical connectives evaluate their operands in short-circuit mode. Thus the second
operand is passed by name and will only be evaluated if the first operand fails to

1.3.4 Special Forms 37

http://en.wikipedia.org/wiki/Lambda_lifting

Pure Language and Library Documentation, Release 0.59

determine the value of the expression. For instance, x&&y immediately becomes false
if x evaluates to false; otherwise y is evaluated to give the value of the expression. The
built-in definitions of these operations work as if they were defined by the following
equations (but note that the second operand is indeed passed by name):

x::int & y = if x then y else x;
x::int || y = if x then x else y;

Note that this isn’t quite the same as in C, as the results of these operations are not
normalized, i.e., they may return nonzero values other than 1 to denote “true”. (This
has the advantage that these operations can be implemented tail-recursively, see Stack
Size and Tail Recursion.) Thus, if you need a normalized truth value then you'll have
to make sure that either both operands are already normalized, or you'll have to nor-
malize the result yourself. (A quick way to turn a machine int x into a normalized truth
value is to compute ~~x or x~=0.)

Moreover, if the built-in definition fails because the first operand is not a machine
int, then the second operand will be evaluated anyway and the resulting application
becomes a normal form, which gives you the opportunity to extend these operations
with your own definitions just like the other built-in operations. Note, however, that
in this case the operands are effectively passed by value.

X$$y

X &

The sequencing operator $$ evaluates its left operand, immediately throws the result
away and then goes on to evaluate the right operand which gives the result of the
entire expression. This operator is useful to write imperative-style code such as the
following prompt-input interaction:

> using system;

> puts "Enter a number:" $$ scanf "S%g";
Enter a number:

21

21.0

We mention in passing here that the same effect can be achieved with a when clause,
which also allows you to execute a function solely for its side-effects and just ignore
the return value:

> scanf "%g" when puts "Enter a number:" end;
Enter a number:

21

21.0

The & operator does lazy evaluation. This is the only postfix operator defined in the
standard prelude. It turns its operand into a kind of parameterless anonymous closure,
deferring its evaluation. These kinds of objects are also commonly known as thunks
or futures. When the value of a future is actually needed (during pattern-matching,
or when the value becomes an argument of a C call), it is evaluated automatically and
gets memoized, i.e., the computed result replaces the thunk so that it only has to be
computed once.

38

1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

Futures are useful to implement all kinds of lazy data structures in Pure, in particular:
lazy lists a.k.a. streams. A stream is simply a list with a thunked tail, which allows it
to be infinite. The Pure prelude defines many functions for creating and manipulating
these kinds of objects; for further details and examples please Lazy Evaluation and
Streams in the Examples section.

quote x

fx
This special form quotes an expression, i.e., quote x (or, equivalently, ’x) returns just
x itself without evaluating it. The prelude also provides a function eval which can be
used to evaluate a quoted expression at a later time. For instance:

> let x = '(2%42+42"°12); Xx;
2%42+2°12

> eval Xx;

4180.0

This enables some powerful metaprogramming techniques, which should be well fa-
miliar to Lisp programmers. However, there are some notable differences to Lisp’s
quote, please see The Quote in the Examples section for details and more examples.

1.3.5 Toplevel

At the toplevel, a Pure program basically consists of rewriting rules (which are used to de-
fine functions, macros and types), constant and variable definitions, and expressions to be
evaluated:

script itemx
item n= “let” simple_rule ";”
“const” simple_rule ";"

n.,.n

“def” macro_rule ";

nm.,n

I
|
| “type” type_rule ”;
|
I

n.,n

rule ”;

n.,n

expr ”;

These elements are discussed in more detail in the Rule Syntax section. Also, a few addi-
tional toplevel elements are part of the declaration syntax, see Declarations.

lhs = rhs;
Rewriting rules always combine a left-hand side pattern (which must be a simple ex-
pression) and a right-hand side (which can be any kind of Pure expression described
above). The same format is also used in with, when and case expressions. In toplevel
rules, with and case expressions, this basic form can also be augmented with a con-
dition if guard tacked on to the end of the rule, where guard is an integer expression
which determines whether the rule is applicable. Moreover, the keyword otherwise
may be used to denote an empty guard which is always true (this is syntactic sugar
to point out the “default” case of a definition; the interpreter just treats this as a com-
ment). Pure also provides some abbreviations for factoring out common left-hand or

1.3.5 Toplevel 39

Pure Language and Library Documentation, Release 0.59

right-hand sides in collections of rules; see the Rule Syntax section for details.

type lhs = rhs;

A rule starting with the keyword type defines a type predicate. This works pretty
much like an ordinary rewriting rule, except that only a single right-hand side is per-
mitted (which may also be omitted in some cases) and the left-hand side may involve
at most one argument expression; see the Type Rules section for details. There’s also
an alternative syntax which lets you define types in a more abstract way and have
the compiler generate the type rules for you; this is described in the Interface Types
section.

def lhs = rhs;
A rule starting with the keyword def defines a macro function. No guards or multiple
right-hand sides are permitted here. Macro rules are used to preprocess expressions
on the right-hand side of other definitions at compile time, and are typically employed
to implement user-defined special forms and simple kinds of optimization rules. See
the Macros section below for details and examples.

let lhs = rhs;
Binds every variable in the left-hand side pattern to the corresponding subterm of the
right-hand side (after evaluating it). This works like a when clause, but serves to bind
global variables occurring free on the right-hand side of other function and variable
definitions.

const lhs = rhs;

An alternative form of let which defines constants rather than variables. (These are
not to be confused with nonfix symbols which simply stand for themselves!) Like let,
this construct binds the variable symbols on the left-hand side to the corresponding
values on the right-hand side (after evaluation). The difference is that const symbols
can only be defined once, and thus their values do not change during program ex-
ecution. This also allows the compiler to apply some special optimizations such as
constant folding.

expr;
A singleton expression at the toplevel, terminated with a semicolon, simply causes the
given value to be evaluated (and the result to be printed, when running in interactive
mode).

1.3.6 Scoping Rules

A few remarks about the scope of identifiers and other symbols are in order here. Special
expressions introduce local scopes of functions and variables. Specifically, lambda expres-
sions, as well as the left-hand sides of rules in case, when and with expressions, bind the vari-
ables in the patterns to their corresponding values. In addition, a with expression also binds
function names to the corresponding functions defined by the rules given in the expression.
In either case, these bindings are limited to the scope of the corresponding construct. Inside
that scope they override other (global or local) definitions of the same symbols which may
be present in the surrounding program code. This gives rise to a hierarchical block structure

40 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

where each occurrence of a symbol refers to the innermost definition of that symbol visible
at that point of the program.

The precise scoping rules for the different constructs are as follows:

* \x -> y: The scope of the variables bound by the pattern x is the lambda body y.

* case x of u=v; ... end: The scope of the variables bound by the pattern u in
each rule is the corresponding right-hand side v.

* x when u = v; ... end: The scope of the variables bound by the pattern u in each
rule extends over the right-hand sides of all subsequent rules and the target expression
X.

* x with u = v; ... end: The scope of the variables bound by the pattern u in each

rule is the corresponding right-hand side v. In addition, the scope of the function names
defined by the with clause (i.e., the head symbols of the rules) extends over the right-
hand sides of all rules and the target expression x. Note that this allows local function
definitions to be mutually recursive, since the right-hand side of each rule in the with
clause may refer to any other function defined by the with clause.

Like most modern functional languages, Pure uses lexical or static binding for local func-
tions and variables. What this means is that the binding of a local name is completely de-
termined at compile time by the surrounding program text, and does not change as the
program is being executed. In particular, if a function returns another (anonymous or local)
function, the returned function captures the environment it was created in, i.e., it becomes a
(lexical) closure. For instance, the following function, when invoked with a single argument
x, returns another function which adds x to its argument:

> foo x = bar with bar y = x+y end;

> let f = foo 99; f;
bar

> f 10, f 20;
109,119

This works the same no matter what other bindings of x may be in effect when the closure is
invoked:

> let x = 77; f 10, (f 20 when x = 88 end);
109,119

In contrast to local bindings, Pure’s toplevel environment binds global symbols dynami-
cally, so that the bindings can be changed easily at any time during an interactive session.
This is mainly a convenience for interactive usage, but works the same no matter whether the
source code is entered interactively or being read from a script, in order to ensure consistent
behaviour between interactive and batch mode operation.

In particular, you can easily bind a global variable to a new value by just entering a cor-
responding let command. For instance, contrast the following with the local bar function
from above which had the x value bound in the surrounding context:

1.3.6 Scoping Rules 41

Pure Language and Library Documentation, Release 0.59

> clear x
> bar y = x+y;
> bar 10, bar 20;

X+10,x+20

> let x = 99;

> bar 10, bar 20;
109,119

> let x = 77;

> bar 10, bar 20;
87,97

Observe how changing the value of the global x variable immediately affects the value com-
puted by the global bar function. This works pretty much like global variables in imperative
languages, but note that in Pure the value of a global variable can only be changed with a
let command at the toplevel. Thus referential transparency is unimpaired; while the value
of a global variable may change between different toplevel expressions, it will always take
the same value in a single evaluation.

Similarly, you can also add new equations to an existing function at any time. The Pure
interpreter will then automatically recompile the function as needed. For instance:

> fact 0 = 1;

> fact n::int = nxfact (n-1) if n>0;
> fact 10;

3628800

> fact 10.0;

fact 10.0

> fact 1.0 = 1.0;

> fact n::double = nxfact (n-1) if n>1;
> fact 10.0;

3628800.0

> fact 10;

3628800

In interactive mode, it is even possible to completely erase a function definition and redo it
from scratch, see section Interactive Usage for details.

So, while the meaning of a local symbol never changes once its definition has been pro-
cessed, toplevel definitions may well evolve while the program is being processed, and the
interpreter will always use the latest definitions at a given point in the source when an ex-
pression is evaluated.

Note: As already mentioned, this behaviour makes Pure much more convenient to use in
an interactive setting. We should point out, however, that dynamic environments are often
frowned upon by functional programming purists (for good reasons), and Pure’s dynamic
toplevel certainly has its pitfalls just like any other. Specifically, even in a script file you'll
have to take care that all symbols needed in an evaluation are completely defined before en-
tering the expression to be evaluated. Nevertheless, it is expected that most Pure program-
mers will use Pure interactively most of the time, and so tailoring the design to interactive
usage seems justifiable in this case.

42 1.3 Pure Overview

Pure Language and Library Documentation, Release 0.59

1.4 Rule Syntax

Basically, the same rule syntax is used in all kinds of global and local definitions. However,
some constructs (specifically, when, let, const, type and def) use a variation of the basic rule
syntax which does away with guards and/or multiple left-hand or right-hand sides. The
syntax of these elements is captured by the following grammar rules:

rule x= pattern (“|” pattern)* “=" expr [guard]
(";" “=" expr [guard])x
type_rule u= pattern (“|” pattern)x [“=" expr [guard]]
macro_rule = pattern (“|” pattern)* “=" expr
simple_rule := pattern “=" expr | expr
pattern = simple_expr
guard = “if"” simple_expr
| “otherwise”

| guard “when” simple_rules “end”
| guard “with” rules “end”

When matching against a function or macro call, or the subject term in a case expression,
the rules are always considered in the order in which they are written, and the first matching
rule (whose guard evaluates to a nonzero value, if applicable) is picked. (Again, the when
construct is treated differently, because each rule is actually a separate definition.)

1.41 Patterns

The left-hand side of a rule is a special kind of simple expression, called a pattern. The
variables in a pattern serve as placeholders which are bound to corresponding values when
the rule is applied to a target expression. To these ends, the pattern is matched against
the target expression, i.e., the literal parts of the pattern are compared against the target
expression and, if everything matches up, the variables in the pattern are bound to (set to
the value of) the corresponding subterms of the target expression.

Patterns are pervasive in Pure; they are used on the left-hand side of function and macro
definitions, just as well as in global and local variable definitions. For instance, the follow-
ing variable definition matches the result of evaluating the right-hand side list expression
against the pattern x:y:xs and binds the variables x and y to the first two elements of the
resulting list and xs to the list of remaining elements, respectively. We can then place x and
y at the end of the list, thereby performing a kind of “rotation” of the first two list members:

> let x:y:xs = 1..10;
> xs+[x,y];
[3,4,5,6,7,8,9,10,1,2]

The same works with a local variable definition:

1.4 Rule Syntax 43

Pure Language and Library Documentation, Release 0.59

> xs+[x,y] when x:y:xs = 1..10 end;
[3,4,5,6,7,8,9,10,1,2]

Or with a case expression:

> case 1..10 of x:y:xs = xs+[x,y] end;
[3,4,5,6,7,8,9,10,1,2]

The arguments of functions (and macros) are handled in the same fashion, too:

> rot2 (x:y:xs) = xs+[x,yl;
> rot2 (1..10);
[3!4!5!6!7!8!9!10I112]

However, there is a big difference here. For global and local variable definitions, it is an error
if the pattern does not match the target expression:

> let x:y:xs = [1];
<stdin>, line 7: failed match while evaluating ’'let x:y:xs = [1]’

The same holds if the target expression doesn’t match any of the left-hand side patterns in a
case expression:

> case [1] of x:y:xs = xs+[x,y] end;
<stdin>, line 8: unhandled exception ’'failed_match’ while evaluating
"case [1] of x:y:xs = xs+[x,y] end’

(The error message is slightly different in this case, but the reported kind of exception is
actually the same as with the let expression above.)

This doesn’t normally happen with functions and macros. Instead, a match failure just
means that the corresponding rule will be bypassed and other rules will be tried instead.
If there are no more rules, the target expression becomes a normal form which is simply
returned as is:

> rot2 [1];
rot2 [1]

This may come as a surprise (other functional languages will give you an error in such cases),
but is a crucial feature of term rewriting languages, as it opens the door to symbolic evalua-
tion techniques, see Definitions and Expression Evaluation.

There are two different ways to force a function definition to bail out with an error if you
prefer that behaviour. First, you can provide an explicit rule which raises an exception (cf.
Exception Handling). But this can make it difficult or even impossible to add more rules to
the function later, as discussed below. Instead, you may want to use the - -defined pragma
as follows:

> #! --defined rot2
> rot2 [1];
<stdin>, line 13: unhandled exception ’'failed_match’ while evaluating ’'rot2 [1]’

44 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.59

Note: This pragma tells the compiler that rot2 is supposed to be a “defined” function,
which means that it should be an error if no rule applies to it; please see Defined Functions
in the Caveats and Notes section for details. Also note that exceptions will always interfere
with symbolic evaluation and thus the use of this facility isn’t really recommended. How-
ever, there are situations in which it can make your life a lot easier.

One of Pure’s key features is that you can usually just keep on adding new rules to existing
function definitions in order to handle different kinds of arguments. As already mentioned,
the rules will then be considered in the order in which they are written, and the first rule
which matches the given arguments will be used to reduce the function application. For
instance, adding the following rule we can make the rot2 function also work with tuples:

> rot2 (X,y,Xs) = Xs,X,Y;
> rot2 (1,2,3,4,5);
3,4,5,1,2

This is also known as ad-hoc polymorphism. By these means, you can make a function ap-
ply to as many different kinds of arguments as you want, and the pattern matching handles
the necessary “dispatching” so that the right rule gets invoked for the provided arguments.

Pattern matching is not limited to the predefined aggregates such as lists, tuples and matri-
ces. In principle, any legal Pure expression can occur as a pattern on the left-hand side of a
rule or definition, so you can also write something like:

> rot2 (point x y z) = point z x y;
> rot2 (point 1 2 3);

point 3 1 2

Or even:

> foo (foo x) = foo x;

> bar (foo x) = foo (bar x);

> foo (bar (foo 99));
foo (bar 99)

Note that symbolic rules like in the latter example (which in this case express the idempo-
tence of foo and a kind of commutativity with respect to bar) often involve symbols which
play the role of both a function and a constructor symbol.

Syntactically, patterns are simple expressions, thus special expressions need to be parenthe-
sized if you want to include them in a pattern. (In fact, special expressions are given special
treatment if they occur in patterns, see the Macros section for details.) A few other special
elements in patterns are discussed below.

The “Head = Function” Rule

A central ingredient of all patterns are of course the variables which get bound in the pattern
matching process. Pure is a rather terse language and thus it has no explicit way to declare

1.4.1 Patterns 45

Pure Language and Library Documentation, Release 0.59

which identifiers are the variables. Instead, the compiler figures them out on its own, using
a rather intuitive rule already explained in Variables in Equations.

Recall that the variables in a pattern are the identifiers in “variable positions”. The head
= function rule tells us that a variable position is any leaf (atomic subexpression) of the
expression tree which is not the head symbol of a function application. Thus a pattern like
f (g x) y contains the variables x and y, whereas f and g are interpreted as literal function
symbols. This rule also applies to the case of infix, prefix or postfix operator symbols, if we
write the corresponding application in its unsugared form. E.g., x+y*z is equivalent to (+) x
((x) y z) which contains the variables x, y and z and the literal function symbols (+) and
().

There are some exceptions to the “head = function” rule. Specifically, it is possible to declare
an identifier as a nonfix symbol so that it will be interpreted as a literal function symbol
even if it occurs in a variable position, see Symbol Declarations for details. For instance:

nonfix nil;
foo nil = 0;

Note that since nil is declared as a nonfix symbol here, the symbol is interpreted as a literal
rather than a variable in the left-hand side foo nil, and thus foo will return 0 for a literal
nil value only.

Another case which needs special consideration are patterns consisting of a single identi-
fier, such as x. Here the meaning depends on the kind of construct. All variable-binding
constructs (let, const, when and case) treat a singleton identifier as a variable (unless it is
declared nonfix). Thus all of the following constructs will have the expected result of bind-
ing the variable x to the given list value [1,2,3]. In either case the resultis [0,1,2,3]:

let x = [1,2,3]; 0:x;
0:x when x = [1,2,3] end;
case [1,2,3] of x = 0:x end;

In contrast, a single identifier is always interpreted as a literal if it occurs on the left-hand
side of a function or macro definition, so that the following rule defines a parameterless
function y:

y = [1,2,3]; 0:y;
(While they yield the same values here, there are some notable differences between the pa-

rameterless function y and the global variable x defined above; see Defining Functions for
details.)

Please also check “Head = Function” Pitfalls in the Caveats and Notes section which has
some some further interesting details and workarounds concerning the “head = function”
rule.

Constant Patterns

Constants in patterns must be matched literally. For instance:

46 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.59

foo 0 = 1;

This will only match an application of foo to the machine integer 0, not 6.0 or 0L (even
though these compare equal to 0 using the ‘==" operator).

The Anonymous Variable

The “_’ symbol is special in patterns; it denotes the anonymous variable which matches an
arbitrary value (independently for all occurrences) without actually binding a variable. This
is useful if you don’t care about an argument or one of its components, in which case you
can just use the anonymous variable as a placeholder for the value and don’t have to invent
a variable name for it. For instance:

foo _ _ = 0;

This will match the application of foo to any combination of two arguments (and just ignore
the values of these arguments).

Non-Linear Patterns and Syntactic Equality

In contrast to Haskell, patterns may contain repeated variables (other than the anonymous
variable), i.e., they may be non-linear. Thus rules like the following are legal in Pure, and
will only be matched if all occurrences of the same variable in the left-hand side pattern are
matched to the same value:

foo x X = Xx;
foo 1 1;

Non-linear patterns are particularly useful for computer algebra where you will frequently
encounter rules such as the following:

> Xky+X*z = X*k(y+2);
> ax(3x4)+ax5;
ax1l7

The notion of “sameness” employed here is that of syntactical identity, which means that the
matched subterms must be identical in structure and content. The prelude provides syntactic
equality as a function same and a comparison predicate ‘===". Thus the above definition of
foo is roughly equivalent to the following;:

foo x y = x if same x y;

It is important to note the differences between syntactic equality embodied by same and
‘===', and the “semantic” equality operator ‘==". The former are always defined on all terms,

1.4.1 Patterns 47

Pure Language and Library Documentation, Release 0.59

whereas ‘==" is only available on data where it has been defined explicitly, either in the pre-
lude or by the programmer. Also note that ‘==" may assert that two terms are equal even if
they are syntactically different. Consider, e.g.:

> 0==0.0;
1
> 0===0.0;
0

This distinction is actually quite useful. It gives the programmer the flexibility to define ‘==*
in any way that he sees fit, which is consistent with the way the other comparison operators
like ‘<* and “>" are handled in Pure.

Syntactic equality is also used in pattern matching in order to decide whether a constant in
a pattern matches the corresponding subterm in the target expression. This explains why
the pattern foo 0, as already mentioned, only matches an application of foo to the machine
integer 0, not 0.0 or 0L which aren’t syntactically equal to 0.

However, there is one caveat here. Due to its term rewriting heritage, Pure distinguishes
between literal function symbols in patterns and named functions. The latter are runtime
objects which are only considered syntactically equal if they not only have the same name
but actually refer to the same (global or local) closure. In contrast, a function symbol in a
pattern is just a literal symbol without reference to any particular closure that the symbol
may be bound to in some context. Thus a function symbol in a pattern matches any instance
of the symbol in the target expression, no matter whether it happens to be a pure constructor,
quoted symbol or any named closure bound to that symbol.

This leads to some discrepancies between pattern matching and syntactic equality which
may be surprising at first sight. For instance, consider:

foo x = case x of bar y = x===bar y end;
bar x y = x+y;
foo (bar 99);
foo ('bar 99);

foo (bar 99) with bar x y = xxy end;

©V ©V =V VYV

Note that the argument term bar 99 matches the pattern bar y in the case expression in
either case, even though in the last two expressions bar is not considered syntactically equal
to the global bar function because it is quoted (cf. The Quote) or bound to a local closure of
the same name, respectively.

Special Patterns
Last but not least, patterns may also contain the following special elements which are not
permitted in right-hand side expressions:

¢ A Haskell-style “as” pattern of the form variable @ pattern binds the given variable to
the expression matched by the subpattern pattern (in addition to the variables bound

48 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.59

by pattern itself). This is convenient if the value matched by the subpattern is to be
used on the right-hand side of an equation.

¢ A left-hand side variable (including the anonymous variable) may be followed by a
type tag of the form :: name, where name is either one of the built-in type symbols
int, bigint, double, string, matrix, pointer, or an identifier denoting a user-defined
data type. The variable can then match only values of the designated type. Thus, for
instance, ‘x: : int’ only matches machine integers. See the Type Tags section below for
details.

To these ends, the expression syntax is augmented with the following grammar rule (but
note that this form of expression is in fact only allowed on the left-hand side of a rule):

prim_expr = qualified_identifier
("::" qualified_identifier | “@" prim_expr)

As shown, both “as” patterns and type tags are primary expressions, and the subpattern of
an “as” pattern is a primary expression, too. Thus, if a compound expression is to be used
as the subpattern, it must be parenthesized. For instance, the following function duplicates
the head element of a list:

foo xs@(x:_) = X:XS;

Note that if you accidentally forget the parentheses around the subpattern x:_, you still get
a syntactically correct definition:

foo Xs@x:_ = X:XS;
But this gets parsed as (foo xs@x):_ = x:xs, which is most certainly not what you want. It

is thus a good idea to just always enclose the subpattern with parentheses in order to prevent
such glitches.

Note: Another pitfall is that the notation foo: :bar is also used to denote “qualified sym-
bols” in Pure, cf. Namespaces. Usually this will be resolved correctly, but if foo happens to
also be a valid namespace then most likely you'll get an error message about an undeclared
symbol. You can always work around this by adding spaces around the “: :” symbol, as in
foo :: bar. Spaces are never permitted in qualified symbols, so this makes it clear that
the construct denotes a type tag. The same applies if the variable or the tag is a qualified
identifier; in this case they should always be separated by whitespace.

1.4.2 Type Tags

Like Lisp, Pure is essentially a typeless language and doesn’t really have a built-in notion of
“data types”. Rather, all data belongs to the same universe of terms. However, for conve-
nience it is possible to describe data domains by means of (unary) type predicates which may
denote arbitrary sets of terms. The names of these type predicates can then be used as type
tags on variables, so that they can only be matched by values of the given type.

1.4.2 Type Tags 49

Pure Language and Library Documentation, Release 0.59

We have to emphasize here that Pure’s notion of types has nothing to do with static typing.
Type tags are merely used at runtime to restrict the kind of data that can be matched by a
rule (and by the compiler to generate better code in some cases). But they will never cause
the compiler to impose a static typing discipline and spit out corresponding “type errors”.
(This wouldn’t make any sense in Pure anyway, as failure to match any of the rules given in
the definition of a function simply means that a function application is in normal form.)

Some basic types are built into the language. The corresponding tags enable you to match
the built-in types of terms for which there is no way to spell out all “constructors”, as there
are infinitely many (or none, as in the case of pointer values which are constructed and in-
spected using special primitives, but are otherwise “opaque” at the Pure level). Specifically,
the following data types are built-in (in fact, the pattern matcher has special knowledge
about these so that they can be matched very efficiently):

type int
The type of machine integers.

type bigint
The type of arbitrary precision integers (GMP bigints).

type double
The type of double precision floating point numbers.

type string
The type of character strings.

type matrix
The type of all numeric and symbolic matrix values.

type pointer
The type of C pointer values.

Pure’s standard library provides additional data types along with the corresponding opera-
tions, such as rational and complex numbers, lists, tuples and the container data types (sets,
dictionaries, etc.). These are all described in the Pure Library Manual.

You can define your own data types using a special kind of rule syntax which is explained in
Type Rules below. For instance, we might represent points in the plane using a constructor
symbol Point which gets applied to pairs of coordinates. We can then define the point data
type as follows:

type point (Point x y);

This introduces the type symbol point and specifies that this type consists of terms of the
form Point x y. We can now equip this data type with an operation point to construct a
point from its coordinates, two operations xcoord and ycoord to retrieve the coordinates,
and an operation move to change the coordinates to the given values:

point x y = Point X y;
xcoord (Point x y) = x;
ycoord (Point x y) = vy;
move (Point _ _) x y = Point x y;

50 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.59

Next we might define a function translate which shifts the coordinates of a point by a given
amount in the x and y directions as follows:

translate x y p::point = move p (xcoord p+x) (ycoord p+y);

Note the use of point as a type tag on the p variable. By these means, we can ensure that the
argument is actually an instance of the point data type we just defined. The type tag acts just
like an extra guard of the equation defining translate, but all the necessary type checking is
done automatically during pattern matching. This is often more convenient (and, depending
on the implementation, the compiler may generate more efficient code for a type tag than
for an ordinary guard).

The translate function can be invoked as follows:

> let p::point = point 3 3;
> p; translate 1 2 p;

Point 3 3

Point 4 5

One important point to note here is that translate can be defined without knowing or as-
suming anything about the internal representation of the point data type. We have defined
point as a concrete data type in this example, making its constructor and internal structure
visible in the rest of the program. This is often convenient, but the Point constructor might
just as well be hidden by making it a private member of some namespace (cf. Namespaces),
so that all accesses to the data structure would have to be done through the provided oper-
ations. Such a data type is also known as an abstract data type (ADT).

Note: Aswe’ve already seen, Pure has some powerful capabilities which enable you to write
functions to inspect and manipulate terms in a completely generic fashion. Thus the internal
structure of term data is never truly opaque in Pure and it is always possible to break the
“abstraction barrier” provided by an ADT. But if the user of an ADT plays such dirty tricks
to wreak havoc on the internal representation of an ADT, he gets what he deserves.

Pure provides some additional facilities to ease the handling of abstract data types. Specif-
ically, instead of defining point as a concrete data type using a type rule, we might also
specify it as an interface type which merely lists the supported operations as follows:

interface point with
xcoord p::point;
ycoord p::point;
move p::point x y;
end;

We can implement this type the same way as before:

point x y = Point X y;
xcoord (Point x y) = x;
ycoord (Point x vy) y;
move (Point _ _) x y = Point x y;

1.4.2 Type Tags 51

Pure Language and Library Documentation, Release 0.59

The definition of the translate function is also unchanged:

translate x y p::point = move p (xcoord p+x) (ycoord p+y);

The difference is that now the structure of members of the type is not made explicit anywhere
in the definition of the type. Instead, the compiler figures out which data matches the point
tag on its own. We can check the actual term patterns making up the point type with the
show interface command:

> show interface point
type point (Point x y);

As you can see, the compiler derived our previous definition of the type. But in fact
translate will now work with any data type which implements the point interface (i.e.,
provides the xcoord, ycoord and move operations), so we may swap out the underlying data
structure on a whim. For instance, if we’d like to use vectors instead of constructor terms,
all we have to do is to provide a corresponding construction function and implement the
interface operations:

vpoint x y = {X,y};
xcoord {x,y} = Xx;
ycoord {x,y} =vy;

move {_,_} xy = {X,y};

After these definitions the new data representation works just fine with existing point oper-
ations such as translate:

> show interface point

type point (Point x y);
type point {x,y};

> let p::point = vpoint 3 3;
> p; translate (1,2) p;
{3,3}

{4,5}

This separation of interface and implementation of a data structure is an important ingredi-
ent of software engineering techniques. More examples and detailed explanations of Pure’s
notions of type predicates and interface types can be found in the Type Rules and Interface
Types sections.

1.4.3 General Rules

The most general type of rule, used in function definitions and case expressions, consists
of a left-hand side pattern, a right-hand side expression and an optional guard. The left-
hand side of a rule can be omitted if it is the same as for the previous rule. This provides
a convenient means to write out a collection of equations for the same left-hand side which
discriminates over different conditions:

lhs

rhs if guard;
rhs if guard;

52 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.59

= rhs otherwise;

For instance:

fact n nxfact (n-1) if n>0;

1 otherwise;

This expands to:

fact n = nxfact (n-1) if n>0;
fact n 1 otherwise;

Pure also allows a collection of rules with different left-hand sides but the same right-hand
side(s) to be abbreviated as follows:

lhs |
lhs = rhs;

This is useful, e.g., if you specialize a rule to different type tags on the left-hand side vari-
ables. For instance:

fact n::int
fact n::double

nxfact(n-1) if n>0;
1 otherwise;

This expands to:

fact n::int nxfact(n-1) if n>0;
1 otherwise;
nxfact(n-1) if n>0;

1 otherwise;

fact n::double

In fact, the left-hand sides don’t have to be related at all, so you can also write something
like:

foo x | bar y = xxy;

Which expands to:

foo X = xx*y;
bar y = xxy;

But more often you'll have an “as” pattern which binds a common variable to a parameter
value after checking that it matches one of several possible argument patterns (which is
slightly more efficient than using an equivalent type-checking guard). E.g., the following
definition binds the xs variable to the parameter of foo, which may be either the empty list
or a list starting with an integer:

foo xs@[] | foo xs@(_::int:_) = bar xs;

The | notation also works in case expressions, which is convenient if different cases should
be mapped to the same value, e.g.:

1.4.3 General Rules 53

Pure Language and Library Documentation, Release 0.59

case ans of "y" | "Y" =1; _ = 0; end;

Sometimes it is useful if local definitions (when and with) can be shared by the right-hand
side and the guard of a rule. This can be done by placing the local definitions behind the
guard, as follows (we only show the case of a single when clause here, but of course there
may be any number of when and with clauses behind the guard):

lhs = rhs if guard when defns end;

Note that this is different from the following, which indicates that the definitions only apply
to the guard but not the right-hand side of the rule:

lhs = rhs if (guard when defns end);

Conversely, definitions placed before the guard only apply to the right-hand side but not the
guard (no parentheses are required in this case):

lhs = rhs when defns end if guard;

An example showing the use of a local variable binding spanning both the right-hand side
and the guard of a rule is the following quadratic equation solver, which returns the (real)
solutions of the equation x*2+p*x+q = 0 if the discriminantd = p~2/4-q is nonnegative:

> using math;

> solve p q = -p/2+sqrt d,-p/2-sqrt d if d>=0 when d = p"2/4-q end;
> solve 4 2; solve 2 4;

-0.585786437626905, -3.41421356237309

solve 2 4

Note that the above definition leaves the case of a negative discriminant undefined.

1.4.4 Simple Rules

As already mentioned, when, let and const use a simplified kind of rule syntax which just
consists of a left-hand and a right-hand side separated by the equals sign. In this case the
meaning of the rule is to bind the variables in the left-hand side of the rule to the correspond-
ing subterms of the value of the right-hand side. This is also called a pattern binding.

Guards or multiple left-hand or right-hand sides are not permitted in these rules. However,
it is possible to omit the left-hand side if it is just the anonymous variable “_’ by itself, indi-
cating that you don’t care about the result. The right-hand side is still evaluated, if only for
its side-effects, which is handy, e.g., for adding debugging statements to your code. For in-
stance, here is a variation of the quadratic equation solver which also prints the discriminant
after it has been computed:

> using math, systenm;

> solve p q = -p/2+sqrt d,-p/2-sqrt d if d>=0

> when d = p~2/4-q; printf "The discriminant is: %g\n" d; end;
> solve 4 2;

The discriminant is: 2

54 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.59

-0.585786437626905, -3.41421356237309
> solve 2 4;

The discriminant is: -3

solve 2 4

Note that simple rules of the same form lhs = rhs are also used in macro definitions (def),
to be discussed in the Macros section. In this case, however, the rule denotes a real rewriting
rule, not a pattern binding, hence the left-hand side is mandatory in these rules.

1.4.5 Type Rules

In Pure the definition of a type takes a somewhat unusual form, since it is not a static dec-
laration of the structure of the type’s members, but rather an arbitrary predicate which de-
termines through a runtime check which terms belong to the type. Thus the definition of
a type looks more like an ordinary function definition (and that’s essentially what it is, al-
though types live in their own space where they can’t be confused with functions of the same
name).

The definition of a type thus consists of one or more type rules which basically have the same
format as the general rules, but with the keyword type in front of each rule. Also, each left-
hand side must have at most one argument pattern and exactly one right-hand side. Hence,
if the definition of a type requires several right-hand sides, you normally have to write a
separate type rule for each of them. Multiple left-hand sides work the same as in the general
rule format, though.

As already mentioned, there is an alternative way for defining types in an indirect way
through so-called interface types from which the corresponding type rules are derived auto-
matically. These are part of Pure’s declaration syntax and thus will be discussed later in the
Declarations section. In this section we focus on how you can write your own type rules in
order to define types in a direct fashion.

The identifier in the head of the left-hand side of a type rule is the name of the type which
can then be used as a type tag in other equations, cf. Type Tags. This is just a normal,
possibly qualified identifier subject to the same namespace mechanisms as other symbols;
see Namespaces for details. However, as the type symbol only gets used as a type tag, it can
never collide with function and variable symbols and hence the same symbol can be used
both as a type and as a function or variable name.

A collection of type rules specifies a predicate, i.e. a unary, truth-valued function which
denotes a set of terms. The type consists precisely of those terms for which the type predicate
yields a nonzero result. For instance, the following type defines the type triple as the set of
all tuples with exactly three elements:

type triple (x,y,z) = ~tuplep z;

Note that the type check consists of two parts here: The left-hand side pattern (x,y,z) re-
stricts the set to all tuples with at least three elements. The right-hand side ~tuplep z then
verifies that the last component z is not a tuple itself, and thus the entire tuple consists of
exactly three elements.

1.4.5 Type Rules 55

Pure Language and Library Documentation, Release 0.59

Another important point here is that the definition of the triple predicate is partial, as the
given rule only applies to tuples with at least three elements. A value will only match the
triple type tag if the predicate explicitly returns true; otherwise the match will fail, no
matter what the result is (and even if the predicates just fails, i.e., returns an unevaluated
normal form). Thus there is no need to make the predicate work on all terms (and in fact
there are good reasons to not do so, see below).

In general, you should try to make your type definitions as specific as possible. This makes
it possible to extend the predicate later, just like Pure allows you to extend the definition of
a function to new types of arguments. For instance, if you later decide that lists with three
elements should be considered as triples, too, then you may add the following type rule:

type triple [x,y,z] = true;

This makes it possible to define a type in a piecemeal fashion. Each subsequent rule enlarges
the term set of the type. Conversely, consider a definition like:

type pair x = tuplep x && #x==2;

In this case the type rule applies to all values x and thus the type definition is complete; there
is no way to extend it later. Whether to prefer the former or latter kind of definition depends
on the situation. If you want to keep a type extensible, so that you can later make existing
definitions of operations on the type work with new data representations, then you should
use the former approach, otherwise the latter.

As an example for an extensible type definition, consider the following type nat which de-
notes the type of positive (machine) integers:

type nat x::int = x>0;

This definition is complete for the case of machine integers, but allows the type to be ex-
tended for other base types, and we’ll do that in a moment. But first let’s define the factorial
on nat values as follows:

fact n::nat = if n==1 then 1 else n *x fact (n-1);

Note that this definition would loop on zero or negative values if we permitted arbitrary int
arguments. But since we restricted the argument type to nat, this case cannot occur and so
the definition is safe:

> fact 0;

fact 0

> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

The way we defined fact, it works on positive machine integers, but nothing else:

> fact 10L;
fact 10L

If we later decide that positive bigints should be considered as members of nat as well, we
can simply add another rule for the nat type:

56 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.59

type nat x::bigint = x>0;

Et voila, our fact routine now magically works with bigints, too:

> map fact (OL..10L);
[fact OL,1,2L,6L,24L,120L,720L,5040L,40320L,362880L,3628800L]

Note that we did all this without ever touching our original definition of fact. This works
because the bigint data type already provides all the operations which we expect to use
with the nat type. Pulling off this trick with other, more exotic kinds of data requires more
preparation, since we'll first have to provide the required operations. In this case, we need
at least multiplication, as well as comparisons with 1 and subtraction by 1. For instance,
and just for the fun of it, let’s implement our own variation of the nat type using Peano
arithmetic:

type nat (s x) = true;

// addition

X + 0 = X;
X + 1 =S X;
X+ Sy =5 (Xty);

// multiplication
X * 0 =0;
X *x 1 = X;
X % Sy =X + Xxy,;

// subtract 1
s X -1=x;

// comparison with 0 and 1
s x == 0 = false;
SX==1=X==;

This implements just the bare bones, but that should be enough to make fact work. Let’s
give it a try:

> fact (s (s (s 0)));
s (s (s (s (s (s 0)))))

So, counting the s’s, the factorial of 3 is 6. Works! (It goes without saying, though, that this
implementation of nat is not very practical; you'll get mountains of s’s for larger values of

n.)

As you can see, a type definition may in general consist of many type rules which may be
scattered out over different parts of a program. This works in exactly the same way as with
ordinary functions.

There’s an additional convenience provided for type rules, namely that the right-hand side
may be omitted if it’s just true. For instance, the rule

1.4.5 Type Rules 57

Pure Language and Library Documentation, Release 0.59

type nat (s x) = true;

from above can also be written simply as:

type nat (s x);

This kind of notation is particularly convenient for “algebraic types” which are usually given
by a collection of constructors with different arities. For instance, a binary tree data type
might be defined as follows (here we employ the | symbol to separate the different left-hand
sides so that we can give all the constructor patterns in one go):

nonfix nil;
type bintree nil | bintree (bin x left right);

This method is also useful if you define your own abstract data types. In this case you're
free to choose any suitable representation, so you might just wrap up all data objects of the
type with a special constructor symbol, which makes checking the type simple and efficient.
This is also the approach taken in the point example in Type Tags above, as well as by the
container data types in the standard library.

The same notation can also be used to quickly make one type a “subtype” of another, or to
create a type which is the union of several existing types. The following example can be
found in the standard library:

type integer x::int | integer x::bigint;

A type rule can also take the form of a function definition without arguments. The corre-
sponding right-hand side may either be another type symbol, or any kind of closure denot-
ing a (curried) type predicate. In this case the defined type is simply an alias for the type
denoted on the right-hand side. This is often done, e.g., for numeric types, to document that
they actually stand for special kinds of quantities:

type speed = double;
type size = int;

Note that the definition of a type alias is always complete; there’s no way to extend the
corresponding type later. Therefore type aliases are normally resolved at compile time, so
that they incur no additional runtime cost. For instance:

> half x::speed = x/2;
> show half
half x::double = x/2;

(If necessary, this “type folding” can also be disabled with the - -nofold pragma.)

Finally, it’s also possible to just specify the type name, without giving the right-hand side:
type thing;

This doesn’t have any effect other than just declaring the type symbol, so that it can be used

as a type tag in subsequent definitions. You then still have to give a proper definition of the
type later (either as an explicit predicate or an alias).

58 1.4 Rule Syntax

Pure Language and Library Documentation, Release 0.59

Type aliases can also be used to quickly turn an existing predicate into a “convenience” type
which can be used as a tag on the left-hand side of equations. The prelude defines a number
of these, see Prelude Types. For instance:

type closure = closurep;

Conversely, you can turn any type tag into an ordinary predicate which can be used on the
right-hand side of other definitions. To these ends, the prelude provides the typep predicate
which takes a type symbol and the value to be checked as arguments. For instance:

type odd x::int = x mod 2;
type even x::int = ~odd x;

odd x = typep odd x;
even x = typep even Xx;

With those definitions you get:

> map odd (0..10);
[0,1,0,1,0,1,0,1,0,1,0]
> map even (0..10);
[1,0,1,0,1,0,1,0,1,0,1]

There’s one caveat here. As the type symbol passed to typep gets evaluated in normal code
you have to be careful if the symbol is also defined as a parameterless function or a variable;
in such a case you’ll have to quote the symbol, as described in section The Quote. For in-
stance, we might rewrite the above definitions as follows, giving “pointless” definitions of
the odd and even predicates in terms of typep:

type odd x::int = x mod 2;
type even x::int = ~odd x;

odd = typep (’odd);
even = typep (’even);

Note that the quotes on odd and even are really needed here to prevent the predicate defi-
nitions from looping. If you need this a lot then you might define a little helper macro (cf.
Macros) which quotes the type symbol in an automatic fashion:

def typep ty::symbol = typep ('ty);

(However, this gets in the way if you want to check for computed type symbols, that's why
this macro isn’t defined in the prelude.)

Pure places no a priori restrictions on the rules defining a data type (other than that they
must either define a unary predicate or an alias for an existing data type). As far as Pure is
concerned, types are just subsets of the universe of terms. Thus any type of relation between
two data types is possible; they might be unrelated (disjoint) term sets, one may be a subset
of another, or they might be related in some other way (some terms may be members of both
types, while others aren’t).

For instance, consider the types nat and odd from above. Both are subtypes of the int type

1.4.5 Type Rules 59

Pure Language and Library Documentation, Release 0.59

(assuming our original definition of nat as the positive int values), but neither is a sub-
type of the other. It's sometimes useful to define the “intersection type” of two such types,
which can be done in a straightforward way using the logical conjunction of the two type
predicates:

x>0;
X mod 2;
typep nat x && typep odd x;

type nat x::int
type odd x::int
type odd_nat x

Similarly, a variation of the integer union type from above could be defined using logical
disjunction (this employs the intp and bigintp predicates from the prelude):

type myinteger x = intp x || bigintp x;

(Note that this isn’t quite the same as the previous definition, which uses explicit patterns in
order to make the definition extensible.)

Since the right-hand side of a type definition may in general be any predicate, it is up to
the programmer to ensure that the definition of a type is actually computable. In fact, you
should strive for the best possible efficiency in type predicates. A type definition which has
worse than O(1) complexity may well be a serious performance hog depending on the way in
which it is used, see Recursive Types in the Caveats and Notes section for more information
about this.

Finally, note that in general it may be hard or even impossible to predict exactly when the
code of a type definition will be executed at runtime. Thus, as a general rule, a type definition
should not rely on side effects such as doing I/O (except maybe for debugging purposes),
modifying references or external data structures via C pointers, etc.

1.5 Examples

This section assumes that you've read the Pure Overview and Rule Syntax sections, so that
you are familiar with the basic elements of the Pure language. We now bring the pieces
together and show you how simple but typical problems can be solved using Pure. You
might use this section as a mini-tutorial on the Pure language. As we haven’t discussed the
more advanced elements of the Pure language yet, the scope of this section is necessarily
limited. But it should give you a pretty good idea of how Pure programs looks like. After
working through these examples you should be able to write useful Pure programs and
understand the more advanced features discussed in subsequent sections.

1.5.1 Hello, World

The notorious “hello world” program can be written in Pure as follows:

using system;
puts "Hello, world!";

60 1.5 Examples

Pure Language and Library Documentation, Release 0.59

This employs the puts function from Pure’s system module (which is in fact just the puts
function from the C library). If you put these lines into a script file, say, hello.pure, you can
run the program from the command line as follows:

$ pure hello.pure
Hello, world!

You may notice a slight delay when executing the script, before the “Hello, world!” mes-
sage appears. That’s because the interpreter first has to compile the definitions in your script
as well as the prelude and other imported modules before the puts "Hello, world!" ex-
pression can be evaluated. The startup times can be reduced (sometimes considerably) by
compiling scripts to native executables, see Compiled Scripts below.

Passing Parameters

Sometimes you may want to pass parameters to a script from the command line. To these
ends, just follow the script name with the required parameters. The interpreter makes the
command line parameters (including the script name) available as a list of strings in the argv
variable. For instance, here is a version of the “hello world” program which uses printf to
print the line Hello, foo! where foo is whatever was specified as the first command line
parameter:

using system;
printf "Hello, %s!/\n" (argv!l);

This script is invoked as:

$ pure hello.pure foo
Hello, foo!

Of course, many real-world programs will require more elaborate processing of command
line parameters, such as recognizing program options. We won'’t discuss this here, but you
can have a look at the getopt module which provides that kind of functionality in a conve-
nient package.

Executable Scripts

It is often convenient if you can turn a script into a standalone executable which can be
invoked by just typing its name on the command line. There are several ways to do this.

First, on most systems you can invoke the Pure script through some kind of shell script or
command file which contains the command to invoke the interpreter. The details of this
depend on the operating system and type of shell that you use, however, so we won’t go
into this here.

Second, on Unix-like systems it is possible to make any script file executable like this:

1.5.1 Hello, World 61

Pure Language and Library Documentation, Release 0.59

$ chmod a+x hello.pure

However, we also have to tell the shell about the command interpreter which should be
invoked to run the script. (Otherwise the shell itself may try to execute the script, which
won’t work because it’s not a shell script.) As already mentioned in Overview of Operation,
this is done by adding a special kind of comment, a “shebang”, to the beginning of the script,
so that it looks like:

#!/usr/local/bin/pure
using system;
puts "Hello, world!";

Note that you must give the full path to the Pure interpreter in the shebang line. This path of
course depends on where you installed Pure. The above shebang will work with an instal-
lation from source, unless you changed the installation prefix when configuring the source
package. If you installed the interpreter from a binary package, the proper path will often be
/usr/bin/pure instead. In any case, you can find out where the interpreter lives by typing
the following command in the shell:

$ which pure
/usr/local/bin/pure

If you get anything else on your system then you'll have to fix the shebang accordingly. You
should then be able to run the script as follows:

$./hello.pure
Hello, world!

Note: Many modern Unix-like systems provide the /usr/bin/env utility which can perform
a search for the interpreter executable, so that you can also use a shebang like:

#!/usr/bin/env pure
This has the advantage that you don’t have to hardcode the path to the Pure interpreter into

the shebang; the /usr/bin/env utility will locate the interpreter for you, provided that it is
installed somewhere on the system PATH.

Compiled Scripts

Last but not least, you can also turn a Pure script into an executable by “batch-compiling” it.
This works on all supported systems (provided that you have the necessary LLVM tools and
3rd party compilers installed, see the installation instructions for details). The result is a real
native executable which can then be run directly just like any other binary program on your
system. To these ends, the interpreter is run with the - ¢ option which tells it to run in batch
compilation mode, and the - 0 option which specifies the desired name of the executable. For
instance:

62 1.5 Examples

Pure Language and Library Documentation, Release 0.59

$ pure -c hello.pure -o hello
Hello, world!

$./hello

Hello, world!

You'll notice that the compilation command in the first line above also prints the Hello,
world! message. This reveals a rather unusual aspect of Pure’s batch compiler: it actually
executes the script even during batch compilation. The reasons for this behaviour and poten-
tial uses are discussed in the Batch Compilation section. If you want to suppress the program
output during batch compilation, you can rewrite the program as follows:

using system;
main = puts "Hello, world!";
compiling || main;

Note that here we turned the code to be executed into a separate main function. This isn’t
really necessary, but often convenient, since it allows us to run the code to be executed by
just evaluating a single function. (Note that in contrast to C, the name main has no special
significance in Pure; it’s just a function like any other. We still have to include a call to this
function at the end of our program so that it gets executed.)

The last line now reads compiling || main which is a shorthand for “if the compiling vari-
able is nonzero then do nothing, otherwise evaluate the main function”. In a batch compi-
lation the interpreter sets this variable to a nonzero value so that the evaluation of main is
skipped:

$ pure -c hello.pure -o hello
$./hello
Hello, world!

We should mention here that batch-compiled scripts have some limitations because the com-
piled executable runs under a trimmed-down runtime system. This disables some of the
advanced compile time features which are only available when running a script with the
interpreter or at batch-compilation time. However, this won’t usually affect run-of-the-mill
scripts like the one above. More information about this can be found in the Batch Compila-
tion section.

1.5.2 Running the Interpreter

While Pure scripts can be run as standalone programs directly from the shell, most of the
time you'll probably use the Pure interpreter in an interactive way. You then simply run it
like this:

$ pure

— N I —l =\ Pure 0.59 (x86_64-unknown-linux-gnu)

| [| [| _/ Copyright (c) 2008-2013 by Albert Graef
/A N P V| (Type 'help’ for help, 'help copying’

—| for license information.)

1.5.2 Running the Interpreter 63

Pure Language and Library Documentation, Release 0.59

Loaded prelude from /usr/lib/pure/prelude.pure.
>

The interpreter prints its sign-on message and leaves you at its command prompt. (You
can also try pure --plain for a less fancy sign-on, or pure -q to completely suppress the
message.)

At this point you can just start typing definitions and expressions to be evaluated. For in-
stance:

> fact n = if n<=0 then 1 else nxfact (n-1);
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Note that Pure is a free-format language, and thus definitions and expressions must be ter-
minated with a semicolon, so that the interpreter knows when you're done entering each
item. This probably needs getting used to, but it’s convenient because you can easily type
more than one expression on a single line, or split longer constructs across multiple lines:

> 6x7; 16.3805%5.0;

42

81.9025

> 16753418726345

> % 991726534256718265234;
16614809890429729930396098173389730L

If the interpreter appears to just eat away expressions without printing any results, then
most likely you forgot to enter the terminating semicolon. In such a case you can just type
the semicolon on a line by itself:

> 6%7
>
(This won’t do any harm even if it’s not needed, because an empty item is always valid input
at Pure’s toplevel.)

The interpreter also reports syntax errors if you mistype an expression:

> 16.3805%(5;
<stdin>, line 8: syntax error, unexpected ’;

’

, expecting when or with or ")’

In such a case, just correct the error and resubmit the offending input. The interpreter’s
readline facility makes this pretty convenient, because you can use the cursor keys to recall
previous input lines and edit them as needed.

Other kinds of errors may happen at runtime, when evaluating a syntactically correct ex-
pression. These give rise to so-called exceptions. For instance:

> 1 div 0;
<stdin>, line 9: unhandled exception ’'signal 8' while evaluating 'l div 0’

64 1.5 Examples

Pure Language and Library Documentation, Release 0.59

Besides integer division by zero (flagged as “signal 8" here), common sources of exceptions
are failed matches and conditionals, interrupts (e.g., if the user aborts an evaluation with
Ctrl-c)and stack overflows (cf. Stack Size and Tail Recursion). Normally these are fatal and
require you to fix the program or the expression that you entered, but programs can also
catch these errors and handle them in any desired way, cf. Exception Handling,.

Note that in contrast to most other programming languages, undefined identifiers are gen-
erally not an error in Pure. Instead, you'll simply get an unevaluated normal form:

> foo 5;
foo 5

Therefore, we recommend invoking the interpreter with the -w option so that it at least warns
you about unknown symbols. You can also enter this option interactively or in a script using
the - -warn pragma:

> #! --warn

> bar 5;

<stdin>, line 12: warning: implicit declaration of ’'bar’
bar 5

The interpreter has a global variable environment in which you can store intermediate re-
sults:

> let x = 16.3805%5;
> X; X/2; 1/X%;
81.9025

40.95125
0.0122096395103935
> let vy = 2xx; vy;
163.805

Another handy feature is the special built-in function ans which yields the most recent result
printed by the interpreter:

> 16.3805x%5;
81.9025
> ansx*2;
163.805

The interpreter recognizes a few other special commands which, like ans, are only available
when it is run interactively. For instance, you can purge the value of a variable like this (this
also works with any other defined item, such as constants, functions and macros):

> clear x
> X;
X

Another useful command is show which prints the definition of anything that you can define
in a Pure script, such as variables and functions. For instance:

> show fact
fact n = if n<=0 then 1 else nxfact (n-1);

1.5.2 Running the Interpreter 65

Pure Language and Library Documentation, Release 0.59

You can also just type show to print all definitions done interactively at the command prompt,
which lets us review our accomplishments so far:

> show
fact n = if n<=0 then 1 else nxfact (n-1);
let y = 163.805;

The dump command saves these definitions in a file for later use:

> dump

This command doesn’t print anything, but you can have a look at the written file in a text
editor and maybe edit it as needed. By default, dump saves interactive definitions in a hidden
file named . pure in the current directory, which gets reloaded automatically if we later rerun
the interpreter in the same directory. We can also print this file, e.g., with the Unix cat
command (note that ‘! executes a shell command):

> lcat .pure

// dump written Wed Sep 5 10:00:15 2012
fact n = if n<=0 then 1 else nxfact (n-1);
let y = 163.805;

If we mess up badly, it’s often convenient to just rerun the interpreter from scratch so that
we can try again in a clean environment:

> run

As we've saved our scribblings with dump previously, those definitions will be reloaded au-

tomatically:

> show
fact n = if n<=0 then 1 else nxfact (n-1);
let y = 163.805;

If you don’t want this then you can just remove the .pure file or rename it before invoking
run.

Another helpful command is help which brings up the online documentation (this requires
that you've configured the interpreter for the web browser that you use; see Online Help):

> help help

Last but not least, you can use the following command to exit the interpreter and return to
the command shell:

> quit
Typing just an end-of-file character (usually Ctrl-d on Unix-like systems) at the beginning
of the command line does the same.

There are a few other built-in commands that you may find useful when working with the
interpreter, and you can even define your own. These interactive commands are special; they

66 1.5 Examples

Pure Language and Library Documentation, Release 0.59

have their own syntax and need to be typed on a separate line. Please refer to Interactive
Usage for a detailed explanation of the command syntax and the available commands.

1.5.3 Basic Examples

Pure has a few built-in data types, namely numbers (machine integers, bigints and double
precision floating point numbers), strings, matrices, symbols, functions and pointer values.
Compound expressions are formed from these using function application. In the syntax of
the Pure language, these are also known as simple expressions. For want of a catchier name,
we also simply call them terms. Pure is a programming language based on term rewriting,
so all computations performed in Pure consist of the rewriting of terms. Some terms may
reduce to other terms, others simply stand for themselves; the latter are also called normal
forms and are what constitutes a “value” in the Pure language.

When the Pure interpreter starts up, it normally loads a collection of Pure scripts collectively
called the prelude. The prelude defines many of the usual operations on numbers, strings,
lists and other basic data structures that you may need, so you can start using the interpreter
as a sophisticated kind of desktop calculator right away. Let’s begin with some simple cal-
culations involving integer and floating point numbers:

> 6x%7;

42

> 16.3805%5.0;

81.9025

> 16753418726345 * 991726534256718265234;
16614809890429729930396098173389730L

Note that the integer constants in the last example exceeded the 32 bit range of machine
integers, so they were promoted to bigints. The result is again a bigint (indicated by the L
suffix). You can also turn any integer constant into a bigint by explicitly adding the L suffix:

> 6Lx7L;
42L

Arithmetic with mixed operands will generally return the most general type capable of hold-
ing the result:

> 6x7L;

42L

> 16.3805x%5;
81.9025

> 16.3805x*5L;
81.9025

But note that most operations involving only machine integers will produce another ma-
chine integer; the result is never promoted to a bigint automatically, even in case of “over-
flow” (i.e., wrap-around). So the following will yield the same kind of signed 32 bit result as
you'd get in C:

1.5.3 Basic Examples 67

Pure Language and Library Documentation, Release 0.59

> 2147483647 + 1;
-2147483648

This has the advantage that you always know the type of the result of each operation be-
forehand by just looking at the types of the operands. It also makes it possible to compile
machine integer operations to efficient native code. Therefore, if you suspect that a machine
integer operation may wrap around and you’d thus prefer to do the calculation with bigints
instead, you'll have to convert at least one of the operands to a bigint beforehand:

> 2147483647L + 1;
2147483648L

Also note that, in contrast to C or Fortran, the result of the / (division) and * (exponentiation)
operators is always a floating point value in Pure, even if both operands are integers:

> 14/12;
1.16666666666667

> 2L760L;
1.15292150460685e+18

Integer division and modulo are done with the div and mod operators, and exact powers of
machine integers and bigints can be computed with the pow function:

> 14 div 12; 14 mod 12;
1

2

> pow 2 60;
1152921504606846976L

Also note that many of the standard math functions are available in a separate math module,
so we need to import that module if we want to use one of these (see Modules and Imports
for a detailed explanation of Pure’s module system). For instance:

> using math;
> sqrt (16.3805%5)/.05;
181.0

The math module also provides you with complex and rational number types for doing more
advanced calculations, but we won’t go into that here.

Before we proceed, a few remarks about the syntax of function applications are in order.
Function application is an explicit operation in Pure, so that functions become first class
values which can be passed around as function arguments and results. Like in most modern
functional languages, function application is simply denoted by juxtaposition:

> sqrt 2;
1.4142135623731

In this case, you may also write sqrt(2) instead, but multiple arguments are normally spec-
ified as f x y z rather than f(x,y,z). The former notation is known as currying (named
after the American mathematician and logician Haskell B. Curry), and is ubiquitous in mod-
ern functional programming languages. The latter notation can be used in Pure as well, but

68 1.5 Examples

Pure Language and Library Documentation, Release 0.59

it actually indicates that f is called on a single, structured argument (in this case a tuple).
However, most predefined functions use the curried notation in Pure. For instance, the max
function defined in the prelude takes two separate arguments, so it is invoked as follows:

> max 4 7;
7

Function application associates to the left, so the above is parsed as (max 4) 7, where max
4 is called a partial application of the max function. A partial application is a function in its
own right; e.g., max 4 denotes the function which computes max 4 y for each giveny.

Parentheses are used for grouping expressions as usual. In particular, since function appli-
cation associates to the left, a nested function application in a function argument must be
parenthesized as follows:

> sqrt (sqrt 2);
1.18920711500272

The same is true for any kind of expression involving operators, since function application
binds stronger than any of these:

> sqrt (2x3);
2.44948974278318

The map function lets us apply a function to each member of a given list, which gives us a
quick way of tabulating function values:

> map sqrt (0..2);
[0.0,1.0,1.4142135623731]

Here, the list argument is specified as an arithmetic sequence 0. .2 which evaluates to the
list [0,1,2]. This is fairly convenient when tabulating values of numeric functions. Here
is another example which employs a partial application of the max function as the function
argument:

> map (max 0) (-3..3);
[0,0,0,0,1,2,3]

Note that when the max 0 function gets applied, say, to the first list member -3, we obtain
the application max 0 (-3) which now has all the arguments that it needs; we also say that
max 0 (-3) isasaturated application, which means that it’s “ready to go”. Evaluating max ©
(-3) gives 0 which becomes the first member of the result list returned by map. The other list
members are calculated in an analogous fashion. It is easy to see that max 0 thus computes
what mathematicians call the “positive part” of its argument x, which is x itself if it is greater
than 0 and 0 otherwise.

Operators aren’t special either, they are just functions in disguise. You can turn any operator
into an ordinary function by enclosing it in parentheses. Thus (+) denotes the function
which adds its two arguments, and x+1 can also be written as (+) x 1; in fact, the former
expression is nothing but syntactic sugar for the latter. You can easily verify this in the
interpreter:

1.5.3 Basic Examples 69

Pure Language and Library Documentation, Release 0.59

> (+) x 1;
x+1

You can also have partial applications of operators like (*) 2 which denotes a function
which doubles its argument:

> map ((*) 2) [1,2,3,4,5];
[2,4,6,8,10]

Moreover, Pure offers some convenient syntactic sugar to denote so-called operator sections
which specify a binary operator with only either its left or right operand. So the doubling
function above may also be denoted as (2#) or (*2). Similarly, (+1) denotes the “increment
by 1”7 and (1/) the reciprocal function:

> map (+1) (1..5);

[2,3,4,5,6]

> map (1/) (1..5);
[1.0,0.5,0.333333333333333,0.25,0.2]

Note that the latter kind of section (also called a left section) is just a convenient shorthand

for a partial application:

> (1/);
(/) 1

The former kind (a right section) can’t be handled this way, because it’s the first operand
which is missing, and partial applications only allow you to omit trailing arguments. In-
stead, right sections expand to a partial application of the flip function,

> (+1);

flip (+) 1

which is defined in the prelude as follows:

flip f xy="~fyx;

Note that flip (+) 1 thus denotes a function which, when the missing operand is supplied,
reduces to an application of the first (function) argument while also flipping around the

operands. For another example, here’s how you can compute third powers 3”x of some
numbers x with a right section of the “** operator:

> map ("3) (1..5);
[1.0,8.0,27.0,64.0,125.0]

Note that this is exactly the same as:

> map (flip () 3) (1..5);
[1.0,8.0,27.0,64.0,125.0]

Such explicit applications of flip also work with ordinary functions like pow, so if we want
to compute the cubes as exact bigint numbers, we can also write:

70 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> map (flip pow 3) (1..5);
[1L,8L,27L,64L,125L]

Note the difference between flip pow 3 which computes third powers, and pow 3 which is
a partial application that computes powers of 3.

Sometimes it is convenient to have function application as an explicit operation which can
be passed as a function value to other functions. The $ operator is provided for this purpose.
f $ xisjust f x, so you can write, e.g.:

> map ($1) [(+2),(%2),(/2)];
[3,2,0.5]

Recall that ($1) is a right section which, when applied to an argument f, evaluates to f $
1 = f 1. E.g., we have that ($1) (+2) = (+2) $ 1 = (+2) 1 = 1+2 = 3. Hence the above
expression actually applies a list of functions to the given argument 1.

The $ operator has a low precedence and is right-associative, so that it is sometimes used
to eliminate the parentheses in cascading function calls. For instance, sqrt $ sqrt $ 2«3is
the same as sqrt (sqrt (2x3)).

Another convenient operation for combining functions is the function composition operator,
denoted “.”. It applies two functions in sequence, so that (f.g) x evaluates to f (g x). For
instance:

> g X = 2¥x-1;

>map g (-3..3);
[-7,-5,-3,-1,1,3,5]

> map (max 0 . g) (-3..3);
[0,0,0,0,1,3,5]

Operations like “.”, which take functions as arguments and return other functions as results,
are also called higher-order functions. We’ll have a closer look at these later.

As already mentioned, the interpreter also has a global variable environment in which you
can store arbitrary expression values. This provides a means to define abbreviations for
frequently-used expressions and for storing intermediate results. Global variable definitions
are done with let. For instance:

> let x = 16.3805%5;
> X;
81.9025

As we’ve explained above, functions are first-class citizens and can thus be assigned to vari-
ables as well:

> let f = sqrt;
> f x/0.05;
181.0

The value of a global variable can be changed at any time. So we can type:

1.5.3 Basic Examples 71

Pure Language and Library Documentation, Release 0.59

> let f = sin;
> f x/0.05;
4.38588407225469

You can also bind several variables at once by using an expression pattern as the left-hand
side of a variable definition. This is useful if we need to extract elements from an aggregate
value such as a list:

> let x1:x2:xs = map ("3) (1..5);
> x1,x2,xs;
1.0,8.0,[27.0,64.0,125.0]

Pure also provides a kind of “read-only” variables a.k.a. constants. They are defined pretty
much like global variables (using the const keyword in lieu of let), but work more like a
parameterless function whose value is precomputed at compile time:

> const 71 = 4xatan 1.0;

> show 7T

const 7 = 3.14159265358979;

> h x = sin (2*x7w*Xx);

> show h

h x = sin (6.28318530717959*Xx) ;

>map h [-1/4,-1/8,0,1/8,1/4];
[-1.0,-0.707106781186547,0.0,0.707106781186547,1.0]

Note that the compiler normally computes constant subexpressions at compile time, such
as 2*7T in the function h. This works with all simple scalars (machine ints and doubles), see
Constant Definitions for details.

As an aside, the last example also shows that Pure has no problems with Unicode. 7 is a
Greek letter and thus an identifier as good as any other, although you will have a hard time
finding that letter on an English keyboard. Fortunately, most operating systems nowadays
provide you with an applet that lets you enter foreign language characters and other special
symbols with ease.

1.5.4 Defining Functions

Now that we’ve learned how to run the interpreter and evaluate some expressions, it’s time
to embark on some real programming. Like in other functional programming languages,
we do this by defining functions which perform the desired computation. The form these
definitions take in Pure is a collection of rewriting rules which specify how an application
of the function reduces to another expression which then gets evaluated recursively to give
the value of the function application.

In the simplest case, the left-hand side of a rewriting rule may just specify the function name
along with some argument names. For instance:

square X = X*X;

72 1.5 Examples

Pure Language and Library Documentation, Release 0.59

Now, if we evaluate an expression like square 7, it reduces to 77 which in turn reduces to
49 by the built-in rules for integer arithmetic. You can verify this by entering the definition
in the interpreter:

> square X = X*X;
> square 7;
49

In fact, the above definition is completely generic; since x is an unqualified variable, we can
apply square to any value x and have it evaluate to x*x:

> square 7.0;
49.0

> square 7L;
49L

> square (a+b);
(a+b)*(a+b)

As the last example shows, this will even work if the supplied argument is no number at all,
which is useful, e.g., if we want to do symbolic evaluations.

Functions can have as many arguments as you like, subject to the constraint that each equa-
tion defining the function has the same number of arguments on the left-hand side. For
instance, suppose that we want to calculate the sum of two squares. We can do this using
the square function from above as follows:

> sumsquares X y = square X + square y;
> sumsquares 3 4;
25

The interpreter keeps track of the number of arguments of each defined function, so if we
accidentally try to define sumsquares with three arguments later then we’ll get an error mes-
sage:

> sumsquares X y z = square X + square y + square z;

<stdin>, line 8: function ’'sumsquares’ was previously defined with 2 args

This actually makes perfect sense if you think about the way curried function applications
work. If the above was permitted, then an expression like sumsquares x y would become
ambiguous (would it denote an invocation of the binary sumsquares or a partial application
of the ternary one?).

Thus Pure doesn’t really have variadic functions which take a variable number of argu-
ments. There are ways to emulate this behaviour in some cases, but usually it’s easier to just
pass the arguments as a single structured value instead. It is customary to employ tuples
for this purpose, so that the call uses the familiar notation f (x,y,z). A typical example are
optional arguments. For instance, suppose that we’d like to define a function incr which
increments a numeric value, where the amount to be added can be specified as an optional
second value which defaults to 1. This can be done in Pure as follows:

incr (x,y) = x+y;
incr x = x+1 otherwise;

1.5.4 Defining Functions 73

Pure Language and Library Documentation, Release 0.59

These equations must be in the indicated order. Pure considers different equations for the
same function in the order in which they are written. Therefore “special case” rules, like the
one for incr (x,y) in this example, must be listed first. (Note that if the second equation
came first, incr (5,2) would reduce to (5, 2)+1 rather than 5+2, because x also matches, in
particular, any tuple x,y.)

Functions taking a single tuple argument are also (somewhat misleadingly) called uncurried
functions, because their arguments have to be given all in one go, which precludes partial
applications of the function. While curried functions are often preferred, uncurried functions
can be more convenient at times, e.g., if you have to map a function to a list containing given
combinations of arguments. For instance, given the above definition of incr we may write:

> map incr [(5,1),(5,2),(6,3),(7,5)];
[6,7,9,12]

To make this work with curried functions, the prelude provides a function uncurry which
turns a curried function of two arguments into an uncurried one which takes a single tuple
argument:

> map (uncurry (+)) [(5,1),(5,2),(6,3),(7,5)];
[6,7,9,12]

On the other hand, some generic list processing functions such as foldl expect curried func-
tions, so the reverse transformation curry is also provided:

> foldl (curry incr) 0 (1..10);
55

In fact, the definitions of curry and uncurry don’t involve any special magic, they just trans-
late curried calls to uncurried ones and vice versa. From the horse’s mouth:

> show curry uncurry
curry f xy = f (x,y);
uncurry f (x,y) = f x vy;

A function can also have zero arguments, i.e., you can define parameterless functions such
as:

foo = 1..3;

The function is then simply invoked without any arguments:

> foo;
[1,2,3]

It is worth noting the difference between this and the variable definition:

let bar = 1..3;

While bar and foo yield the same result [1, 2, 3], they do so in different ways. bar is a global
variable whose value is computed once and then stored under its name, so that the value can
be simply recalled when bar is later invoked in an expression. Also, the value of bar can be

74 1.5 Examples

Pure Language and Library Documentation, Release 0.59

changed at any time with an appropriate let statement. (If the value is not supposed to
change later then you can also define it as a const instead.)

In contrast, foo is a function which recomputes the list value on each invocation. To avoid
the overhead of recalculating the same value each time it is needed, a variable or constant is
usually preferred over a parameterless function in Pure. However, a parameterless function
will be needed if the computation involves some hidden side effects which cause a new value
to be produced for each invocation. For instance, the math module provides a parameterless
function random which computes a new pseudo random number each time it is called:

> using math;
> random, random, random;
-795755684,581869302, -404620562

Many functions also involve conditionals which let them take different computation paths
depending on the outcome of a condition. One way to do this is to employ a conditional
expression. For instance, we may compute the sign of a number as follows:

> sign x = if x>0 then 1 else if x<0 then -1 else 0;
> map sign (-3..3);
['11'11'110111111]

Alternatively, you can also use a collection of conditional rules instead:

sign x = 1 if x>0;
= -1 if x<0;
0 otherwise;

Note that here we omitted the left-hand side in the second and third equations, in which case
the compiler assumes that it’s the same as for the first equation; cf. Rule Syntax for details.
Also note that the otherwise keyword is only syntactic sugar in Pure, you can always omit
it. However, it tends to improve readability by marking the default case of a definition.

Both styles are frequently used in Pure programs; it depends on the situation which one is
more appropriate. Conditional rules make the conditions stick out more clearly and hence
tend to improve readability. On the other hand, conditional expressions can be nested more
easily and thus facilitate the programming of complicated decision trees.

Function definitions may also be recursive, i.e., a function may invoke itself either directly or
indirectly in its definition. For instance, here is a definition of the Ackerman function using
conditional rules:

ack x y = y+1 if x == 0;
ack (x-1) 1 if y == 0;
ack (x-1) (ack x (y-1)) otherwise;

We will have more to say about recursive functions later; see Recursion below.

1.5.4 Defining Functions 75

Pure Language and Library Documentation, Release 0.59

1.5.5 Pattern Matching

So far we have only seen function definitions involving just unqualified variables as pa-
rameters. In general it is possible to specify arbitrary patterns for the parameters, in which
case the actual arguments are checked against the patterns and, if everything matches up,
the right-hand side of the rule is invoked with the variables in the patterns bound to their
corresponding values.

The simplest nontrivial patterns are type tags which can be placed on a variable to restrict
the type of value an argument can match. For instance:

> square X::int = xxx;
> square 7;
49

Note that in contrast to our previous generic definition of the square function we gave in
Defining Functions, this definition now only applies to the case of an int argument:

> square 7.0;
square 7.0

Polymorphic definitions can be made by giving separate equations for the different argu-
ment types. For instance, we can easily add an equation for the double case:

> square x::double = xx*Xx;
> show square

square x::int = xxx;
square x::double = xxXx;
> square 7; square 7.0;
49

49.0

Here the right-hand sides of both rules are the same. Pure has a convenient shorthand nota-
tion for this case which lets you factor out the common right-hand side using the “|“ delimiter
as follows:

square x::int | square x::double = xxXx;

The compiler expands this to the same two rules as above:

square x::int = xxXx;
square x::double = xxXx;

Let’s compare this to our earlier generic definition of square:

square X = X*X;

There are two different kinds of polymorphism at work here. The latter, generic definition
is an example of parametric polymorphism; it applies to any type of argument x whatso-
ever (at least if it makes sense to multiply a member of the type with itself). Also note that
this definition is “closed”; because equations are considered in the order in which they are
written, there’s no way you could add another “special case” rule to this definition later.

76 1.5 Examples

Pure Language and Library Documentation, Release 0.59

In contrast, the former definition leaves any application of square to a value other than int
or double undefined. This gives us the opportunity to define square on as many types of
arguments as we like, and (this is the crucial point) define the function in different ways for
different argument types. This is also known as ad-hoc polymorphism or function over-
loading. For instance, if we later need to square 2x2 matrices, we might add a rule like:

square {a,b;c,d} = {axa+bxc,axb+bxd;cxa+dxc,cxb+dxd};

Pure places no restriction on the number of equations used to define a function, and the dif-
ferent equations may in fact be scattered out over many different places. So as long as the
left-hand side patterns properly discriminate between the different cases, you can overload
any operation in Pure to handle as many argument types as you want. However, it is im-
portant to note that in contrast to overloaded functions in statically typed languages such as
C++, there’s really only one square function here which handles all the different argument
types. The necessary “dispatching” to select the proper rewriting rule for the argument val-
ues at hand is done at runtime by pattern matching.

Parametric polymorphism has the advantage that it lets you define polymorphic functions in
a very concise way. On the other hand, ad-hoc polymorphism lets you deal with disparate
cases of an operation which cannot easily be reconciled. It also allows you to tailor the
definition to the specific case at hand, which might be more efficient than using a generic
rule. You can also combine both approaches, but in this case you have to list the special case
rules before the generic ones. For instance:

square x::int | square x::double |
square X = X*X;

(Note that the first two rules are just specialization of the last rule to int and double argu-
ments, so we could in fact eliminate the special case rules here and still get the same results.
But the type tags tell the compiler that the argument in these rules is always an int or double,
respectively, so it may generate more efficient code for these cases.)

Patterns may also involve constant values, in which case the constant must be matched liter-
ally in the argument. For instance, here is another definition of the Ackerman function from
Defining Functions which uses constant argument patterns instead of conditional rules:

ack 0 y = y+1;
ack x 0 = ack (x-1) 1;
ack x y = ack (x-1) (ack x (y-1)) otherwise;

The first two rules take care of the “base cases” x==0 and y==0. Note that these rules must
be given in the indicated order to make them work. Specifically, the left-hand side ack x y
of the last equation also matches, in particular, terms like ack 0 y and ack x 0, so placing
the last equation before the first two will “shadow” those rules and cause non-termination,
resulting in a stack overflow. Similarly, placing the second equation before the first one will
cause the definition to loop on ack 0 0.

Another point that deserves mentioning here is that constants on the left-hand side of a
rule must be matched literally, cf. Constant Patterns. E.g., ack 0 y only matches if the first
argument is really 0, not 0.0 or 0L (although these compare equal to 0). So the above defi-

1.5.5 Pattern Matching 77

Pure Language and Library Documentation, Release 0.59

nition of ack isn’t quite the same as our previous definition from Defining Functions. If you
wanted the definition above to also work with double and bigint values, you’d have to add
corresponding rules for the 0.0 and 0L cases.

Last but not least, patterns are also used to “deconstruct” structured values like lists, tuples
and matrices, binding variables to the component values. For instance, to compute the sum
of a list of values, you may write:

> sum [] = 0;

> sum (X:XS) = X+sum XS;
> sum (1..100);

5050

This definition works in a straightforward recursive manner. The first rule involves the
constant pattern [] and thus handles the base case of an empty list, in which case the sum
is zero. The second rule has a structured argument pattern x:xs which denotes a list with
head element x and tail xs; in this case the result is x added to the sum of the remaining list
elements xs. (In fact, this computational pattern is so common that the prelude provides a
family of functions such as foldl and foldr to do this kind of operation in a generic way.
Our sum function above is actually equivalent to foldr (+) 0, see List Processing below for
details.)

Instead of placing the patterns directly into the left-hand sides of the function definition, you
might also do the necessary pattern-matching in the right hand side, by employing a case
expression:

sum xs = case xs of [] = 0; Xx:xs = x+sum Xs end;

This works a bit different, though, since a case expression raises an exception if the target
expression is not matched (cf. Patterns):

> sum (1:2:Xxs);
<stdin>, line 2: unhandled exception ’'failed_match’ while evaluating ’'sum (1:2:xs)’

To avoid that, you may want to add a type tag, which ensures that the argument of sum is of
the proper type:

sum xs::list = case xs of [] = 0; Xx:xs = x+sum XS end;

Now the case of an improper list is handled a bit more gracefully, yielding the same normal
form expression you'd get with the first definition of sum above:

> sum (1:2:Xxs);
1+(2+sum xs)

Pure also allows to define sum in a more traditional way which will be familiar to Lisp pro-

7 “”

grammers (note that head and tail correspond to Lisp’s “car” and “cdr”):

sum Xs::list = if null xs then 0 else head xs + sum (tail xs);

Choosing one or the other is again a question of style. However, if you're dealing with
concrete data structures such as lists, pattern-matching definitions are often more convenient

78 1.5 Examples

Pure Language and Library Documentation, Release 0.59

and easier to understand.

Pattern matching also works with user-defined constructors (cf. Data Types). For instance,
here’s how to implement an insertion operation which can be used to construct a binary tree
data structure useful for sorting and searching:

nonfix nil;

insert nil y
insert (bin x L R) y

bin y nil nil;
bin x (insert L y) R if y<x;
bin x L (insert R y) otherwise;

Note that nil needs to be declared as a nonfix symbol here, so that the compiler doesn’t
mistake it for a variable; see The “Head = Function” Rule for details. The following example
illustrates how the above definition may be used to obtain a binary tree data structure from
a list:

> tree [] = nil;

> tree (x:xs) = insert (tree xs) x;

> tree [7,12,9,5];

bin 5 nil (bin 9 (bin 7 nil nil) (bin 12 nil nil))

Conversely, it’s also easy to convert such a tree structure back to a list. We can then combine
these operations to sort a list in ascending order:

> list nil = [1;

> list (bin x L R) = list L + (x:list R);
> list (tree [7,12,9,5]1);

[5,7,9,12]

1.5.6 Local Functions and Variables

Up to this point our examples only involved global functions and variables. When the prob-
lems to be solved become more difficult, it will be necessary to structure the solution in some
way, so that you'll often end up with many small functions which need to work in concert to
solve the problem at hand. Typically only a few of these functions will serve as actual entry
points, while other functions are only to be used internally. Pure supports this through local
functions and variables whose scope is limited either to the right-hand side of a rule or one
of its subexpression. This offers two main advantages:

* Local functions and variables are hidden from the main scope so that they can only be
used in the context where they are needed and don’t clutter up the global environment.
This provides a way to define functions in a modular fashion while hiding internal
details from the rest of the program.

¢ The right-hand sides of local definitions have full access to other local functions and
variables in their parent environments, which eliminates the “plumbing” which would
otherwise be needed to pass these values around. For instance, a local function nested
in another function can freely access the parent function’s arguments and other local
variables in its scope.

1.5.6 Local Functions and Variables 79

Pure Language and Library Documentation, Release 0.59

Local functions are defined using the with construct, while local variables can be introduced
with a when or case expression, see Special Expressions for details. These constructs can be
tacked on to any expression, and they can also be nested. For instance:

> f 5 with f x = y+y when y = x*x end end;
50

Note that the local function f there computes twice the square of its argument x. To these
ends, first x*x is assigned to the local variable y whose value is then doubled by computing
y+y which becomes the result of f.

Local functions can also be created without actually naming them, by employing a so-called
lambda abstraction. For instance, a function which squares its argument might be denoted
as \x -> xxx. This is pretty much the same as a local function f with f x = x*x end except
that the function remains nameless. This notation is pretty convenient for making up little
“one-off” functions which are to be applied on the spot or passed as function arguments or
results to other functions. For instance, here’s how you can compute the first ten squares,
first with an ordinary (named) local function, and then with an equivalent lambda:

>map f (1..10) with f x = x*x end;
[1,4,9,16,25,36,49,64,81,100]

> map (\x -> x*x) (1..10);
[1,4,9,16,25,36,49,64,81,100]

For obvious reasons lambdas work best for non-recursive functions. While there are tech-
niques to create recursive functions out of lambdas using so-called fixed point combinators
(cf. fix), named functions are much more convenient for that purpose.

Pattern matching works in local definitions as usual. For instance, here are several ways
to swap two values represented as a tuple, using either a local function or a when or case
expression:

> swap (1,2) with swap (x,y) = y,x end;
2,1

> (\(x,y) ->y,x) (1,2);

2,1

> y,x when x,y = 1,2 end;

2,1

> case 1,2 of x,y = y,x end;

2,1

You'll also frequently find code like the following, where a global “wrapper” function just
sets up some initial parameter values and then invokes a local “worker” function which
does all the real work. The following function calculates the sum of the positive integers up
to n (the “accumulating parameters” technique used in this example will be explained later,
cf. Recursion).

sum n = sum 0 n with
sum s n =s if n < 0;
sum (s+n) (n-1) otherwise;

end;

80 1.5 Examples

Pure Language and Library Documentation, Release 0.59

Note that there are actually two separate functions named sum here. This works because
according to the scoping rules the right-hand side of the global definition is under the scope
of the with clause, and thus the call sum @ n on the right-hand refers to the local sum function,
not the global one. (While it is perfectly correct and even makes sense in this example, this
style may be somewhat confusing, so we often prefer to give wrapper and worker different
names for clarity.)

As discussed in Scoping Rules, a local function can refer to other local functions and vari-
ables in its parent environments. It can also be returned as a function value, which is where
things get really interesting. The local function value then becomes a lexical closure which
carries around with it the local variable environment it was created in. For instance:

> adder x = add with add y = x+y end;
> let g = adder 5; g; map g (1..5);
add

[6,7,8,9,10]

Note that here the local function add refers to the argument value x of its parent function
adder. The invocation adder 5 thus returns an instance of add which has x bound to the
value 5, so that add y reduces to 5+y for each y. This works as if this instance of the add
closure had an invisible x argument of 5 attached to it. (And this is in fact how closures
are implemented internally, using a transformation called lambda lifting which effectively
turns local functions into global ones.) You should study this example carefully until you
fully understand how it works; we’ll see a bunch of other, more complicated examples of
this kind later.

Lexical closures also provide a means to encapsulate data in a way reminiscent of object-
oriented programming. For instance:

nonfix coords;

point (x,y) = \msg -> case msg of
coords = Xx,y;
move (dx,dy) = point (x+dx,y+dy);
end;

The anonymous function returned by point in fact works like an “object” which can be
queried for its coordinates and moved by a given offset through corresponding “messages”
passed as arguments to the object:

> let p = point (1,2); p;
#<closure 0x7f420660e658>

> p coords; p (move (2,3)) coords;
1,2

3,5

Note that this still lacks some typical features of object-oriented programming such as mu-
tability and inheritance. It isn’t really hard to add these, but this requires the use of some of
Pure’s more advanced machinery which we didn’t discuss yet. For instance, mutability can
be implemented in Pure by using so-called expression references, a kind of mutable storage
cells which can hold arbitrary expression values:

1.5.6 Local Functions and Variables 81

http://en.wikipedia.org/wiki/Lambda_lifting

Pure Language and Library Documentation, Release 0.59

> let x = ref 99; get x;
99

> put x 2;

2

> get x;

2

Using these we can rewrite our definition of the point object as follows:

nonfix coords;

point (x,y) = (\msg -> case msg of
coords = get x, get y;
move (dx,dy) = put x (get x+dx), put y (get y+dy);

end) when
x,y = ref x,ref y;
end;

Note that the coordinates are kept in corresponding expression references assigned to the
local x and y variables, which now shadow the x and y arguments of point. This makes it
possible to have move actually modify the point object in-place:

et p = point (1,2); p coords;

’

’

1
2
p (move (2,3)); p coords;
5
5

w wyVvV eV

’

It goes without saying that this style isn’t preferred in functional programs, but it certainly
has its uses, especially when interfacing to imperative code written in other languages such
as C.

1.5.7 Data Types

Before we consider the more advanced uses of functions in Pure, a few remarks about data
types are in order. Like Lisp, Pure is basically a “typeless” language. That doesn’t mean that
there are no data types; in fact, they’re a dime a dozen in Pure. But Pure lets you make up
your own data structures as you go, without even formally defining a data type. Data types
can be defined and associated with a name pretty much in the same way as functions, but
that’s just a convenience and completely optional. This sets Pure apart from statically typed
languages like ML and Haskell, where explicit data type definitions are mandatory if you
want to introduce new data structures.

As we’ve seen, Pure knows about a few built-in types such as numbers, strings, symbols
and functions; everything else is a function application. If a symbol is defined as a function,
which merely means that there are some rewriting rules for it, then an application of that
function to some arguments may evaluate to something else. But if it doesn’t, then Pure is
perfectly happy with that; it just means that the function application is in normal form and
thus becomes a “value”. For instance:

82 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> cons 3 (cons 5 nil);
cons 3 (cons 5 nil)

There’s nothing mysterious about this; the cons and nil symbols being used here aren’t
defined anywhere, and thus any terms constructed with these symbols are just “data”, no
questions asked. We also call such symbols constructors. (Note that these are different from
constructors in object-oriented programming; constructor applications in term rewriting and
functional programming normally don’t execute any code, they’re just literal data objects.)

We can now go ahead and define some operations on this kind of data. (To these ends, it’s
necessary to declare nil as a nonfix symbol so that we can use it as a literal in patterns; cf.
Pattern Matching.)

nonfix nil;

#nil = 0;
#cons X XS = #xs+1;

head (cons x xs)
tail (cons x xs)

X;
XS;

nil + ys = ys;
CONS X XS + ys = cons X (XS + ys);

Et voila, we’ve just created our own list data structure! It’s admittedly still a bit paltry, but
if we keep at it and define all the other functions that we need then we could turn it into
a full-blown replacement for Pure’s list data structure. In fact Pure’s lists work in a very
similar fashion, using the infix “:” constructor and the empty list [] in lieu of cons and nil,
respectively.

If we want, we can define a new data type for the data structure we just invented. This
works by giving a number of type rules similar to those used in function definitions. In
general, these may denote arbitrary unary predicates, but in our case it’s sufficient to just list
the patterns of terms which are supposed to be members of the type (see Type Rules for an
explanation of the definition syntax):

type mylist nil | mylist (cons x xs);

This definition lets us use the mylist type as a tag on the left-hand side of an equation, cf.
Pattern Matching. But if we’re content with using the patterns directly then we might just as
well do without that.

Types consisting solely of constructor term patterns are sometimes also called algebraic
types. In fact, most user-defined data structures are algebraic types in Pure, and there are
plenty of examples of these in the standard library as well. In particular, lists and tuples
are algebraic types, as are complex and rational numbers, and most of Pure’s container data
types such as dictionaries and sets are also implemented as algebraic types.

Pure differs from most functional languages in that symbols may act as both constructors and
defined functions, depending on the arguments. Thus Pure allows you to have “constructors
with equations”. For instance:

1.5.7 Data Types 83

Pure Language and Library Documentation, Release 0.59

cons nil ys = ys;
cons (cons X XSs) ys = cons X (cons XS ys);

Now cons has become a (partially) defined function. Note that these rules make cons asso-
ciative and turn nil into a left-neutral element for cons. This in fact makes cons behave like
concatenation, so that our lists are always flat now:

> cons (cons 1 (cons 2 nil)) (cons 3 nil);
cons 1 (cons 2 (cons 3 nil))

Examples of such constructor equations can be found in the standard library as well, such as
the rules used to flatten tuples, keep rational numbers in lowest terms, or confine the angles
of complex numbers in polar notation.

Another possible use of constructor equations is to check the well-formedness of constructor
terms. For instance, in our example we might want to preclude terms like cons 1 2 which
don’t have a mylist in the second argument to cons. This can be done with a constructor
equation which raises an exception in such cases (cf. Exception Handling):

> cons x y = throw (bad_mylist y) if ~typep mylist y;
> cons 1 2;
<stdin>, line 18: unhandled exception ’'bad_mylist 2’ while evaluating ’'cons 1 2’

A specific kind of algebraic data types which are useful in many applications are the enu-
merated types. In this case the type consists of symbolic constants (nonfix symbols) only,
which are the elements of the type. For instance:

nonfix sun mon tue wed thu fri sat;
type day sun | day mon | day tue | day wed | day thu | day fri | day sat;

However, to make this type actually work as an enumerated type, we may want to provide
definitions for basic arithmetic, ord, succ, etc. This is rather straightforward, but tedious. So
as of Pure 0.56, the standard library provides a little utility module, enum, which generates
the necessary definitions in an automatic fashion. All we have to do is to import the module
and then invoke the enum function on the type and we’re set:

using enum;
enum day;

It’s also possible to define the type and make it enumerable in one go using the defenum
function:

defenum day [sun,mon,tue,wed,thu,fri,sat];

In either case, we can now perform calculations with the members of the type just like with
other predefined enumerated types such as numbers and characters:

> ord sun;

0

> day (ans+3);
wed

84 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> pred sat;

fri

> sun+3;

wed

> fri-2;

wed

> fri-tue;

3

> mon..fri;

[mon, tue,wed, thu, fril
> sun:tue..sat;
[sun, tue, thu,sat]

> sat:fri..mon;
[sat,fri,thu,wed, tue,mon]

A more abstract way to define algebraic types are the interface types. For instance, if we
take another look at the operations defined on our list type, we may observe that the data
structure is quite apparent from the patterns in the rules of operations such as ‘# and ‘+'.
Pure lets us leverage that information by creating an algebraic type from a collection of
operation patterns it supports. For instance, we may write:

interface list_alike with
#x::list_alike;
x::list_alike + y;

end;

This defines a generic type consisting of all terms which may be passed as an argument to
both ‘#" and ‘+'. We can ask the interpreter about the patterns actually matched by the type
as follows:

> show interface list_alike
type list_alike s::string;
type list _alike [];

type list_alike (x:xs);

type list_alike nil;

type list_alike (cons x xs);

Note that the list_alike type not only includes our own list type, but also any other data
structure providing the ‘#" and ‘+ operations. This also comprises the standard list and
string types for which there are definitions of the ‘# and ‘+ operations in the prelude.

Pure’s interface types are a first attempt at formalizing the notion of Duck typing in Pure.
They are thus still a bit experimental and require some diligence in defining the interface
operations in a suitable way. Please check Interface Types in the Declarations section for
more information and examples.

1.5.8 Recursion

Recursion means that a function calls itself, either directly or indirectly. It is one of the most
fundamental techniques in functional programming, and you won’t find many useful Pure

1.5.8 Recursion 85

http://en.wikipedia.org/wiki/Duck_typing

Pure Language and Library Documentation, Release 0.59

programs which don’t use it in one form or another. That’s because most interesting pro-
grams execute pieces of code repeatedly. Pure doesn’t have any special looping constructs,
so recursion is the only way to do this in Pure. We've already seen various examples of this
throughout the manual, so let’s take a closer look at it now and learn a few related tricks
along the way.

For a simple example, consider the factorial. In order to compute the factorial of an integer
n, we need to multiply the positive integers up to n. There’s a straightforward recursive
definition which does this:

fact n = if n>0 then nxfact (n-1) else 1;

If you prefer conditional rules instead, you can also write:

fact n = nxfact (n-1) if n>0;
= 1 otherwise;

It’s not hard to see how this definition operates. The first rule only applies if n>0, otherwise
the second rule kicks in so that fact nbecomes 1if nis zero or negative (which is consistent
with our informal description because in this case the product of all positive integers up to n
is the empty product which is 1 by mathematical convention). The first rule is the interesting
one where the recursion happens. If n>0 then we may compute fact n by computing fact
(n-1) recursively and multiplying that with n, giving n*(n-1)x*...x1. Let’s check that this
works:

> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628300]

Note that these numbers grow fairly quickly; they outgrow the 32 bit range and start wrap-
ping around already at n==13. To avoid that, you'll have to do the computation with bigints,
or you could use floating point values if you don’t mind the limited precision.

> fact 13;

1932053504

> fact 13L;

6227020800L

> fact 30L;
265252859812191058636308480000000L
> fact 30.0;

2.65252859812191e+32

However, you'll run into another, more serious obstacle if you want to compute factorials
for some really big values of n. For instance:

> fact 200000L;
<stdin>, line 7: unhandled exception ’stack_fault’ while evaluating ’'fact 200000L’

Oops. What happened there? Well, each recursive invocation of fact needs some small
amount of memory on the execution stack, a so-called “stack frame”. Thus, when n becomes
big enough then our definition is in danger of running out of stack space. (This is also why
you keep hearing in most CS 101 courses that you should try to avoid recursion. If you've

86 1.5 Examples

Pure Language and Library Documentation, Release 0.59

forgotten how subroutine calls are executed by keeping the execution context on a stack then
it’s time to revisit those CS 101 lecture notes now.)

So how can we avoid using all that stack space? In a language like C we’d be using a spe-
cialized loop construct instead of recursion, e.g.:

int fact(int n)

{
int p = 1;
while (n>0) { p = nxp; n =n-1; }
return p;

}

Pure doesn’t have a while loop, but we can rewrite the definition so that it becomes tail-
recursive. This means that the recursive call becomes the final operation on the right-hand
side of the recursive rule. The Pure compiler treats this pretty much like a loop in traditional
programming languages.

The trick of the trade to turn a recursive function into a tail-recursive one is the accumulating
parameter technique. The idea here is to have a separate “worker” function which carries
around an extra argument representing the intermediate result for the current iteration. The
final value of that parameter is then returned as the result. In the case of the factorial this
can be done as follows:

fact n = loop n 1 with
loop n p = loop (n-1) (nxp) if n>0;
p otherwise;

end;

Note that fact has now become a simple “wrapper” which supplies the initial value of the
accumulating parameter (p in this case) for the “worker” function loop which does all the
hard work. This kind of design is fairly common in functional programs.

Our worker function is tail-recursive since the recursive call to loop is indeed the final call
on the right-hand side of the first equation defining loop. The Pure compiler generates code
which optimizes such “tail calls” so that they reuse the stack frame of the calling function.
Thus a tail-recursive function like loop will execute in constant stack space; in fact it will
be just as efficient as the while loop in our little C snippet above (up to constant factors, of
course). After entering our new definition of fact we can now compute fact 200000L just
fine (this may take a little while, though, depending on how fast your computer is; the result
has 973351 digits):

> fact 200000L;
14202253454703144049669463336823059760899... // lots of digits follow

The accumulating parameter technique isn’t fully general, but it covers all the kinds of sim-
ple iterative algorithms which you’d do using loop constructs in traditional programming
languages. Some algorithms may require additional techniques such as tabulation (keeping
track of some or all intermediate results), however, so that they can be written in an iterative
form. To see how this can be done in Pure, let’s consider the Fibonacci numbers. These can
be computed with the following naive recursive definition:

1.5.8 Recursion 87

Pure Language and Library Documentation, Release 0.59

fib n = if n<=1 then n else fib (n-2) + fib (n-1);

Here are some members of this famous sequence:

> map fib (0..20);
[e,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765]

Note that the right-hand side of the definition above involves two recursive invocations of
fib in the else branch. This is bad because it means our definition will need exponential
running time. (More precisely, you'll find that the ratio between the running times of succes-
sive invocations quickly starts approaching the golden ratio ¢ = 1.618..., which is no accident
because the times are proportional to the Fibonacci function itself!)

Using a simple iterative algorithm, it is possible to calculate the Fibonacci numbers in lin-
ear time instead. Observe that each member of the sequence is simply the sum of the two
preceding members. If we keep track of the last two members of the sequence then we can
compute the next member with a single addition. This yields the following tail-recursive
implementation which uses the same kind of “wrapper-worker” design:

fib n = loop n OL 1L with
loopnab loop (n-1) b (a+b) if n>0;
a otherwise;

end;

Note that as a matter of prudence we primed the iteration with the bigints 6L and 1L so that
we can compute large Fibonacci numbers without suffering wrap-around. For instance, try
the following:

> fib 1000000;
1953282128707757731632014947596256332443... // lots of digits follow

Recursion also naturally occurs when traversing recursive data structures. We’ve already
seen various examples of these, such as the binary tree data structure:

nonfix nil;

insert nil y
insert (bin x L R) y

bin y nil nil;
bin x (insert L y) R if y<x;
bin x L (insert R y) otherwise;

The insert function implements a binary tree insertion algorithm which keeps the tree (rep-
resented with the bin and nil constructor symbols) sorted. To these ends, it recurses into
the left or right subtree, depending on whether the element y to be inserted is less than the
current element x or not. The final result is a new tree which has a nil subtree replaced with
anew bin y nil nil subtree at the right location.

If we do an inorder traversal of such a binary tree (at each non-nil subtree, first visit the
left subtree, then note the element at the top of the current subtree, and finally visit the
right subtree), we obtain the elements of the tree in ascending order. This traversal is also
implemented recursively, e.g., as follows:

88 1.5 Examples

Pure Language and Library Documentation, Release 0.59

list nil = [];
list (bin x L R) = list L + (x:list R);

Note that these functions can’t be made tail-recursive using the accumulating parameter
technique, because traversing a tree structure requires more general forms of recursion.
There is in fact a more general continuation passing technique to do this, which we will look
at in The Same-Fringe Problem below; alas, it’s not as easy as accumulating parameters. For-
tunately, some important recursive structures such as lists only involve simple recursion and
can thus be traversed and manipulated in a tail-recursive fashion more easily. For instance,
consider our earlier definition of the sum function:

sum [] = 0O;
sum (X:XS) = X+sum XS;

This definition isn’t tail-recursive, but we can easily massage it into this form using the
accumulating parameter technique:

sum xs::list = loop O xs with
loop s [] = s;
loop s (x:xs)
end;

= loop (s+x) xs;

Functions can also be mutually recursive, in which case two or more functions are defined
in terms of each other. For instance, suppose that we’d like to skip every other element of a
list (i.e., return a list with only the elements having either even or odd indices, respectively).
One way to do this involves two functions (named pick and skip here) which recursively
call each other:

> pick [1 = [1; pick (x:xs) = x:skip xs;
> skip [1 = [1; skip (x:xs) = pick xs;
> pick (1..10);

[1,3,5,7,9]

> skip (1..10);

[2,4,6,8,10]

A Numeric Root Finder

Let’s now see how we can apply the techniques explained above in the context of a some-
what more practical example: a numeric root finder. That is, we're going to write a function
which takes another function f and determines a (double) value x such that f x becomes
(close to) zero.

We'll develop this in a bottom-up fashion. The method we employ here is known as the
Newton-Raphson algorithm, whose basic building block is the following routine improve
which improves a given candidate solution x by computing a first-order approximation of
the root. This involves computing (a numeric approximation of) the first derivative at the
given point, which we do using a second function derive:

1.5.8 Recursion 89

http://en.wikipedia.org/wiki/Continuation-passing_style

Pure Language and Library Documentation, Release 0.59

improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;

If you still remember your calculus then these should look familiar. Note that in both func-
tions, f is our target function to be solved and x the current candidate solution. The second
equation is nothing but the difference quotient of the function at the point x, using dx as
the increment along the x axis. The improve function computes the intersection of the corre-
sponding secant of f with the x axis.

To illustrate how the method works, let’s perform a few improvement steps manually, using
the target function f x = xxx-2 which becomes zero at the square root of 2. Here we choose
a dx value of le-8 and start from the initial guess 2:

let dx = le-8;

improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;
f X = X*x-2;

improve f 2;

.49999999696126

improve f ans;

.41666666616021

improve f ans;

.41421568628522

improve f ans;

.41421356237468

VLV EHEV LYV VYV VYV

It should be apparent by now that this converges to the square root of 2 rather quickly. To
automate this process, we need another little helper function which iterates improve until
the current candidate solution is “good enough”. A suitable termination criterion is that the
improvement drops below a certain threshold (i.e., abs (x-f x) <= dy for some reasonably
small dy). For extra safety, we’ll also bail out of the loop if a prescribed number n of iterations
has been performed. This function can be implemented in a tail-recursive fashion as follows:

loop n f x = x if n <= 0;
= if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;

Let’s give it a try:

> let dy = le-12;

> loopnfx=xif n<=0;

> = if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;
> loop 20 (improve dx f) 2;

1.4142135623731

> ansx*ans;

2.0

Looks good. So let’s finally wrap this up in a main entry point solve which takes the function
to be solved and an initial guess as parameters. Our little helper functions improve, derive
and loop are only used internally, so we can turn them into local functions of solve. The
additional parameters of the algorithm are implemented as global variables so that we can
easily modify their values if needed. The end result looks as follows. Note that the initial

90 1.5 Examples

Pure Language and Library Documentation, Release 0.59

guess x is an implicit parameter of the solve function, so the function actually gets invoked
as solve f x.

let dx = 1le-8; // delta value for the approximation of the derivative
let dy le-12; // delta value for testing convergence
let nmax = 20; // maximum number of iterations

solve f = loop nmax (improve f) with
loop n f x = x if n <= 0;
= if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;
improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;
end;

Here are some examples showing how the solve function is used. Note that we specify the
target functions to be solved as lambdas here. E.g.,\t -> t"3-x denotes a function mapping
t to t73-x, which becomes zero if t equals the cube root of x.

> sqrt x = solve (\t -> txt-x) x;
> sqrt 2; sqrt 5;

1.4142135623731

2.23606797749979

> cubrt x = solve (\t -> t"3-x) x;
> cubrt 8;

2.0

Our little root finder isn’t perfect. It needs a fairly well-behaved target function and/or a
good initial guess to work properly. For instance, consider:

> solve (\t -> 1/t-2) 1;
0.00205230175365927

Here solve didn't find the real root at 0.5 at all. In fact, if you print the solution candidates
then you will find that solve converges rather slowly in this case and thus bails out after 20
iterations before a good solution is found. Increasing the nmax value fixes this:

> let nmax = 50;
> solve (\t -> 1/t-2) 1;
0.5

There are other pathological cases where the algorithm performs even more poorly. Further
improvements of the method presented here can be found in textbooks on numeric algo-
rithms; the interested reader may want to cut his teeth on these algorithms by translating
them to Pure in the way we’ve shown here.

The Same-Fringe Problem

This is one of the classical problems in functional programming which has a straightforward
recursive solution, but needs some thought if we want to solve it in an efficient way. Con-
sider a (rooted, directed) tree consisting of branches and leaves. To keep things simple, we
may represent these structures as nested lists, e.g.:

1.5.8 Recursion 91

Pure Language and Library Documentation, Release 0.59

let t1 = [[a,b],c,[[d]],e,[f,[[g,nh]]]];
let t2 = [a,b,c,[[d],[],e],[f,[g,[h]1]]];
let t3 = [[a,b],d,[[c]],e,[f,[[g,h]]]];

Thus each inner node of the tree is represented as a list containing its (zero or more) subtrees,
and the leaves are the “atomic” (non-list) elements. The fringe of such a structure is the list
of all leaves in left-to-right order, which can be computed as follows:

fringe t = if listp t then catmap fringe t else [t];

Note that listp is a predicate which decides whether its argument is a (proper or improper)
list and the catmap function applies the given function to a list, like map, and concatenates all
the resulting lists, like cat. Thus, if the argument t is an “atom” (leaf) then fringe simply
returns [t], otherwise it recursively applies itself to all the subtrees and concatenates the
results:

> fringe t1;
[a,b,c,d,e,f,g,h]
> fringe t2;
[a,b,c,d,e,f,qg,h]
> fringe t3;
[a,b,d,c,e,f,qg,h]

Note that t1 and t2 differ in structure but have the same fringe, while t1 and t3 have the
same structure but different fringes. The problem now is to decide, given any two trees,
whether they have the same fringe. Of course, we can easily solve this by just computing the
fringes and comparing them with ‘===’ (note that we employ syntactic equality here which
also allows us to compare symbols, for which ‘==" isn’t normally defined):

> fringe tl === fringe t2;
1
> fringe t3 === fringe t2;
0

However, this is rather inefficient since we always have to fully construct the fringes which
may need considerable extra time and space if the trees are large. Most of this effort may
be completely wasted if we only need to inspect a tiny fraction of the fringes to find out
that they’re different, as in the case of t2 and t3. Also note that our version of the fringe
function isn’t tail-recursive and we may thus run into stack overflows for large trees.

This problem, while posed in an abstract way here, is not only of academic interest. For in-
stance, trees may be used as an alternative string data structure which implements concate-
nation in constant time by just delaying it. In this case we certainly don’t want to explicitly
carry out all those concatenations in order to decide whether two such objects are the same.

Therefore, this problem has been studied extensively and more efficient approaches have
been developed. One way to solve the problem involves the technique of continuation
passing which is a generalization of the accumulating parameter technique we already dis-
cussed. It never constructs any part of the fringes explicitly and also works in constant stack
space. The algorithm can be implemented in Pure as follows. (This is a slightly modified

92 1.5 Examples

Pure Language and Library Documentation, Release 0.59

transliteration of a Lisp program given in Henry Baker’s article “Iterators: Signs of Weak-
ness in Object-Oriented Languages”, ACM OOPS Messenger 4(3), 1993, pp. 18-25, which is
also available from Henry Baker’s Archive of Research Papers.)

samefringe tl t2 =
samefringe (\c -> genfringe t1 c done) (\c -> genfringe t2 c done) with
done ¢ = ¢ [] done;
samefringe gl g2 =
gl (\x1 g1 -> g2 (\x2 g2 -> x1l===x2 && (x1===[] || samefringe gl g2)));
genfringe [] c g =g c;
genfringe (x:t) ¢ g = genfringe x c (\c -> genfringe t c g);
genfringe x ¢ g = ¢ X g;
end;

As Baker admits himself, this style of programming isn’t “particularly perspicuous”, so we’ll
explain the algorithm in a moment. But first let us verify that the program indeed works
as advertized. It’s helpful to print out the actual comparisons performed in the innermost
lambda in the definition of the local samefringe function, which can be done by adding a
little debugging statement as follows (this also needs an import clause “using system;” to
make the printf function available):

samefringe gl g2 =
gl (\x1 gl -> g2 (\x2 g2 -> printf "%s === %s?\n" (str x1,str x2) $$
x1===x2 && (x1===[] || samefringe gl g2)));

With this we get:

samefringe tl1 t2;
=== a?
=== Db?
=== C?
=== d?

>

a

b

C

d

e === e?
f === f?

g === g?

h === h?

[1 === [17

1

So in this case we do a complete traversal of both trees which is the best that we can hope for
if the fringes are the same. Note that the final comparison [] === [] ensures that we also
hit the end of the two fringes at the same time. This test deals with the corner case that one
fringe is a prefix of the other. For instance:

let t4 = [[a,b]l,c,[[d]],e,[f,[[g,h,i]1]]1];
samefringe t4 t2;

=== b?
=== C?
=== (?
=== e?
=== f?

- ® Q 0 T X V V
|
|

1.5.8 Recursion 93

http://home.pipeline.com/~hbaker1/

Pure Language and Library Documentation, Release 0.59

=== h?
=== [17

O H T Q

Things go a bit differently, however, when comparing t3 and t2; as soon as we hit the first
discrepany between the two fringes, the algorithm bails out and correctly asserts that the
fringes are different:

> samefringe t3 t2;
a === a?

b === b?

d === ¢?

0

Let’s take a closer look at the various parts of the algorithm now. First, the genfringe func-
tion:

genfringe [] c g =g c;
genfringe (x:t) c g = genfringe x ¢ (\c -> genfringe t c g);
genfringe x c g = C X g;

This routine generates the fringe of a tree, given as the first argument, on the fly. The second
argument c (the “consumer”) is a function which gets invoked on the current leaf, to do any
required processing. (As we’ll see later, it may also get invoked with the special “sentinel”
value [] to indicate the end of the fringe.)

The third argument g (the “generator”) is a continuation, a kind of “callback function” to
be invoked after the current subtree has been traversed, in order to process the remainder
of the tree. It takes the consumer function c as its sole argument. Consequently, genfringe
simply invokes the continuation g on the consumer ¢ when applied to an empty subtree [],
i.e., if there aren’t any leaves to be processed. This case is handled in the first equation for
genfringe.

The second equation for genfringe is the interesting one where the recursion happens. It
deals with a nonempty tree x: t by invoking itself recursively on X, setting up a new contin-
uation \c -> genfringe t c g, which will take care of processing the rest of the subtree t,
after which it chains to the previous continuation g which will handle the rest of the tree.

The third equation for genfringe handles the case of a non-list argument, i.e., a leaf. In this
case we just pass the leaf x to the consumer function ¢ along with the continuation g. The
consumer processes x as needed and may then decide to call the continuation g on itself
in order to continue processing the rest of the tree, or simply bail out, returning any value.
Note that this entire process is tail-recursive, as long as c chains to g as the last call. It thus
only needs constant stack space in addition to what c itself uses.

Note that we need an initial continuation g to get the process started. This is provided by
the done function:

done ¢ = ¢ [] done;

924 1.5 Examples

Pure Language and Library Documentation, Release 0.59

As we’ve defined it, done invokes the consumer ¢ on an empty list to signal the end of
the fringe. For good measure, it also passes itself as the continuation argument; however,
normally the consumer will never use this argument and just bail out when invoked on the
[1 value.

To see how this works, we can just enter done and genfringe as global functions and invoke
them on a suitable consumer function, e.g.:

done ¢ = ¢ [] done;
genfringe [] c g =g c;
genfringe (x:t) ¢ g = genfringe x c¢ (\c -> genfringe t c g);
genfringe x c g = C X g;
c x g = if x===[] then g else printf "%s... " (str x) $$ g c;
genfringe tl1 c done;

.b... c...d... e... f... g... h... done

Q VV VYV VYV

In the case of samefringe, we use the local samefringe function as our consumer instead.
This works pretty much the same, except that samefringe employs two continuations g1 and
g2 to traverse both trees at the same time:

samefringe gl g2 =
gl (\x1 g1 -> g2 (\x2 g2 -> x1l===x2 && (x1===[] || samefringe gl g2)));

Note that the outer lambda (\x1 g1 -> ...) becomes the consumer for the first generator
g1 which traverses t1. When called, it then invokes the second generator g2, which traverses
t2, on the consumer (inner lambda) (\x2 g2 -> ...). This in turn does the necessary tests
to verify that the current leaf elements are the same, or to bail out from the recursion if they
aren’t or if we reached the end of the fringes. Also note that this is still tail-recursive because
the short-circuit logical operations && and | | are both tail-recursive in their second operand
(cf. Stack Size and Tail Recursion).

1.5.9 Higher-Order Functions

As we have seen, functions are first-class citizens in Pure which can be created on the fly
(using partial applications as well as lambdas and local functions), assigned to variables
and passed around freely as function arguments and results. Thus it becomes possible to
define higher-order functions which take other functions as arguments and/or return them
as results. This is generally considered a hallmark feature of functional programming, and
much of the power of functional programming stems from it. In fact, higher-order functions
are so deeply ingrained in the modern functional programming style that you'll hardly find
a nontrivial program that doesn’t use them in some way, and we have already seen many
examples of them throughout the manual. While most imperative programming languages
today let you treat functions as values, too, they’re typically much more limited in the ways
that new functions can be created dynamically. Only recently have partial application and
anonymous closures arrived in some mainstream imperative languages, and they are often
still rather awkward to use.

The simplest case of a higher-order function is a function which takes another function as
an argument. For instance, we have seen the function map which applies a function to each

1.5.9 Higher-Order Functions 95

Pure Language and Library Documentation, Release 0.59

member of a list. If it wasn’t in the prelude, it could be defined as follows:

].

map f [] = ;
=f x : map T xs;

[
map T (x:xs)

(Note that this isn’t the actual definition from the prelude, which goes to some lengths to
make the operation tail-recursive and properly handle lazy lists. But we won’t dive into
these technicalities here since we’re only interested in the higher-order aspect right now.)

This definition is rather straightforward: To map a function f to a list, just apply it to the
head element x and recurse into the tail xs. The recursion stops at the empty list which is
returned as is. For instance:

> map (*2) (0..10);
[0,2,4,6,8,10,12,14,16,18,20]

The prelude includes an entire collection of such generic list functions which have proven
their utility as basic building blocks for many list processing tasks. We’ll have a closer look
at these later, see List Processing.

Another numerical example is the function derive which we used in our root finder example
to calculate the difference quotient of a function f at a given point x:

derive f x = (f (x+dx) - f x) / dx;

This example is also interesting because we can turn derive into a function mapping func-
tions to other functions, by partially applying it to the target function. So we may write:

> let dx = le-8;
> map (derive square) (1..4) with square x = x*x end;
[1.99999998784506,3.99999997569012,5.99999996353517,7.99999995138023]

This illustrates an easy way to create new functions from existing ones: partial application.
(In fact we also did that when we applied the operator section (*2) using map above. Note
that (*2) is a function which doubles its single argument.) This simple recipe is surprisingly
powerful. For instance, the prelude defines the function composition operator *.” as:

(f.g) x = f (g x);

The partial application f.g thus applies two given functions f and g in sequence (first g,
then f). Functions of this kind, which create new functions by combining existing ones, are
also known as combinators. For instance, using “.” we can easily create a function which
“clamps” its argument between given bounds by just combining the min and max functions
from the prelude as follows:

> clamp a b = max a . min b;
> map (clamp (-3) 3) (-5..5);
['31'31'31'21'1101112131313]

Note that partial application works with constructor symbols, too:

96 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> map (0:) [1..3,4..6,7..9];
(re,1,2,3],[0,4,5,61,[0,7,8,91]]

Another more direct way to define combinators is to make them return a local or anonymous
function. For instance, the following equations lift the ‘+" and ’-* operators to pointwise
operations:

f+q
f-g

\x -> f x + g x if nargs f > 0 & nargs g > 0;
\x -> f x - g x if nargs f > 0 & nargs g > 0;

This employs the nargs function from the standard library which returns the argument count
of a global or local function. We use this here to check that the operands are defined functions
taking at least one argument. The result is a function which applies the function operands
to the given argument and computes their sum and difference, respectively. For instance:

> map (f+g-h) (1..10) with f x = 2*x+1; g x = xxx; h x = 3 end;
[1,6,13,22,33,46,61,78,97,118]

These rules also handle functions taking multiple arguments, so that you can write, e.g.:

> (max-min) 2 5;
3

Constructors can be extended in exactly the same way:

,9 =\x -> f x, g x if nargs f > 0 & nargs g > 0;
max,min,max-min) 2 5;
3

vV Vv

f
(
,2

’

1.5.10 List Processing

Pure’s list data structure provides you with a convenient way to represent sequences of
arbitrary values. This is one of the few compound data structures which has built-in support
by the compiler, so that some syntactic sugar is available which allows you to express certain
list operations in a convenient way. But for the most part, lists are implemented in the
prelude just like any other data structure.

The empty list is denoted [], and compound lists can be put together in a right-recursive
fashion using the “:* operator. The customary bracketed notation is provided as well, and
this is also the syntax the interpreter normally uses to print list values:

> 1:2:3:[1;
[1,2,3]

Note that the bracketed notation is just syntactic sugar; internally all list values are repre-
sented as right-recursive applications of the “:* operator. Thus it is possible to match the
head and tail of a list using a pattern like x: xs:

> case [1,2,3] of x:xs = Xx,Xxs end;
1,[2,3]

1.5.10 List Processing 97

Pure Language and Library Documentation, Release 0.59

Lists can contain any combination of elements (also from different types) and they may also
be nested:

> [1,2.0,[x,y],"a string"];
[1,2.0,[x,y],"a string"]

List concatenation is denoted +, and the #, ! and !! operators can be used to compute the
length of a list and extract elements and slices of a list using zero-based indexing:

> [a,b,c]+[x,y,2];

[a,b,c,x,y,2]
> #ans, ans!5, ans!![2,3];
6,z,[c,x]

Note that lists are immutable in Pure (just like most of Pure’s built-in and predefined data
structures), so there are no operations which modify lists in-place. E.g., concatenation works
as if it was defined recursively by the following rules:

[1+ys = ys;
(x:xs) + ys = x : (Xs+ys);

So a new list is created which replaces the empty list in the last component of the left operand
with the right operand. This even works if the second operand is no list at all, in which case
an improper list value is produced:

> [a,b,c]+y;
a:b:c:y

These can be useful, e.g., to represent symbolic list values. Note that a proper list value
contains the empty list [] in its rightmost component; an improper list value is one which
doesn’t. There are some list functions like reverse which really need proper lists to work and
will throw an exception otherwise, but many predefined operations will deal with improper
lists just fine:

>map f (x:y:z);
f x:f yimap f z
Lists can also be compared using the == and ~= operators:

> [1,2,3] == [1,2,4];
0

Arithmetic sequences are denoted with the .. operator:

> 1..10; 10:9..1; 0.0:0.1..1.0;
[1,2,3,4,5,6,7,8,9,10]

[10,9,8,7,6,5,4,3,2,1]
[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

List comprehensions provide another way to construct (proper) list values using a conve-
nient math-like notation:

98 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> [2”x | x = 1..10];
[2.0,4.0,8.0,16.0,32.0,64.0,128.0,256.0,512.0,1024.0]

We'll discuss this construct in more detail later, see List Comprehensions.

The prelude provides a fairly comprehensive collection of useful list functions, including
some powerful generic operations which let you do most common list manipulations with
ease. For instance, we have already seen the map function:

> map (\x->2%x-1) (1..10);
[1,3,5,7,9,11,13,15,17,19]

There’s also a function do which works in the same fashion but throws away all the results
and simply returns (). Of course this makes sense only if the applied function has some
interesting side-effect. E.g., here’s a quick way to print all members of a list, one per line.
This combines the str function (which converts any Pure expression to its printable rep-
resentation, cf. String Processing below) with the puts function from the system module
(which is just the corresponding C function, so it prints a string on the terminal, followed by
a newline).

> using systenm;

> do (puts.str) (1..3);
1

2

3

()

Another useful list function is filter which applies a predicate to each member of a list and
collects all list elements which satisfy the predicate:

> odd x = x mod 2; even x = ~odd x;
> filter odd (1..20);
[1,3,5,7,9,11,13,15,17,19]

> filter even (1..20);
[2,4,6,8,10,12,14,16,18,20]

In addition, the all and any functions can be used to check whether all or any list elements
satisfy a given predicate:

> any even (1:3..20);
0

> all odd (1:3..20);
1

There’s also a family of functions such as foldl which generalize the notion of aggregate
functions such as list sums and products. Starting from a given initial value a, foldl iterates
a binary function f over a list xs and returns the accumulated result. It’s defined as follows:

foldl f a [] = a;
foldl f a (x:xs) = foldl f (f a x) xs;

For instance, we can use foldl to compute list sums and products:

1.5.10 List Processing 99

Pure Language and Library Documentation, Release 0.59

> foldl (+) 0 (1..10);
55

> foldl (%) 1 (1..10);
3628800

Note that foldl (“fold-left”) accumulates results from left to right, so the result accumulated
so far is passed as the left argument to the function f. There’s a foldr (“fold-right”) function
which works analogously but collects results from right to left, and accordingly passes the
accumulated result in the right argument. Usually this won’t make a difference if the iterated
function is associative, but foldl and foldr have lots of applications beyond these simple
use cases. For instance, we may use foldl to reverse a list as follows:

> foldl (flip (:)) [1 (1..10);
[10,9,8,7,6,5,4,3,2,1]

Note that we have to flip the arguments of the “:* constructor here, since foldl passes the
accumulated list in the left argument, but “:“ wants it on the right. Conversely, we have that:

> foldr (:) [] (1..10);
[1121314151617,8,9,10]

This just returns the list unchanged. So the order in which we accumulate results does matter
here.

In a similar fashion, we might use foldl (or foldr) to build any kind of compound data
structure from a list of its members. For instance, recall our binary tree example:

nonfix nil;
insert nil y
insert (bin X L R) y

bin y nil nil;
bin x (insert L y) R if y<x;
bin x L (insert R y) otherwise;

We can then use foldl insert to construct a binary tree from its member list as follows:

> foldl insert nil [7,12,9,5];
bin 7 (bin 5 nil nil) (bin 12 (bin 9 nil nil) nil)

Sometimes we’d like to know not just the final result of an aggregate function, but all the
intermediate results as well. The scanl function does this. For instance:

> scanl (+) 0 (1..10);
[0,1,3,6,10,15,21,28,36,45,55]

Note that this computes the same list of partial sums as:

> [foldl (+) 0 (1..n) | n = 0..10];
[0,1,3,6,10,15,21,28,36,45,55]

However, the former is more efficient since it does all the partial sums in one go.

Like foldl, scanl also has a sibling called scanr which collects results from right to left,
starting at the end of the list:

100 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> scanr (+) 0 (1..10);
[55,54,52,49,45,40,34,27,19,10,0]

Another useful list generation function is iterwhile which keeps applying a function start-
ing at a given initial value, as long as the current value satisfies the given predicate. So
another way to generate the odd numbers up to 20 is:

> iterwhile (<=20) (+2) 1;
[1,3,5,7,9,11,13,15,17,19]

Or we might collect all powers of 2 which fall into the 16 bit range:

> iterwhile (<0x10000) (*2) 1;
[1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768]

There are also various functions to partition a list into different parts according to various
criteria. The simplest of these are the head and tail functions:

> let xs = 1..10;

> head xs; tail xs;
1
[2,3,4,5,6,7,8,9,10]

Conversely, the last and init functions give you the last element of a list, and all but the
last element, respectively:

> last xs; init xs;
10
[1!2!3!4!5!6!7!8!9]

The take and drop functions take or remove a given number of initial elements, while
takewhile and dropwhile take or remove initial elements while a given predicate is sat-
isfied:

> take 4 xs; drop 4 xs;

[1,2,3,4]

[5,6,7,8,9,10]

> takewhile (<=4) xs; dropwhile (<=4) xs;
[1,2,3,4]

[5,6,7,8,9,10]

Lists can be reversed with reverse and sorted using sort:

> reverse Xs;

[10,9,8,7,6,5,4,3,2,1]

> sort (<) (xs + ans);
[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10]

You can also concatenate a list of lists with the cat function:

> cat [1..n | n=1..5];
[1,1,2,1,2,3,1,2,3,4,1,2,3,4,5]

1.5.10 List Processing 101

Pure Language and Library Documentation, Release 0.59

Last but not least, there is the zip family of functions which let you combine members of
two or more lists in different ways. The zip function itself collects pairs of corresponding
elements in two input lists:

> zip (1..5) ("a".."e");
[(1,"a"),(2,"b"),(3,"c"), (4,"d"), (5,"e")]

The effect of zip can be undone with unzip which returns a pair of lists:

> unzip ans;
[1’2’3’4’5]’ ["a","b","C","d","e”]

The zipwith function is a generic version of zip which combines corresponding members
from two lists using a given binary function f:

> zipwith (%) (1..10) (1..10);
[1,4,9,16,25,36,49,64,81,100]

You might also consider zipwith a variant of map working with two lists at the same time (in
fact this operation is also known as map2 in some functional programming languages). There
are also variations of these functions which work with three lists (zip3, unzip3, zipwith3).

Note that zip itself is equivalent to zipwith (,):

> zipwith (,) (1..5) ("a".."e");
[(1,"a"),(2,"b"),(3,"c"), (4,"d"), (5,"e")]

Also note that since tuples are formed by just applying the ‘,” operator repeatedly, you can
use multiple calls of zip to piece together tuples of any length:

> zip (1..3) (zip ("a".."c") l[a,b,cl]);
[(1,"a",a),(2,"b",b),(3,"c",c)]

This can be achieved even more easily by folding zip over a list of lists; here we employ a
variation foldrl of foldr which takes the initial value from the beginning of the list.

> foldrl zip [1..3,"a".."c",[a,b,cl];
[(1,"a",a),(2,"b",b),(3,"c",c)]

Note that this method easily scales up to as many element lists as you want. Recovering
the original element lists is a bit trickier, though, but it can be done using this little helper
function:

xs 1f n<=1;
xs,unzipn (n-1) ys when xs,ys = unzip xs end otherwise;

unzipn n xs

For instance:

> foldrl zip [1..3,"a".."c",[a,b,cl];
[(1,"a",a),(2,"b",b),(3,"c",c)]

> unzipn 3 ans;
[1,2,3],["a","b","c"],[a,b,c]

102 1.5 Examples

Pure Language and Library Documentation, Release 0.59

Also, the elements to be zipped don’t have to be singletons, they can themselves be tuples
of any size:

> foldrl zip [[1,2,3],[a,(),cl,[x,y,(z,t)]];
[(1,a,x),(2,y),(3,c,z,t)]

But note that in this case you loose the information which elements came from which sub-
lists, so unzip won’t be able to recover the original lists any more. If you need to avoid that
then it’s best to use other aggregates such as lists or vectors for the sublist elements.

There are other interesting list functions in the prelude, but we’ll leave it at that for now.
Please check the Pure Library Manual for a full account of the available operations.

1.5.11 String Processing

Let’s take a short break from lists and look at strings. We postponed that until now since
strings are in many ways just like lists of characters. In fact the similarities run so deep
that in some languages, most notably Haskell, strings are in fact just lists. Pure doesn’t go
quite that far; it still represents strings as null-terminated arrays of characters in the UTF-8
encoding, which is a much more compact representation and eases interoperability with C.
However, most common list operations also work on strings in an analogous fashion. Thus
you can concatenate strings, compute their length, and index, slice and compare them as
usual:

S "abC"+"XyZ";

"abcxyz"

> f#fans, ans!5, ans!![2,3];
6,"z","cx"

> Ilabcll==llabdll;

0

In addition, strings can also be ordered lexicographically:

"abd"<"ade";

"abd">"ade";

V=V oV

sort (<) ["the","little","brown",6"fox"];
["brown","fox","little","the"]

Where it makes sense, list operations on strings return again a string result:

> head "abc"; tail "abc";

Ilall

IIbCII

> take 4 "abcdefg"; drop 4 "abcdefg";
Ilabcdll

Ilefgll

A slight complication arises with the map function, because in this case the result is not guar-
anteed to be a string in all cases. For instance:

1.5.11 String Processing 103

Pure Language and Library Documentation, Release 0.59

> map ord "HAL";
[72,65,76]

To have map work consistently, it will thus yield a list even in cases where the result could
again be represented as a string. If you want a string result instead, you’ll have to do the
conversion explicitly, using the string function:

> map (+1) "HAL";

[IIIII’IIBII’IIMII]
> string ans;
" TBM"

Conversely, you can also convert a string to a list of its characters using either chars or the
generic list conversion function:

> list ans;
[IIIII , IIBII , IIMII]

As in the case of map, this conversion is usually done automatically if a list operation from
the prelude is applied to a string. This also happens if a list comprehension draws values
from a string:

> [x-1 | x = "IBM"];
[“H“,“A“,“L“]

Talking about characters, these are simply single character strings, so Pure has no separate
data type for them. However, there is a type tag char for the single character strings which
can be used in pattern matching;:

> isupper x::char = "A"<=x && x<= "Z";

> filter isupper "The Little Brown Fox";
"TLBF"

> any isupper "The Little Brown Fox";

1

Maybe you wondered how that "HAL" => "IBM" transformation above came about? Well,
the prelude also defines basic arithmetic on characters:

> "a"+1, "a"+2, "z"-1;
npt men

> "z"-"a",;

25

This considers characters as an enumerated data type where each character corresponds to
a numeric code point in Unicode. Hence, e.g., "a"+1 gives "b" because "b" is the code point
following "a" in Unicode, and "b"-"a" gives 1 for the same reason.

So here’s the rot13 encoding in Pure:

rotl3 x::string = string (map rotl3 x) with

rotl3 c = c+13 if "a" <= lower c && lower c <= "m";
c-13 if "n" <= lower c && lower c <= "z";
c otherwise;

104 1.5 Examples

Pure Language and Library Documentation, Release 0.59

lower ¢ = "a"+(c-"A") if "A"<=c && c<="2Z";
= c otherwise;
end;

For instance:

> rotl3 "The quick brown fox";
"Gur dhvpx oebja sbk"

> rotl3 ans;

"The quick brown fox"

Character arithmetic also makes arithmetic sequences of characters work as expected:

> "g".."k"; "k":"j".."a";
["a","b","c","d", "e", """, "g","h", "i","j","k"]
["k","j","i","h", "g", "f", "e", "d","c","b","a"]
> string ("a":"c".."z");

"acegikmogsuwy"

You can also convert between characters and their ordinal numbers using the ord and chr
functions:

> ord "a";

97

> chr (ans+l);
Ilbll

Thus using Horner’s rule we might convert a string of decimal digits to its numeric repre-
sentation as follows:

> foldl (\x ¢ -> 10*x+ord c-ord "0@") 0 "123456";
123456

However, there are much easier and more general ways to convert between strings and Pure
expressions. Specifically, val and str can be used to convert between any Pure value and its
string representation:

> val "2x(3+4)"; str ans;
2x(3+4)
II2*(3+4)II

If you also want to evaluate the string representation of a Pure expression then eval is your
friend:

> eval "2x(3+4)";
14

Two other convenient functions are split which breaks apart a string at a given delimiter
string, and join which concatenates a list of strings, interpolating the delimiter string be-
tween successive list elements:

> split " " "The quick brown fox";
[IIThell , IIquickll , IIbrownll , " fOXII]

1.5.11 String Processing 105

Pure Language and Library Documentation, Release 0.59

> join ans;
"The:quick:brown: fox"

If you don’t need the intervening delimiters then you can also concatenate string lists simply
with strcat:

> strcat ["The","quick","brown","fox"];
"Thequickbrownfox"

These operations are all implemented in an efficient way so that they run in linear time.
(Note that the string conversion function we mentioned above is in fact just strcat on lists
of strings, but it also works with other aggregates such as vectors of strings.)

For more elaborate needs there’s also a suite of functions for doing regular expression match-
ing in the regex module, and the system module provides the usual facilities for reading and
writing strings from/to text files and the terminal, as well as the printf and scanf family of
functions which are used to print and parse strings according to a given format string. These
are all explained in detail in the Pure Library Manual.

1.5.12 List Comprehensions

List comprehensions are Pure’s main workhorse for generating and processing all kinds of
list values. You can think of them as a combination of map and filter using a prettier syntax
reminiscent of the way in which sets are commonly specified in mathematics. List compre-
hensions are in fact just syntactic sugar, so anything that can be done with them can also be
accomplished with Pure’s generic list functions; but often they are much easier to write and
understand.

In the simplest case, list comprehensions are just a shorthand for map with lambdas:

> [2#x-1 | x = 1..10];
[1,3,5,7,9,11,13,15,17,19]

This can be read aloud as “the list of all 2xx-1 for which x runs through the list 1..10”. The
part x = 1..10is called a generator clause. The comprehension binds x to each member of
thelist 1. .10 in turn and evaluates the target expression 2+x+1 in the context of this binding.
This is equivalent to the following map expression:

> map (\x->2xx-1) (1..10);
[1,3,5,7,9,11,13,15,17,19]

List comprehensions may also involve filter clauses: predicates which determine the ele-
ments that are to be included in the result list.

> [2xx-1 | x = 1..10; x mod 3];
[1,3,7,9,13,15,19]

This can be read as “the list of all 2xx-1 for which x runs through 1. .10 and for which x mod
3 is non-zero” (which means that x is not a multiple of 3). It is roughly equivalent to:

106 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> map (\x->2*x-1) (filter (\x->x mod 3) (1..10));
[1,3,7,9,13,15,19]

List comprehensions can also draw values from other kinds of aggregates such as strings
and matrices, but the result is always a list:

> [x-1 | x = "IBM"];

[IIHII’IIAII,IILII]

> [1/x | x = {1,2,3,;4,5,6}; ~x mod 2];
[0.5,0.25,0.166666666666667]

List comprehensions can have as many generator and filter clauses as you want. The clauses
are considered in left-to-right order so that later clauses may refer to any variables intro-
duced in earlier generator clauses. E.g., here’s how you can generate the list of all pairs
(i,3j) with 1<=i<=j<=5 such that i+j is even:

>[i,j | 1 =1..5; j =1..5; ~(i+j) mod 2];
[(1,1),(1,3),(1,5),(2,2),(2,4),(3,3),(3,5),(4,4),(5,5)]

The left-hand side of a generator clause can be an arbitary pattern, which is useful if you
need to peek at the list elements to see what’s inside. For instance, let’s take the previous
result and check that the sums of the number pairs are in fact all even:

> [i+j | 1,j = ans];
[2!4!6!4!6!6!8!8!10]

Generator clauses involving patterns also act as filters; unmatched elements are filtered out
automatically:

> [i+j | 1,j = ["to be ignored",(1,1),(2,2),311;
[2,4]

List comprehensions can also be nested to an arbitrary depth. For instance, we may rewrite
the “even sums” comprehension from above as follows, in order to group the pairs into
sublists for each value of i:

> [[i,i | j = i..5; ~(i+j) mod 2] | i = 1..5];
[(f(1,1),(1,3),(1,5)1,0(2,2),(2,4)1,0(3,3),(3,5)1,[(4,4)1,[(5,5)]1]

A notorious example is the following recursive algorithm which implements a variation
of Erathosthenes’ classical prime sieve. (This method is actually rather slow and thus not
suitable for computing large primes, but we’re not concerned with that here.)

primes n = sieve (2..n) with

sieve [] =[1;

sieve (p:qs) = p : sieve [gq | g = gs; q mod pl;
end;

Note that the sieve recursively filters out the multiples of the current front element p of the
list, which, by virtue of the construction, is always a prime number. The result is the list of
all primes up to n:

1.5.12 List Comprehensions 107

Pure Language and Library Documentation, Release 0.59

> primes 100;
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]

List comprehensions are also a useful device to organize backtracking searches. For instance,
here’s an algorithm for the n queens problem, which returns the list of all placements of n
queens on an n x n board (encoded as lists of n pairs (i,j) withi = 1..n), so that no two
queens hold each other in check:

search n 1 [] with
[reverse p] if i>n;
cat [search n (i+l) ((i,j):p) | j = 1..n; safe (i,j) pl;
safe (i,j) p ~any (check (i,j)) p;
check (il,jl1) (i2,j2)
= i1==i2 || j1==j2 || il+jl==i2+j2 || il-jl==i2-j2;

queens n
search n i p

end;

1.5.13 Lazy Evaluation and Streams

As already mentioned, lists can also be evaluated in a “lazy” fashion, by just turning the tail
of a list into a future. This special kind of list is also called a stream. Streams enable you to
work with infinite lists (or finite lists which are so huge that you would never want to keep
them in memory in their entirety). E.g., here’s one way to define the infinite stream of all
Fibonacci numbers:

> let fibs = fibs OL 1L with fibs a b = a : fibs b (a+b) & end;
> fibs;
OL:#<thunk 0xb5d54320>

Note the & on the tail of the list in the definition of the local fibs function. This turns the
result of fibs into a stream, which is required to prevent the function from recursing into
samadhi. Also note that we work with bigints in this example because the Fibonacci num-
bers grow quite rapidly, so with machine integers the values would soon start wrapping
around to negative integers.

Streams like these can be worked with in pretty much the same way as with lists. Of course,
care must be taken not to invoke “eager” operations such as # (which computes the size
of a list) on infinite streams, to prevent infinite recursion. However, many list operations
work with infinite streams just fine, and return the appropriate stream results. E.g., the take
function (which retrieves a given number of elements from the front of a list) works with
streams just as well as with “eager” lists:

> take 10 fibs;
OL:#<thunk 0xb5d54350>

Hmm, not much progress there, but that’s just how streams work (or rather they don't,
they’re lazy bums indeed!). Nevertheless, the stream computed with take is in fact finite
and we can readily convert it to an ordinary list, forcing its evaluation:

108 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> list (take 10 fibs);
[e,1L,1L,2L,3L,5L,8L,13L,21L,34L]

An alternative way to achieve this is to cut a “slice” from the stream:

> fibs!!(0..10);
[e,1L,1L,2L,3L,5L,8L,13L,21L,34L,55L]

Note that since we bound the stream to a variable, the already computed prefix of the stream
has been memoized, so that this portion of the stream is now readily available in case we
need to have another look at it later. By these means, possibly costly reevaluations are
avoided, trading memory for execution speed:

> fibs;
OL:1L:1L:2L:3L:5L:8L:13L:21L:34L:55L :#<thunk 0xb5d54590>

The prelude also provides some convenience operations for generating stream values. In-
finite arithmetic sequences are specified using inf or -inf to denote an upper (or lower)
infinite bound for the sequence, e.g.:

> let u=1..inf; let v = -1.0:-1.2..-inf;

> u!!(0..10); v!!(0..10);

[1,2,3,4,5,6,7,8,9,10,11]
[-1.0,-1.2,-1.4,-1.6,-1.8,-2.0,-2.2,-2.4,-2.6,-2.8,-3.0]

Other useful stream generator functions are iterate, which keeps applying the same func-
tion over and over again, repeat, which just repeats its argument forever, and cycle, which
cycles through the elements of the given list:

> iterate (%2) 1!!(0..10);
[1,2,4,8,16,32,64,128,256,512,1024]
> repeat 1!1(0..10);
(1,1,1,1,1,1,1,1,1,1,1]

> cycle [0,1]!!(0..10);
[0,1,0,1,0,1,0,1,0,1,0]

Moreover, list comprehensions can draw values from streams and return the appropriate
stream result:

> let rats = [m,n-m | n=2..inf; m=1..n-1; gcd m (n-m) == 1]; rats;
(1,1) :#<thunk 0xb5d54950>

> rats!!(0..10);
[(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(5,1)1]

We can also rewrite our prime sieve so that it generates the infinite stream of all prime num-
bers:

all_primes = sieve (2..inf) with
sieve (p:qs) = p : sieve [q | 9 = qs; q mod p] &;
end;

Note that we can omit the empty list case of sieve here, since the sieve now never becomes
empty. Example:

1.5.13 Lazy Evaluation and Streams 109

Pure Language and Library Documentation, Release 0.59

> let P = all_primes;

> P!1(0..20);
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73]
> P1299;

1987

You can also just print the entire stream. Note that this sieve algorithm isn’t tail-recursive,
so the following will eventually result in a stack overflow. But this will take a while, so you
may want to hit Ctrl-c when you get bored:

> using system;
> do (printf "%d\n") all_primes;
2

3
5

It’s also possible to convert an ordinary list to a stream:

> stream (1..10);
1:#<thunk 0x7f2692a0f138>

This may seem like a silly thing to do, because the original list is already fully known before-
hand. But this transformation allows us to traverse the list in a lazy fashion, which can be
useful if the list is employed in a list comprehension or processed by functions such as cat
and map. For instance, we can use this to rewrite the fringe function from The Same-Fringe
Problem so that it calculates the fringe in a lazy fashion:

lazyfringe t = if listp t then catmap lazyfringe (stream t) else [t];

Recall that the fringe of a tree is the list of its leaves in left-to-right order. The tree itself
is represented as a nested list, to which lazyfringe applies stream recursively so that the
fringe becomes a stream whose elements are only produced on demand:

> lazyfringe [[a,b]l,c,[[d]l],e,[f,[[g,h]1]11];
a:#<thunk 0x7f127fc1f090>

> list ans;

[a,b,c,d,e,f,qg,h]

Hence a simple syntactic equality check now suffices to solve the same-fringe problem in
an efficient way. For instance, consider the following sample trees from The Same-Fringe
Problem:

let t1
let t2
let t3

[[a,b],c,[[d]],e, [f,[[g,h]]]];
la,b,c,[[d],[],e]l,[f,[g,[h]1]]];
[[a,b],d, [[c]],e, [f,[[9,h]1]]];

Let’s also bind the fringes to some variables so that we can check which parts actually get
evaluated:

let 11
let 12

lazyfringe t1;
lazyfringe t2;

110 1.5 Examples

Pure Language and Library Documentation, Release 0.59

let 13 = lazyfringe t3;

Now comparing 13 and 12 we get:

> 13 === 12; 13; 12;

0

a:b:d:#<thunk 0x7fd308116178>
a:b:c:#<thunk 0x7fd308116060>

As you can see, the two fringes were only constructed as far as needed to decide that they
differ. Of course, if we compare 11 and 12 then the fringes will still be fully constructed
before we find that they’re equal:

> 11 === 12; 11; 12;
1

[a,b,c,d,e,f,qg,h]
[a,b,c,d,e,f,qg,h]

But this doesn’t really matter if we construct the fringes as temporary values, as in:

> fringe tl1 === fringe t2;

Now only the parts of the fringes are in memory which are currently under scrutiny as the
‘===" operator passes over them; the prefixes which have already been found to be equal
can be garbage-collected immediately. Moreover, the ‘===" operator is tail-recursive so that
the entire equality test can be executed in constant stack space. This gives us an easier way
to solve the same-fringe problem which has pretty much the same benefits as our earlier
solution using continuations. The latter might still be considered more elegant, because it
works without actually constructing the fringes at all. But the solution using lazy evaluation
is certainly much simpler.

1.5.14 Matrices and Vectors

Pure has a versatile matrix data structure offering compact storage and efficient random ac-
cess to its members. Pure matrices work pretty much like in MATLAB or Octave, except
that indexes are zero-based and elements are stored in C’s row-major rather than Fortran’s
column-major format. They are also binary-compatible with the GNU Scientific Library
(GSL) so that they can readily be passed to GSL functions for doing numeric calculations.

Pure offers a number of basic matrix operations, such as matrix construction, pattern match-
ing, indexing, slicing, as well as getting the size and dimensions of a matrix. It does not
supply built-in support for matrix arithmetic and other linear algebra algorithms, but it’s
easy to roll your own if desired, as we’ll see below. (Usually this won't offer the same per-
formance as the GSL and other carefully optimized C and Fortran routines, however. So if
you need to do some heavy-duty number crunching then you might want to take a look at
the pure-gsl module available at the Pure website, which is an ongoing project to make the
GSL functions available in Pure.)

Matrices are denoted using curly braces in Pure:

1.5.14 Matrices and Vectors 111

Pure Language and Library Documentation, Release 0.59

> let x = {1,2,3;4,5,6}; Xx;
{1,2,3;4,5,6}

Note that the semicolon is used to separate different rows, while the elements inside each
row are separated with commas. Thus the above denotes a 2x3 matrix (2 rows, 3 columns).
The dim function lets you check the dimensions, while the ‘#’ operator gives the total number
of elements:

> dim x; #x;
2,3

6

There’s no separate data type for vectors; row and column vectors are simply represented as
1 x n and n x 1 matrices, respectively:

> dim {1,2,3}; dim {1;2;3};
1,3
3,1

Singleton and empty matrices can be denoted as follows:

> dim {1}; dim {};
1,1
0,0

The transpose function turns columns into rows and vice versa; in particular, you can also
use this to convert between row and column vectors:

> transpose X;

{1,4;2,5;3,6}

> transpose {1,2,3}; transpose {1;2;3};
{1;2;3}

{1,2,3}

Note that matrices are immutable in Pure, so matrix functions like transpose always return a
new matrix, leaving the original matrix unchanged. (If you need to modify matrices in-place
for efficiency, then you can use the GSL or other C or Fortran functions.)

You can change the dimensions of a matrix with the redim function, provided that the size
stays the same. So, for instance, we can turn the matrix x into a row vector as follows:

> redim (1,6) Xx;
{1,2,3,4,5,6}

Again, this doesn’t change the original matrix, but returns a new matrix with the same con-
tents and the requested dimensions. This operation also allows you to change the dimen-
sions of an empty matrix which, as we’ve seen above, has dimensions 0,0 by default. Of
course, this requires that either the number of rows or columns is still zero. For instance:

> redim (3,0) {};
{

> dim ans;

3,0

112 1.5 Examples

Pure Language and Library Documentation, Release 0.59

Another way to do this is to just construct a zero matrix with zero rows or columns directly,
see below. (Note that these different kinds of empty matrices are needed to represent the
corner cases. E.g., a linear mapping from 3-dimensional vectors to the zero vector space
corresponds to a 0x3 matrix which yields a 3x0 matrix when transposed.)

A number of other specific conversion operations are available, such as rowvector and
colvector which convert a matrix to a row or column vector, respectively, or diag which
extracts the main diagonal of a matrix:

> rowvector Xx;
{1,2,3,4,5,6}
> colvector x;
{1;2;3;4;5;6}
> diag x;

{1,5}

You can also extract the rows and columns of a matrix, which yields a list of the correspond-
ing row and column vectors, respectively:

> rows X; cols Xx;
[{1,2,3},{4,5,6}]
[{1;4},{2;5},{3;6}]

There are a number of other operations which convert between matrices and different kinds
of aggregates; please check the Matrix Functions section in the Pure Library Manual for details.

/II

Element access uses the index operator “!”. You can either specify a pair (i,j) of row and
column indices, or a single index i which treats the entire matrix as a single vector in row-
major order:

> x!(0,2);

3

> x!3;

4

Slicing is done with the “! " operator. The index range can be specified in different ways.
First, a pair of lists of row and column indices cuts a rectangular slice from the matrix:

> x!1(0..1,1..2);
{2,3;5,6}

Second, a pair of a list and a row or column index cuts slices from individual rows or
columns:

> x!1(0,1..2); x!1(0..1,2);
{2,3}
{3;6}

Third, a list of pairs of row and column indices, or a list of element indices gives a row vector

with all the corresponding elements:

> x!1[(0,2),(1,2)];
{3,6}

1.5.14 Matrices and Vectors 113

Pure Language and Library Documentation, Release 0.59

> x!1(2..3);
{3,4}

While most of the slices above are contiguous (a case which the prelude optimizes for), you
can also specify indices in any order, possibly with duplicates. So we may not only cut
submatrix slices, but also permute and/or copy rows and columns of a matrix along the
way:

> x!1([1,0,11,0..2);
{4,5,6;1,2,3;4,5,6}

Matrices can also be constructed from submatrices by arranging the submatrices in rows
or columns. In fact, the curly braces accept any combination of submatrices and scalars,
provided that all dimensions match up:

> {1,{2,3};{4,5},6};
{1,2,3;4,5,6}
> {{1;4},{2,3;5,6}};
{1,2,3;4,5,6}
> {{1;2;3},{4:;5;6}};
{1,4;2,5;3,6}

The end result must be a rectangular matrix, however, otherwise you’ll get an exception
indicating a submatrix whose dimensions don’t match:

> {1,{2,3};{4,5}};
<stdin>, line 24: unhandled exception ’'bad_matrix_value {4,5}’
while evaluating '{1,{2,3};{4,5}}'

This “splicing” of submatrices is especially useful when doing linear algebra, where matrices
are often composed from smaller “block matrices” or vectors; we’ll see an example of this
later. (Sometimes this behaviour also gets in the way, and thus there are ways to disable it;
see Symbolic Matrices below.)

Pure actually provides several different types of numeric matrices, which correspond to
the different GSL matrix types for integer, floating point and complex numbers. (Note that
complex numbers aren’t a built-in data type in Pure, but there are ways to specify this kind
of numbers and perform calculations with them; see the math module for details.) Which
type of matrix is created by the curly braces depends on the element types. Homogeneous
matrices which contain only int, double or complex values yield the corresponding type
of GSL matrix. Matrices can also hold any other type of Pure value or an arbitrary mix of
values, in which case they become symbolic matrices; we’ll discuss these later.

The functions imatrix, dmatrix and cmatrix can be used to convert between the different
kinds of numeric matrices. For instance:

> dmatrix {1,2,3;4,
{1.0,2.0,3.0;4.0,5
> imatrix ans;
{1,2,3;4,5,6}
> cmatrix ans;

5,6};
,5.0,6.0}

114 1.5 Examples

Pure Language and Library Documentation, Release 0.59

{1.0+:0.0,2.0+:0.0,3.0+:0.0;4.0+:0.0,5.0+:0.0,6.0+:0.0}
> dmatrix ans;
{1.0,0.0,2.0,0.0,3.0,0.0;4.0,0.0,5.0,0.0,6.0,0.0}

(Note that the latter conversion turns a complex into a double matrix, interleaving the real
and imaginary parts of the original matrix.)

The same functions can also be used to construct zero matrices with given dimensions:

> imatrix (2,3);
{0,0,0;0,0,0}

> dmatrix (2,2);
{0.0,0.0;0.0,0.0}
> cmatrix (1,1);
{0.0+:0.0}

As already mentioned, this also gives you a direct way to create empty matrices with differ-
ent dimensions. For instance:

> imatrix (0,3); dim ans;

{}
0,3

The prelude offers matrix versions of the common list operations like map, foldl, zip etc.,
which provide a way to implement common matrix operations. E.g., multiplying a matrix x
with a scalar a amounts to mapping the function (a*) to x, which can be done as follows:

> type scalar x = ~matrixp x;

> a::scalar *x x::matrix = map (ax) Xx;
> 2x{1,2,3;4,5,6};

{2,4,6;8,10,12}

Note that the matrix type tag or the matrixp predicate can be used to restrict a variable
to matrix values. (The prelude provides a few other types and corresponding predicates
for various specific kinds of matrices, see the Pure Library Manual for details.) In addition,
we also introduced a convenience type scalar for non-matrix values here, so that we can
distinguish scalar from matrix multiplication which will be discussed below.

Matrix addition and other element-wise operations can be realized using zipwith, which
combines corresponding elements of two matrices using a given binary function:

> x::matrix + y::matrix = zipwith (+) x y if dim x == dim y;
> {1,2,3;4,5,6}+{1,2,1;3,2,3};
{2,4,4;7,7,9}

Another way to define matrix functions in Pure is to employ a matrix pattern. The Pure
language has built-in support for these, so that they work like the other kinds of patterns
we’ve already encountered. For instance, to compute the dot product of two 2D vectors, you
may write something like:

> {x1,y1}*x{x2,y2} = x1xx2+ylxy2;
> {2,3}*{1,4};

1.5.14 Matrices and Vectors 115

Pure Language and Library Documentation, Release 0.59

14

Or, to compute the determinant of a 2x2 matrix:

> det {a,b;c,d} = axd-bxc;
> det {1,2;3,4};
-2

These patterns are convenient if the dimensions of the involved matrices are small and
known beforehand. If this isn’t the case then it’s better to use matrix comprehensions in-
stead, which work with arbitrary dimensions and make it easy to express many simple kinds
of algorithms which would typically be done using for loops in conventional programming
languages.

Matrix comprehensions work pretty much like list comprehensions, but with a special twist:
if values are drawn from lists then the generator clauses alternate between row and column
generation. (More precisely, the last generator, which varies most quickly, yields a row, the
next-to-last one a column of these row vectors, and so on.) This makes matrix comprehen-
sions resemble customary mathematical notation very closely. For instance, here is how we
can define an operation to create a square identity matrix of a given dimension (note that the
i==j term is just a Pure idiom for the Kronecker symbol):

>eyen={i==j | 1 =1..n; j = 1..n};
> eye 3;
{1,0,0;0,1,0;0,0,1}

Of course, matrix comprehensions can also draw values from other matrices instead of lists.
In this case the block layout of the component matrices is preserved. For instance:

> {x,y | x ={1,2}; y = {a,b;c,d}};
{(1,a),(1,b),(2,a),(2,b);(1,c),(1,d),(2,c),(2,d)}

Note that a matrix comprehension involving filters may fail because the filtered re-
sult isn’t a rectangular matrix any more. E.g., {2*x|x={1,2,3,-4};x>0} works, as does
{2xx|x={-1,2;3,-4}; x>0}, but {2*x|x={1,2;3,-4};x>0} doesn’t because the rows of the
result matrix have different lengths.

As a slightly more comprehensive example (no pun intended!), here is a definition of matrix
multiplication in Pure:

x::matrix * y::matrix = {dot u v | u = rows x; v = cols y} with
dot u v = foldl (+) 0 $ zipwith (*) u (rowvector v);
end if m==n when _,m = dim x; n,_ = dim y end;

The basic building block in this example is the dot product of two vectors, which is defined
as a local function. The matrix product is obtained by simply calculating the dot product of
all the rows of x with all the columns of y. To make this work, the rows of x should be the
same length as the columns of y, we check this condition in the guard of the rule. Let’s give
ita try:

116 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> {1,0;0,1}«{1,2;3,4};
{1,2;3,4}

> {0,1;1,0}x{1,2;3,4};
{3,4;1,2}

> {0,1;1,0;1,1}*{1,2,3;4,5,6};
{4,5,6;1,2,3;5,7,9}

> {1,2;3,4}*{1;1};

{3;7}

Well, that was easy. So let’s take a look at a more challenging example, Gaussian elimination,
which can be used to solve systems of linear equations. The algorithm brings a matrix into
“row echelon” form, a generalization of triangular matrices. The resulting system can then
be solved quite easily using back substitution.

Here is a Pure implementation of the algorithm. Note that the real meat is in the pivoting
and elimination step (step function) which is iterated over all columns of the input matrix.
In each step, x is the current matrix, i the current row index, j the current column index, and
p keeps track of the current permutation of the row indices performed during pivoting. The
algorithm returns the updated matrix x, row index i and row permutation p.

gauss_elimination x::matrix = p,x
when n,m = dim x; p,_,x = foldl step (0..n-1,0,x) (0..m-1) end;

// One pivoting and elimination step in column j of the matrix:
step (p,1i,x) j
= if max_x==0 then p,i,x
else
// updated row permutation and index:
transp i max_i p, i+1,
{// the top rows of the matrix remain unchanged:
x!'1(0..1i-1,0..m-1);
// the pivot row, divided by the pivot element:
{x!(i,1)/x!(1,]) | 1=0..m-1};
// subtract suitable multiples of the pivot row:
{x!(k, 1) -x"(k,j)*x!(i,1)/x!(i,j) | k=i+l..n-1; 1=0..m-1}}
when
n,m = dim x; max_i, max_x = pivot i (col x j);
x = if max_x>0 then swap x i max_i else x;

end with
pivot i x = foldl max (0,0) [j,abs (x!j)|j=1..#x-1];
max (i,x) (j,y) = if x<y then j,y else i, x;

end;

Please refer to any good textbook on numerical mathematics for a closer description of the
algorithm. But here is a brief rundown of what happens in each elimination step: First we
find the pivot element in column j of the matrix. (We're doing partial pivoting here, i.e.,
we only look for the element with the largest absolute value in column j, starting at row i.
That’s usually good enough to achieve numerical stability.) If the pivot is zero then we're
done (the rest of the pivot column is already zeroed out). Otherwise, we bring it into the
pivot position (swapping row i and the pivot row), divide the pivot row by the pivot, and
subtract suitable multiples of the pivot row to eliminate the elements of the pivot column in

1.5.14 Matrices and Vectors 117

Pure Language and Library Documentation, Release 0.59

all subsequent rows. Finally we update i and p accordingly and return the result.

In order to complete the implementation, we still need the following little helper functions
to swap two rows of a matrix (this is used in the pivoting step) and to apply a transposition
to a permutation (represented as a list):

swap X 1 j = x!!(transp i j (0..n-1),0..m-1) when n,m = dim X end;
transp 1 j p = [p!'tr k | k=0..#p-1]
with tr k = if k==i then j else if k==j then i else k end;

Finally, let us define a convenient print representation of double matrices a la Octave (the
meaning of the __show__ function is explained in Pretty-Printing):

using systenm;

__show__ x::matrix

= strcat [printd j (x!(i,j))]|i=0..n-1; j=0..m-1] + "\n"

with printd @ = sprintf "\n%10.5f"; printd _ = sprintf "%10.5f" end
when n,m = dim x end if dmatrixp x;

Example:

> let x = dmatrix {2,1,-1,8; -3,-1,2,-11; -2,1,2,-3};
> X; gauss_elimination x;

2.00000 1.00000 -1.00000 8.00000

-3.00000 -1.00000 2.00000 -11.00000

-2.00000 1.00000 2.00000 -3.00000

[1’2’0]1
1.00000 0.33333 -0.66667 3.66667
0.00000 1.00000 ©0.40000 2.60000

0.00000 0.00000 1.00000 -1.00000

1.5.15 Symbolic Matrices

As already mentioned, matrices may contain not just numbers but any kind of Pure values,
in which case they become symbolic matrices. For instance:

> {1,2.0,3L;a,b,c};
{1,2.0,3L;a,b,c}

The smatrixp predicate gives you a quick way to check whether a matrix is a symbolic one:

> smatrixp ans;
1

Note that this may not always be obvious. For instance, you can use the smatrix function to
explicitly convert a numeric matrix:

> smatrix {1,2;3,4};
{1,2;3,4}

This still looks the same as the original matrix, but smatrixp reveals that it’s in fact a sym-
bolic matrix:

118 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> smatrixp ans;
1

Also note that the empty matrix is by default a symbolic matrix, as are matrices containing
bigints:

> smatrixp {};

1

> smatrixp {1L,2L;3L,4L};
1

However, you can easily convert these to a numeric type if needed, e.g.:

> dmatrix {1L,2L;3L,4L};
{1.0,2.0;3.0,4.0}

Symbolic matrices are a convenient data structure for storing arbitrary collections of values
which provides fast random access to its members. In particular, they can also be nested,
and thus multidimensional tensors or arrays of arbitrary dimension can be realized as nested
symbolic vectors. However, you have to be careful when constructing such values, because
the {. ..} construct normally combines submatrices to larger matrices. For instance:

> {{1,2},{3,4}};
{1,2,3,4}

One way to inhibit this splicing of the submatrices in a larger matrix is to use the quote
operator (cf. The Quote):

> "{{1,2},{3,4}};
{{1,2},4{3,4}}

Note that this result is really different from {1,2;3,4}. The latter is a 2x2 integer matrix,
while the former is a symbolic vector a.k.a. 1x2 matrix whose elements happen to be two
integer vectors. So a double index will be required to access the subvector elements:

> ans!0!1;
2

You can also match these values with a nested matrix pattern, e.g.:

let {{a,b},{c,d}} = "{{1,2},{3,4}};
a c,d;
2 4

= VvV Vv

Ibl
2,3

12

Unfortunately, the quote operator in fact inhibits evaluation of all embedded subterms which
may be undesirable if the matrix expression contains arithmetic (as in ' {{1+1,2%3}}), so this
method works best for constant matrices. A more general way to create a symbolic vector
of matrices is provided by the vector function from the prelude, which is applied to a list of
the vector elements as follows:

> vector [{1,2},{3,4}];
{{1,2},{3,4}}

1.5.15 Symbolic Matrices 119

Pure Language and Library Documentation, Release 0.59

Calls to the vector function can be nested to an arbitrary depth to obtain higher-dimensional
“arrays”:

> vector [vector [{1,2}],vector [{3,4}1];
{{{1,2}},{{3,4}}}

This obviously becomes a bit unwieldy for higher dimensions, but Pure 0.56 and later pro-
vide the following shorthand notation:

> {[{1,2},{3,4}|};
{{1,2},{3,4}}

> {[{I1{1,2}]},{1{3,4}|}I};
{{{1,2}},{{3,4}}}

This makes it much more convenient to denote nested vector values. Note that the {| |}
construct doesn’t use any special magic, it’s just a standard outfix operator implemented as
a Pure macro. For more details please check the description of the non-splicing vector brackets
in the Pure Library Manual.

1.5.16 Record Data

Symbolic matrices also provide a means to represent simple record-like data, by encoding
records as symbolic vectors consisting of “hash pairs” of the form key => value. This kind
of data structure is very convenient to represent aggregates with lots of different compo-
nents. Since the components of records can be accessed by indexing with key values, you
don’t have to remember which components are stored in which order, just knowing the keys
of the required members is enough. In contrast, tuples, lists and other kinds of constructor
terms quickly become unwieldy for such purposes.

The keys used for indexing the record data must be either symbols or strings, while the
corresponding values may be arbitrary Pure values. The prelude provides some operations
on these special kinds of matrices, which let you retrieve vector elements by indexing and
perform non-destructive updates, see the Record Functions section in the Pure Library Manual
for details. Here are a few examples which illustrate how to create records and work with
them:

> let r = {x=>5, y=>12};
> recordp r, member r x;
1,1

> rly; rll[y,x];

12

{12,5}

> insert r (x=>99);
{x=>99,y=>12}

> insert ans (z=>77);
{x=>99,y=>12,z=>77}

> delete ans z;
{x=>99,y=>12}

Records can also be nested:

120 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> let r = {a => {b=>1,c=>2}, b => 2};
> rla, rlb, rlalb;
{b=>1,c=>2},2,1

Note the use of the “hash rocket” => which denotes the key=>value associations in a record.
The hash rocket is a constructor declared as an infix operator in the prelude, see the Hash
Pairs section in the Pure Library Manual for details. There’s one caveat here, however. Since
neither ‘=>" nor ! treat their key operand in a special way, you'll have to take care that the
key symbols do not evaluate to something else, as might be the case if they are bound to a
global or local variable or parameterless function:

> let u = 99;
> {u=>u};
{99=>99}

In the case of global variables and function symbols, you might protect the symbol with a
quote (see The Quote):

> {"u=>u};
{u=>99}

> ans!'u;
99

However, even the quote doesn’t save you from local variable substitution:

> {'u=>u} when u = 99 end;
{99=>99}

In such cases you'll either have to rename the local variable, or use the prelude function val
to quote the symbol:

> {'u=>v} when v = 99 end;
{u=>99}

> {val "u"=>u} when u = 99 end;
{u=>99}

It’s also possible to directly use strings as keys instead, which may actually be more conve-
nient in some cases:

> let r = {"x"=>5, "y"=>12};
> keys r; vals r;

{"x","y"}

{5,12}

> update r "y" (r!'"y"+1);
{"x"=>5,"y"=>13}

You can also mix strings and symbols as keys in the same record (but note that strings and
symbols are always distinct, so y and "y" are really two different keys here):

> insert r (y=>99);
'{“X"=>5, ||y||=>12’ y=>99}

1.5.16 Record Data 121

Pure Language and Library Documentation, Release 0.59

As records are in fact just special kinds of matrices, the standard matrix operations can be
used on record values as well. For instance, the matrix constructor provides an alternative
way to quickly augment a record with a collection of new key=>value associations:

> let r = {x=>5, y=>12};

> let r = {r, x=>7, z=>3}; r;
{x=>5,y=>12,x=>7,z=>3}

> rix, rlz;

7,3

> delete r x;
{x=>5,y=>12,z=>3}

> ans!x;

5

As the example shows, this may produce duplicate keys, but these are handled gracefully;
indexing and updates will always work with the last association for a given key in the record.
If necessary, you can remove duplicate entries from a record as follows; this will only keep
the last association for each key:

> record r;
{x=>7,y=>12,z=>3}

In fact, the record operation not only removes duplicates, but also orders the record entries
by keys. This produces a kind of normalized representation which is useful if you want to
compare or combine two record values irrespective of the ordering of the fields. For instance:

> record {x=>5, y=>12} === record {y=>12, x=>5};
1

The record function can also be used to construct a normalized record directly from a list or
tuple of hash pairs:

> record [x=>5, x=>7, y=>12];
{x=>7,y=>12}

Other matrix operations such as map, foldl, etc., and matrix comprehensions can be ap-
plied to records just as easily. This enables you to perform bulk updates of record data in
a straightforward way. For instance, here’s how you can define a function maprec which
applies a function to all values stored in a record:

> maprec f = map (\(u=>v) -> u=>f v);
> maprec (*2) {x=>5,y=>12};
{x=>10,y=>24}

Another example: The following ziprec function collects pairs of values stored under com-
mon keys in two records (we also normalize the result here so that duplicate keys are always
removed):

> ziprec x y = record {u=>(x'u,y'u) | u = keys x; member y u};
> ziprec {a=>3,x=>5,y=>12} {x=>10,y=>24,z=>7};
{x=>(5,10),y=>(12,24)}

122 1.5 Examples

Pure Language and Library Documentation, Release 0.59

Thus the full power of generic matrix operations is available for records, which turns them
into a much more versatile data structure than records in conventional programming lan-
guages, which are usually limited to constructing records and accessing or modifying their
components.

Note that since the values stored in records can be arbitrary Pure values, you can also have
records with mutable components by making use of Pure’s expression references. For instance:

> let r = {x=>ref 1,y=>ref 2}; maprec get r;

{x=>1,y=>2}

> put (r!x) 99; maprec get r;
99

{x=>99,y=>2}

Another interesting application of records are the “virtual method tables” used in object-
oriented programming. Pure has a built-in __locals__ macro which captures the environ-
ment of local functions at the point of the call and returns it as a list of hash pairs of function
symbols and the corresponding closures. We can readily convert this into a record data
structure which can be used as a virtual method table. For instance:

> record __locals__ with f x = x+1 end;
{f=>f}

> (ans!f) 99;

100

Here is a little helper macro that we can use to turn the virtual method table into an anony-
mous function which, when applied to a symbol, returns the appropriate closure:

def obj = (\x -> vt!x) when
vt = record __locals__;
end;

Continuing our example from Local Functions and Variables, we can now implement the
point object as follows:

point (x,y) obj with

coords () = get x,get y;

move (dx,dy) = put x (get x+dx), put y (get y+dy);
end when

x,y = ref x,ref y;
end;

Note that obj really needs to be implemented as a macro so that its body is inserted into
the point function and the _locals__ call is executed in the context of the local function
environment there. (A macro is like a function which gets evaluated at compile time; see the
Macros section for details.) Also note that we changed the coords “method” so that it takes a
dummy parameter () now; this prevents premature evaluation of the closure. If coords was
a parameterless function then its value would be fixed at the time we construct the virtual
method table, which is not what we want here.

Now we can write:

1.5.16 Record Data 123

Pure Language and Library Documentation, Release 0.59

et p = point (1,2);
coords ();

1

p

2

p move (2,3);
5

p coords ();
5

This provides us with an interesting way to represent stateful objects which works very
much like object-oriented programming. What’s still missing here is the inheritance of meth-
ods from other objects, but this can now be done by just combining virtual method tables
using the record operations we’ve already discussed above; we leave this as an exercise for
the interested reader.

1.5.17 The Quote

We’ve already seen some uses of the quote in previous examples, so let’s have a closer look
at it now. As described in Special Forms, the quote operation quotes an expression, so that
it can be passed around and manipulated freely until its value is needed, in which case you
can pass it to the eval function to obtain its value. For instance:

> let x = '(2%42427°12); X;
2%42+42712

> eval x;

4180.0

Lisp programmers will be well familiar with this operation which enables some powerful
metaprogramming techniques. However, there are some notable differences to Lisp’s quote.
In particular, quote only inhibits the evaluation of global variables, local variables are substi-
tuted as usual:

> (\x -> "(2*x+1)) 99;

2%99+1

> foo x = "(2%x+1);

> foo 99; foo $ '(7/y);

2x99+1

2x(7/y)+1

> '(x+1) when x = ’'(2x3) end;
2x3+1

> '(2%42+2”n) when n = 12 end;
2%42+27°12

Local parameterless functions are treated in the same fashion:

> '(2%42+2”n) with n = 12 end;
2x42+2712

Note that, in contrast, for global variables (and functions) we have:

124 1.5 Examples

Pure Language and Library Documentation, Release 0.59

> let n = 12;
> " (2%42+27™n);
2%42+427n

This discrepancy may come as a surprise (or even annoyance) to real Lisp weenies, but it
does have its advantages. As illustrated in the examples above, local variable substitution
makes it easy to fill in the variable parts in a quoted “template” expression, without any
need for an arguably complex tool like Lisp’s “quasiquote”. (But note that it is quite easy to
define the quasiquote in Pure if you want it. See the Recursive Macros section for a simplified

version; a full implementation can be found in the Pure library.)

If you do need to quote a symbol which is already being used as a local variable or function
in the current context, you can do this by supplying the symbol as a string to the prelude
function val:

> val "x"+x when x = 99 end;
X+99

Also note that while local functions are always substituted in a quoted expression, applica-
tions involving local functions can still be quoted:

> 'foo 99 with foo x = 2xx+1 end;
foo 99

> eval ans;

199

The quote also inhibits evaluation inside matrix expressions, including the “splicing” of em-
bedded submatrices:

> '{1,2+3,2%3};
{1,2+3,2%3}
> '{1,{2,3},4};
{1,{2,3},4}

Special expressions (conditionals, lambda and the case, when and with constructs) can be
quoted as well. But since these constructs cannot be directly represented at runtime, the
quote actually produces some ordinary “placeholder” terms for these:

> '"(x+1 when x = '(2%3) end);
x+1 __when__ [x-->"(2%x3)]

> eval ans;

2%3+1

> "(2%42+(f 6 with f n = 2°(2*n) end));
2+%42+(f 6 __with__ [f n-->2"(2%n)])

> eval ans;

4180.0

Note that these placeholders are in fact special built-in macros which reconstruct the special
expression when evaluated. Moreover, special expressions are implicitly quoted when they
occur on the left-hand side of an equation or as an argument of a “quoteargs” macro call.
This is often used to implement macros which manipulate these constructs as literals. For
instance, the following macro swaps the arguments in a lambda:

1.5.17 The Quote 125

Pure Language and Library Documentation, Release 0.59

> #! --quoteargs bar

> def bar (\x y ->z) = __eval__ ('"(\y x -> 2));

> show bar

def bar (__lambda__ [x,y] z) = __eval__ ('__lambda__ [y,x] z);

> baz = bar (\a b -> a-b);
> show baz

baz = \b a -> a-b;

> baz 2 3;

1

The Macros section explains in detail how this meta programming works.

1.6 Declarations

Pure is a very terse language by design. Usually you don’t declare much stuff, you just
define it and be done with it. However, there are a few constructs which let you declare
symbols with special attributes and manage programs consisting of several source modules:

¢ symbol declarations determine “scope” and “fixity” of a symbol;
* interface declarations specify abstract data types;

¢ extern declarations specify external C functions;

* using clauses let you include other scripts in a Pure script;

* namespace declarations let you avoid name clashes and thereby make it easier to man-
age large programs consisting of many separate modules.

These are toplevel elements (cf. Toplevel):

item = symbol_decl | interface_decl | extern_decl
| using_decl | namespace_decl

We defer the discussion of extern declarations to the C Interface section. The other kinds of
declarations are described in the following subsections.

1.6.1 Symbol Declarations

Symbol declarations declare special attributes of a symbol, such as their scope (whether
they are “public” or “private”) and their fixity (for operator symbols). The syntax of these
declarations is as follows:

126 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

symbol_decl

n,.n
’

scope qualified_symbol+
| [scope] fixity qualified_symbol+

n.n

scope u= “public” | “private”
fixity = “nonfix” | “outfix”

| (“infix”|"infix1”|"infixr"”|"prefix”|"”postfix”) precedence
precedence = integer | “(” op ")"

Scope declarations take the following form:

public symbol ...;
private symbol ...;

This declares the listed symbols as public or private, respectively. Each symbol must either
be an identifier or a sequence of punctuation characters. The latter kind of symbols must
always be declared before use, whereas ordinary identifiers can be used without a prior
declaration in which case they are declared implicitly and default to public scope, meaning
that they are visible everywhere in a program. An explicit public declaration of ordinary
identifiers is thus rarely needed (unless you want to declare symbols as members of a specific
namespace, see Namespaces below). Symbols can also be declared private, meaning that the
symbol is visible only in the namespace it belongs to. This is explained in more detail under
Private Symbols in the Namespaces section below.

Note: The declared symbols may optionally be qualified with a namespace prefix, but
since new symbols can only be created in the current namespace, the namespace prefix
must match the current namespace (see Namespaces). Thus the namespace prefix isn’t really
needed, unless you want to declare a symbol which happens to be a reserved Pure keyword
(cf. Lexical Matters). In this specific case, it will be necessary to use a qualified name so that
the symbol isn’t mistaken for a keyword.

Note that to declare several symbols in a single declaration, you can list them all with white-
space in between. The same syntax applies to the other types of symbol declarations dis-
cussed below. (Commas are not allowed as delimiters here, as they may occur as legal sym-
bol constituents in the list of symbols.) The public and private keywords can also be used
as a prefix in any of the special symbol declarations discussed below, to specify the scope of
the declared symbols (if the scope prefix is omitted, it defaults to public).

The following “fixity” declarations are available for introducing special operator symbols.
This changes the way that these symbols are parsed and thus provides you with a limited
means to extend the Pure language at the lexical and syntactical level.

infix level symbol ...;

infix1l level symbol ...;
infixr level symbol ...;
prefix level symbol ...;

postfix level symbol ...;

Pure provides you with a theoretically unlimited number of different precedence levels for
user-defined infix, prefix and postfix operators. Precedence levels are numbered starting at

1.6.1 Symbol Declarations 127

Pure Language and Library Documentation, Release 0.59

0; larger numbers indicate higher precedence. (For practical reasons, the current implemen-
tation does require that precedence numbers can be encoded as 24 bit unsigned machine
integers, giving you a range from 0 to 16777215, but this should be large enough to incur no
real limitations on applications. Also, the operator declarations in the prelude have been set
up to leave enough “space” between the “standard” levels so that you can easily sneak in
new operator symbols at low, high or intermediate precedences.)

On each precedence level, you can declare (in order of increasing precedence) infix (binary
non-associative), infix1 (binary left-associative), infixr (binary right-associative), prefix
(unary prefix) and postfix (unary postfix) operators. For instance, here is a typical excerpt
from the prelude (the full table can be found in the Prelude section of the Pure Library Manual):

infix 1800
infix1l 2200 ;

infixl 2300 * / div mod ;
infixr 2500 ;

prefix 2600

><=>===~=;

> ¥ + A

H*

Note: Unary minus plays a special role in the syntax. Like in Haskell and following math-
ematical tradition, unary minus is the only prefix operator symbol which is also used as an
infix operator, and is always on the same precedence level as binary minus, whose prece-
dence may be chosen freely in the prelude. (The minus operator is the only symbol which
gets that special treatment; all other operators must have distinct lexical representations.)
Thus, with the standard prelude, -x+y will be parsed as (-x)+y, whereas -xx*y is the same
as - (xxy). Also note that the notation (-) always denotes the binary minus operator; the
unary minus operation can be denoted using the built-in neg function.

Instead of denoting the precedence by an explicit integer value, you can also specify an
existing operator symbol enclosed in parentheses. Thus the following declaration gives the
++ operator the same precedence as +:

infixl (+) ++ ;
The given symbol may be of a different fixity than the declaration, but it must have a proper
precedence level (i.e., it must be an infix, prefix or postfix symbol). E.g., the following dec-

laration gives " the same precedence level as the infix ~ symbol, but turns it into a postfix
operator:

postfix (~) ~ ;

Pure also provides unary outfix operators, which work like in Wm Leler’s constraint pro-
gramming language Bertrand. These can be declared as follows:

outfix left right ...;

Outfix operators let you define your own bracket structures. The operators must be given as
pairs of matching left and right symbols (which must be distinct). For instance:

128 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

outfix |: :| BEGIN END;

After this declaration you can write bracketed expressions like |:x:| or BEGIN foo, bar
END. These are always at the highest precedence level (i.e., syntactically they work like paren-
thesized expressions). Just like other operators, you can turn outfix symbols into ordinary
functions by enclosing them in parentheses, but you have to specify the symbols in matching
pairs, such as (BEGIN END).

Pure also has a notation for “nullary” operators, that is, “operators without operands”.
These are used to denote special literals which simply stand for themselves. They are in-
troduced using a nonfix declaration:

nonfix symbol ...;
For instance:

nonfix red green blue;

Semantically, nonfix symbols are a kind of “symbolic constants”. However, it is important
to note the difference to defined constants, which are symbols bound to a constant value by
means of a const definition. In fact, there are some use cases where a symbol may be both
a defined constant and a nonfix symbol, see Constant Definitions in the Caveats and Notes
section for details.

Syntactically, nonfix symbols work just like ordinary identifiers, so they may stand
whereever an identifier is allowed (no parentheses are required to “escape” them). How-
ever, just like other kinds of operators, they may also consist of punctuation (which isn’t
allowed in ordinary identifiers). The other difference to ordinary identifiers is that nonfix
symbols are always interpreted as literals, even if they occur in a variable position on the
left-hand side of a rule. So, with the above declaration, you can write something like:

> foo x = case x of red = green; green = blue; blue = red end;
> map foo [red,green,bluel;
[green,blue, red]

Thus nonfix symbols are pretty much like nullary constructor symbols in languages like
Haskell. Non-fixity is just a syntactic attribute, however. Pure doesn’t enforce that such
values are irreducible, so you can still write a “constructor equation” like the following:

> red = blue;
> map foo [red,green,bluel;
[blue,blue,blue]

Examples for all types of symbol declarations can be found in the prelude which declares a
bunch of standard (arithmetic, relational, logical) operator symbols as well as the list and
pair constructors “:“ and ‘,’, and a few nonfix symbols (true and false, as well as different
kinds of exceptions).

1.6.1 Symbol Declarations 129

Pure Language and Library Documentation, Release 0.59

1.6.2 Interface Types

Besides the “concrete” types already described in the Type Rules section, Pure provides an-
other, more abstract way to characterize a type through the collection of operations it sup-
ports. These interface types work pretty much like in Google’s Go programming language.
They provide a safe form of Duck typing in which the operations available on a type are
stated explicitly, and hence members of the type are always known to provide all of the
listed operations.

An interface declaration gives the type name along with a collection of patterns, the so-called
signature which specifies the manifest operations of the type:

interface_decl “interface” qualified_identifier
q
“with” interface_itemx “end” ";”
pattern ";"
n n

| “interface” qualified_identifier ”;

interface_item

Interfaces thus consist of two kinds of items:

¢ The patterns, which indicate which operations are supported by the type, and which
arguments they expect. This may be anything that can occur as the left-hand side of an
ordinary function definition, cf. General Rules.

¢ The name of another interface type. This causes the signature of the named interface
type to be included in the interface type being defined, which effectively turns the new
interface type into a subtype of the existing one.

The gist of an interface is in its patterns, more precisely: in the pattern variables which have
the name of the interface as a type tag. The precise meaning of the patterns is as follows:

¢ The patterns are matched against the left-hand sides of ordinary function definitions. If
a left-hand side matches, any argument pattern substituted for a variable tagged with
the interface type becomes a “candidate pattern” of the type.

* The type consists of all candidate patterns which can be matched by some candidate
pattern of each interface function. That is, candidate patterns which are only supported
by some but not all of the interface functions, are eliminated.

¢ Finally, all trivial candidate patterns (x where x is just a variable without any type tag,
which thus matches any value) are eliminated as well.

Interface patterns often take a simple form like the following,

interface foo with foo x::foo y z; end;

specifying the number of arguments of the interface function along with the position of the
interface type argument. However, general patterns are permitted, in order to further restrict
the left-hand sides of the function definitions to be taken into consideration. Specifically, note
that type tags other than the interface type must always be matched literally on the left-hand
sides of equations. Thus,

130 1.6 Declarations

http://en.wikipedia.org/wiki/Duck_typing

Pure Language and Library Documentation, Release 0.59

interface foo with foo x::foo y::int; end;
matches any rule of the form
foo x y::int = ...;

but not:

foo x 0 = ...;
foo x y::bar v

(unless bar happens to be an alias of the int type, of course). In such cases it is necessary to
explicitly add these patterns to the interface if you want them to be included.

Interface patterns may contain the interface type tag any number of times, yielding candi-
date patterns for each occurrence of the interface type tag in the pattern. For instance, here
is a quick way to determine the type of all “addable” data structures in the prelude (this
uses the interactive show interface command to list the patterns actually matched by an
interface type, cf. The show Command):

> interface addable with x::addable + y::addable; end;
> show interface addable

type addable x::int;

type addable x::double;

type addable x::bigint;

type addable s::string;

type addable [];

type addable xs@(_:_);

On the other hand, interfaces may also contain “static” patterns which do not include the
interface type as a tag at all, such as:

interface foo with bar x::bar y; end;

These do not contribute anything to the candidate patterns of the type, but do restrict the
type just like the other patterns, in that the type will be empty unless the static patterns are
all “implemented”. In the example above, this means that the foo type will be empty unless
the bar function is defined and takes an element of the bar type as its first argument.

An interface may also be empty, in which case it matches any value. Thus,

interface any with end;

is just a fancy way to define the type:

type any _;

Interfaces can be composed in a piecemeal fashion, by adding more interface patterns. Thus,

interface foo with foo x::foo; end;
interface foo with bar x::foo; end;

is equivalent to:

1.6.2 Interface Types 131

Pure Language and Library Documentation, Release 0.59

interface foo with foo x::foo; bar x::foo; end;

It is also possible to include one interface in another, which effectively establishes a subtype
relationship. For instance, here’s yet another way to define the foo interface above:

interface bar with
bar x::bar;
end;

interface foo with

foo x::foo;
interface bar;
end;

This has the effect of including the signature of bar in foo (while renaming the interface type
tags in the bar signature accordingly):

> show foo
interface foo with
foo x::foo;
bar x::foo;
end;

Note: Including interfaces is a static operation. Only the interface patterns known at the
point of inclusion become part of the including interface; refining the included interface later
has no effect on the set of included patterns. In particular, this also prevents circular interface
definitions.

When composing interfaces in this fashion, it is easy to end up with duplicate interface
patterns from various sources. The compiler removes such duplicates, even if they only
match up to the renaming of variables. For instance:

> show bar foo
interface bar with

bar x::bar;

end;

interface foo with
foo x::foo;
bar x::foo;

end;

> interface baz with
> interface foo; interface bar;
> foo y::baz;
>
>

end;
show baz
interface baz with
foo x::baz;
bar x::baz;
end;

Also note that, despite the obvious similarities between interfaces and classes in object-

132 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

oriented programming, they are really different things. The former are essentially just signa-
tures of functions living elsewhere, whereas the latter also include data layouts and method
implementations. More on the similarities and differences of interfaces and classes can be
found in the Go FAQ.

Let’s now take a look at the example of a stack data structure to see how this all works in
practice:

interface stack with
push s::stack x;

pop s::stack;
top s::stack;
end;

Note the use of the type tag stack in the operation patterns, which marks the positions of
stack arguments of the interface operations. The interface tells us that a stack provides three
operations push, pop and top which each take a stack as their first argument; also, push takes
two arguments, while pop and top just take a single (stack) argument.

This information is all that the compiler needs to figure out which terms are members of the
stack data type. To these ends, the compiler looks at existing definitions of push, pop and
top and extracts the patterns for arguments marked with the stack tag in the interface. The
stack patterns implemented by all of the interface operations make up the stack type; i.e.,
the members of the type are all the instances of these patterns.

Right now our stack type doesn’t have any members, because we didn’t implement the
interface operations yet, so let’s do this now. For instance, to implement stacks as lists, we
might define:

push xs@[] x | push xs@(_:_) X = X:Xs;
pop (x:xs) XS;
top (x:xs) X;

This is also known as “instantiating” the type. In addition, we will need an operation to
create an initial stack value. The following will do for our purposes:

stack xs::list = xs;

This yields a stack with the given initial contents. Let’s give it a go:

> top (push (stack []) 99);
99

Looks good so far. We can also check the actual definition of the type in terms of its type
rules using the show interface command:

> show interface stack
type stack xs@(_:_);

Wait, something seems to be wrong there. The empty list pattern of the push function is
missing, where did it go? Let’s restart the interpreter with warnings enabled (-w) and retype
the above definitions. The compiler then tells us:

1.6.2 Interface Types 133

http://golang.org/doc/go_faq.html#types

Pure Language and Library Documentation, Release 0.59

> show interface stack

warning: interface ’'stack’ may be incomplete

warning: function ’'pop’ might lack a rule for ’'xs@[]’
warning: function ’top’ might lack a rule for ’'xs@[]’
type stack xs@(_:_);

See? A pattern is only considered part of the type if it is supported by all the interface
operations. Since the pop and top operations don’t have any rules for empty list arguments,
empty lists are excluded from the type. We can fix this quite easily by adding the following
“error rules” which handle this case:

> pop [] = throw "empty stack";
> top [] = throw "empty stack";
> show interface stack

type stack xs@[];

type stack xs@(_:_);

This looks fine now, so let’s see how we can put our new stack data structure to good use.
Operations on the type are defined as usual, employing stack as a type tag for stack argu-
ments so that we can be sure that the push, pop and top operations are all supported. For
instance, let’s implement a little RPN (“Reverse Polish Notation”) calculator:

rpn xs::stack ops::list = foldl (call []) xs ops with
call ys xs op = push xs (foldl ($) op ys) if nargs op<=#ys;
call (top xs:ys) (pop xs) op otherwise;

end;

This takes an initial stack xs and a list ops of operands and operations as inputs and returns
the resulting stack after processing ops. Examples:

> rpn (stack []) [10,4,3,(+),2,(*%),(-)];

[-4]

> using math;

> rpn (stack []) [1,2,1n,(/)];

[1.44269504088896]

> rpn (stack []) [4,1,atan,(x)];

[3.14159265358979]

> rpn (stack []) [2,(*)];

<stdin>, line 5: unhandled exception ’'"empty stack"’ while evaluating
"rpn (stack [1) [2,(*)]’

Ok, this is all very nice, but it seems that so far we haven’t done much more than we could
have achieved just as easily with plain lists instead. So what are the benefits of having an
interface type?

First, an interface provides a fair amount of safety. As long as we stick to the interface
functions, we can be sure that the data is capable of carrying out the requested operations.
At the same time, the interface also serves as a valuable piece of documentation, since it tells
us at a glance exactly which operations are supported by the type.

Second, an interface provides data abstraction. We don’t need to know how the interface
operations are implemented, and in fact functions coded against the interface will work

134 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

with any implementation of the interface. For instance, suppose that we’d like to provide a
“bounded stacks” data structure, i.e., stacks which don’t grow beyond a certain limit. These
can be implemented as follows:

push (n,xs@[]) x | push (n,xs@(_:_)) x =
if n>0 then (n-1,x:xs) else throw "full stack";
pop (n,x:xs) = n+l,xs;
top (n,x:xs) = x;
pop (n,[]) = throw "empty stack";
top (n,[]) throw "empty stack";

Note that we represent a bounded stack by a pair (n, xs) here, where xs is the list of elements
and n is the “free space” (number of elements we still allow to be pushed). We also add a
function to construct such values:

bstack n::int xs::list = (n-#xs,xs);

Without any further ado, our little RPN calculator works just fine with the new variation of
the data structure:

> rpn (bstack 3 []) [10,4,3,(+),2,(*),(-)];

2,[-4]

> rpn (bstack 2 []) [10,4,3,(+),2,(*),(-)];

<stdin>, line 7: unhandled exception '"full stack"’ while evaluating
"rpn (bstack 2 []) [10,4,3,(+),2,(*),(-)]"’

While they’re quite useful in general, Pure’s interface types also have their limitations. In
particular, the guarantees provided by an interface are of a purely syntactic nature; the sig-
nature doesn’t tell us anything about the actual meaning of the provided operations, so unit
testing is still needed to ensure certain semantic properties of the implementation. Some
further issues due to Pure’s dynamically typed nature are discussed under Interfaces in the
Caveats and Notes section.

1.6.3 Modules and Imports

Pure doesn’t offer separate compilation, but the following type of declaration provides a
simple but effective way to assemble a Pure program from several source modules.

n.,.n

using_decl := “using” name (”,"” name)x ”;
name = qualified identifier | string

The using declaration takes the following form (note that in contrast to symbol declarations,
the comma is used as a delimiter symbol here):

using name, ...;

This causes each given script to be included in the Pure program at the given point (if it
wasn’t already included before), which makes available all the definitions of the included
script in your program. Note that each included script is loaded only once, when the first
using clause for the script is encountered. Nested imports are allowed, i.e., an imported

1.6.3 Modules and Imports 135

Pure Language and Library Documentation, Release 0.59

module may itself import other modules, etc. A Pure program then basically is the con-
catenation of all the source modules given as command line arguments, with other modules
listed in using clauses inserted at the corresponding source locations.

(The using clause also has an alternative form which allows dynamic libraries and LLVM
bitcode modules to be loaded, this will be discussed in the C Interface section.)

For instance, the following declaration causes the math.pure script from the standard library
to be included in your program:

using math;

You can also import multiple scripts in one go:

using array, dict, set;

Moreover, Pure provides a notation for qualified module names which can be used to denote
scripts located in specific package directories, e.g.:

using examples::libor::bits;

In fact this is equivalent to the following using clause which spells out the real filename of

the script between double quotes (the .pure suffix can also be omitted in which case it is
added automatically):

using "examples/libor/bits.pure";
Both notations can be used interchangeably; the former is usually more convenient, but the
latter allows you to denote scripts whose names aren’t valid Pure identifiers.

Script identifiers are translated to the corresponding filenames by replacing the “:: sym-
bol with the pathname separator ‘/* and tacking on the “.pure’ suffix. The following table
illustrates this with a few examples.

Script identifier Filename

math "math.pure”
examples::libor::bits "examples/libor/bits.pure"
i:pure::examples::hello | "/pure/examples/hello.pure"”

Note the last example, which shows how an absolute pathname can be denoted using a

/

qualifier starting with “: :".

Unless an absolute pathname is given, the interpreter performs a search to locate the script.
The search algorithm considers the following directories in the given order:

¢ the directory of the current script, which is the directory of the script containing the
using clause, or the current working directory if the clause was read from standard
input (as is the case, e.g., in an interactive session);

¢ the directories named in - I options on the command line (in the given order);

¢ the colon-separated list of directories in the PURE_INCLUDE environment variable (in the
given order);

136 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

¢ finally the directory named by the PURELIB environment variable.

Note that the current working directory is not searched by default (unless the using clause
is read from standard input), but of course you can force this by adding the option -I. to the
command line, or by including *.” in the PURE_INCLUDE variable.

The directory of the current script (the first item above) can be skipped by specifying the
script to be loaded as a filename in double quotes, prefixed with the special sys: tag. The
search then starts with the “system” directories (-I, PURE_INCLUDE and PURELIB) instead.
This is useful, e.g., if you want to provide your own custom version of a standard library
script which in turn imports that library script. For instance, a custom version of math.pure
might employ the following using clause to load the math.pure script from the Pure library:

using "sys:math";
// custom definitions go here
log2 x = ln x/ln 2;

The interpreter compares script names (to determine whether two scripts are actually the
same) by using the canonicalized full pathname of the script, following symbolic links to the
destination file (albeit only one level). Thus different scripts with the same basename, such
as foo/utils.pure and bar/utils.pure can both be included in the same program (unless they
link to the same file).

More precisely, canonicalizing a pathname involves the following steps:

* relative pathnames are expanded to absolute ones, using the search rules discussed
above;

¢ the directory part of the pathname is normalized to the form returned by the getcwd
system call;

e the ”.pure” suffix is added if needed;

¢ if the resulting script name is actually a symbolic link, the interpreter follows that link
to its destination, albeit only one level. (This is only done on Unix-like systems.)

The directory of the canonicalized pathname is also used when searching other scripts in-
cluded in a script. This makes it possible to have an executable script with a shebang line
in its own directory, which is then executed via a symbolic link placed on the system PATH.
In this case the script search performed in using clauses will use the real script directory
and thus other required scripts can be located there. This is the recommended practice for
installing standalone Pure applications in source form which are to be run directly from the
shell.

1.6.4 Namespaces

To facilitate modular development, Pure also provides namespaces as a means to avoid name
clashes between symbols, and to keep the global namespace tidy and clean. Namespaces
serve as containers holding groups of related identifiers and other symbols. Inside each
namespace, symbols must be unique, but the same symbol may be used to denote different
objects (variables, functions, etc.) in different namespaces. (Pure’s namespace system was

1.6.4 Namespaces 137

Pure Language and Library Documentation, Release 0.59

heavily inspired by C++ and works in a very similar fashion. So if you know C++ you should
feel right at home and skimming this section to pick up Pure’s syntax of the namespace
constructs should be enough to start using it.)

The global namespace is always available. By default, new symbols are created in this name-
space, which is also called the default namespace. Additional namespaces can be created
with the namespace declaration, which also switches to the given namespace (makes it the
current namespace), so that new symbols are then created in that namespace rather than the
default one. The current namespace also applies to all kinds of symbol declarations, includ-
ing operator and nonfix symbol declarations, as well as extern declarations (the latter are
described in the C Interface section).

The syntax of namespace declarations is captured by the following grammar rules:

namespace_decl “namespace” [name] [brackets] ";”

| “namespace” name [brackets] “with” item+ “end” ”;

n

| “using” “namespace” [name_spec (”,” name_spec)x*]
brackets n= “(" left_op right_op ")"
name_spec u= name ["” (" qualified_symbol+ ")"]

The basic form of the namespace declaration looks as follows (there’s also a “scoped” form
of the namespace declaration which will be discussed in Scoped Namespaces at the end of
this section):

namespace name;
// declarations and definitions in namespace ’name’
namespace;

The second form switches back to the default namespace. For instance, in order to define
two symbols with the same print name foo in two different namespaces foo and bar, you
can write:

namespace foo;
foo x = x+1;
namespace bar;
foo x = x-1;
namespace;

We can now refer to the symbols we just defined using qualified symbols of the form
namespace: :symbol:

> foo::foo 99;
100
> bar::foo 99;
98

This avoids any potential name clashes, since the qualified identifier notation always makes
it clear which namespace the given identifier belongs to.

A namespace can be “reopened” at any time to add new symbols and definitions to it. This
allows namespaces to be created that span several source modules. You can also create

138 1.6 Declarations

”,

!

n

Pure Language and Library Documentation, Release 0.59

several different namespaces in the same module.

Similar to the using declaration, a namespace declaration accepts either identifiers or double-
quoted strings as namespace names. E.g., the following two declarations are equivalent:

namespace foo;
namespace "foo";

The latter form also allows more descriptive labels which aren’t identifiers, e.g.:

namespace "Private stuff, keep out!";

Note that the namespace prefix in a qualified identifier must be a legal identifier, so it isn’t
possible to access symbols in namespaces with such descriptive labels in a direct fashion.
The only way to get at the symbols in this case is with namespace brackets or by using a
namespace or using namespace declaration (for the latter see Using Namespaces below).

Using Namespaces

Since it is rather inconvenient if you always have to write identifiers in their qualified form
outside of their “home” namespace, Pure allows you to specify a list of search namespaces
which are used to look up symbols not in the default or the current namespace. This is done
with the using namespace declaration, which takes the following form:

using namespace namel, name2, ...;
/] ...
using namespace;

As with namespace declarations, the second form without any namespace arguments gets
you back to the default empty list of search namespaces.

For instance, consider this example:

namespace foo;
foo x = x+1;
namespace bar;
foo x = x-1;
bar x = x+1;
namespace;

The symbols in these namespaces can be accessed unqualified as follows:

> using namespace foo;
> foo 99;

100

> using namespace bar;
> foo 99;

98

> bar 99;

100

1.6.4 Namespaces 139

Pure Language and Library Documentation, Release 0.59

This method is often to be preferred over opening a namespace with the namespace declara-
tion, since using namespace only gives you “read access” to the imported symbols, so you
can’t accidentally mess up the definitions of the namespace you're using. Another advan-
tage is that the using namespace declaration also lets you search multiple namespaces at
once:

using namespace foo, bar;

Be warned, however, that this brings up the very same issue of name clashes again:

> using namespace foo, bar;
> foo 99;
<stdin>, line 15: symbol ’'foo’ is ambiguous here

In such a case you'll have to resort to using namespace qualifiers again, in order to resolve
the name clash:

> foo::foo 99;
100

To avoid this kind of mishap, you can also selectively import just a few symbols from a
namespace instead. This can be done with a declaration of the following form:

using namespace namel (syml sym2 ...), name2 ... ;

As indicated, the symbols to be imported can optionally be placed as a whitespace-delimited
list inside parentheses, following the corresponding namespace name. (As with symbol dec-
larations, the symbols may optionally be qualified with a namespace prefix, which must
match the imported namespace here.) For instance:

> using namespace foo, bar (bar);

> foo 99;

100

> bar 99;

100

> bar::foo 99;
98

Note that now we have no clash on the foo symbol any more, because we restricted the
import from the bar namespace to the bar symbol, so that bar: : foo has to be denoted with
a qualified symbol now.

Symbol Lookup and Creation

Pure’s rules for looking up and creating symbols are fairly straightforward and akin to those
in other languages featuring namespaces. However, there are some intricacies involved,
because the rewriting rule format of definitions allows “referential” use of symbols not only
in the “body” (right-hand side) of a definition, but also in the left-hand side patterns. We
discuss this in detail below.

140 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

The compiler searches for symbols first in the current namespace (if any), then in the cur-
rently active search namespaces (if any), and finally in the default (i.e., the global) name-
space, in that order. This automatic lookup can be bypassed by using an absolute namespace
qualifier of the form : : foo: :bar. In particular, : :bar always denotes the symbol bar in the
default namespace, while : : foo: :bar denotes the symbol bar in the foo namespace. (Nor-
mally, the latter kind of notation is only needed if you have to deal with nested namespaces,
see Hierarchical Namespaces below.)

If no existing symbol is found, a new symbol is created automatically, by implicitly declaring
a public symbol with default attributes. New unqualified symbols are always created in the
current namespace, while new qualified symbols are created in the namespace given by the
namespace prefix of the symbol.

Note: Pure’s implicit symbol declarations are a mixed blessing. They are convenient, espe-
cially in interactive usage, but they also let missing or mistyped symbols go unnoticed much
too easily. As a remedy, in the case of qualified symbols the compiler checks that the given
namespace prefix matches the current namespace, in order to catch typos and other silly
mistakes and prevent you from accidentally clobbering the contents of other namespaces.
For instance:

> namespace foo0;

> namespace;

> foo::bar x = 1/x;

<stdin>, line 3: undeclared symbol ’'foo::bar’

To make these errors go away it’s enough to just declare the symbols in their proper name-
spaces.

In addition, you can run the interpreter with the -w option (see Invoking Pure) to check
your scripts for (non-defining) uses of undeclared unqualified function symbols. This is
highly recommended. For instance, in the following example we forgot to import the system
module which defines the puts function. Running the interpreter with -w highlights such
potential errors:

$ pure -w

> puts "bla"; // missing import of system module
<stdin>, line 1: warning: implicit declaration of ’'puts’
puts "bla"

For legitimate uses (such as forward uses of a symbol which is defined later), you can make
these warnings go away by declaring the symbol before using it.

New symbols are also created if a global unqualified (and yet undeclared) symbol is being
“defined” in a rewriting rule or let/const definition, even if a symbol with the same print
name from another namespace is already visible in the current scope. To distinguish “defin-
ing” from “referring” uses of a global symbol, Pure uses the following (purely syntactic)
notions:

¢ A defining occurrence of a global function, macro or type symbol is any occurrence of the

1.6.4 Namespaces 141

Pure Language and Library Documentation, Release 0.59

symbol as the (leftmost) head symbol on the left-hand side of a rewriting rule.

* A defining occurrence of a global variable or constant symbol is any occurrence of the
symbol in a variable position (as given by the “head = function” rule, cf. Variables in
Equations) on the left-hand side of a let or const definition.

¢ All other occurrences of global symbols on the left-hand side, as well as all symbol
occurrences on the right-hand side of a definition are referring occurrences. (Note that
this also subsumes all occurrences of type tags on the left-hand side of an equation.)

The following example illustrates these notions:

namespace foo;

bar (bar x) = bar x;
let x,y = 1,2;
namespace;

Here, the first occurrence of bar on the left-hand side bar (bar x) of the first rule is a defining
occurrence, as are the occurrences of x and y on the left-hand side of the let definition.
Hence these symbols are created as new symbols in the namespace foo. On the other hand,
the other occurrences of bar in the first rule, as well as the *,” symbol on the left-hand side of
the let definition are referring occurrences. In the former case, bar refers to the bar symbol
defined by the rule, while in the latter case the *,” operator is actually declared in the prelude
and thus imported from the global namespace.

The same rules of lookup also apply to type tags on the left-hand side of an equation, but
in this case the interpreter will look specifically for type symbols, avoiding any other kinds
of symbols which might be visible in the same context. Thus, in the following example, the
type tag bar is correctly resolved to bar: :bar, even though the (function) symbol foo: :bar
is visible at this point:

namespace bar;

type bar;

namespace foo;

public bar;

using namespace bar;

foo x::bar = bar x;

show foo::foo

foo::foo x :: bar::bar = foo::bar x;

V V V VYV VYV

Note that special operator (and nonfix) symbols always require an explicit declaration. This
works as already discussed in the Symbol Declarations section, except that you first switch
to the appropriate namespace before declaring the symbols. For instance, here is how you
can create a new + operation which multiplies its operands rather than adding them:

> namespace my;
> infix1l 2200 +;
> Xty = X*y;

> 5+7;

35

Note that the new + operation really belongs to the namespace we created. The + operation

142 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

in the default namespace works as before, and in fact you can use qualified symbols to pick
the version that you need:

> namespace;
> 5+7;

12

>5 11+ 7;
12
>5my::+ 7;
35

Here’s what you get if you happen to forget the declaration of the + operator:

> namespace my;
> Xty = X*y;
<stdin>, line 2: infix1l symbol '+’ was not declared in this namespace

Thus the compiler will never create a new instance of an operator symbol on the fly, an
explicit declaration is always needed in such cases.

Note that if you really wanted to redefine the global + operator, you can do this even while
the my namespace is current. You just have to use a qualified identifier in this case, as follows:

> namespace my;
> X ity = Xxy;
> a+b;

axb

This should rarely be necessary (in the above example you might just as well enter this rule
while in the global namespace), but it can be useful in some circumstances. Specifically, you
might want to “overload” a global function or operator with a definition that makes use of
private symbols of a namespace (which are only visible inside that namespace; see Private
Symbols below). For instance:

> pamespace my;
> private bar;

> bar X y = xxy;
> X ::+y =bar xvy;
> a+b;

axb

(The above is a rather contrived example, since the very same functionality can be accom-
plished much easier, but there are some situations where this method is needed.)

Private Symbols

Pure also allows you to have private symbols, as a means to hide away internal operations
which shouldn’t be accessed directly outside the namespace in which they are declared.
The scope of a private symbol is confined to its namespace, i.e., the symbol is only visible
when its “home” namespace is current. Symbols are declared private by using the private
keyword in the symbol declaration:

1.6.4 Namespaces 143

Pure Language and Library Documentation, Release 0.59

> namespace secret;

> private baz;

> // 'baz’ is a private symbol in namespace ’secret’ here
> baz x = 2%X;

> // you can use ’baz’ just like any other symbol here

> baz 99;

198

> namespace;

Note that, at this point, secret: :baz is now invisible, even if you have secret in the search
namespace list:

> using namespace secret;

> // this actually creates a 'baz’ symbol in the default namespace:
> baz 99;

baz 99

> secret::baz 99;

<stdin>, line 27: symbol ’'secret::baz’ is private here

The only way to bring the symbol back into scope is to make the secret namespace current
again:

> namespace secret;
> baz 99;

198

> secret::baz 99;
198

Namespace Brackets

All the namespace-related constructs we discussed so far only provide a means to switch
namespaces on a per-rule basis. Sometimes it is convenient if you can switch namespaces
on the fly inside an expression. This is especially useful if you want to embed a domain-
specific sublanguage (DSL) in Pure. DSLs typically provide their own system of operators
which differ from the standard Pure operators and thus need to be declared in their own
namespace.

To make this possible, Pure allows you to associate a namespace with a corresponding pair
of outfix symbols. This turns the outfix symbols into special namespace brackets which can
then be used to quickly switch namespaces in an expression by just enclosing a subexpres-
sion in the namespace brackets.

To these ends, the syntax of namespace declarations allows you to optionally specify a pair
of outfix symbols inside parentheses after the namespace name. The outfix symbols to be
used as namespace brackets must have been declared beforehand. For instance:

outfix « »;
namespace foo (« »);
infixr (::7) 7~

144 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

XNy = 2%X+y;
namespace;

The code above introduces a foo namespace which defines a special variation of the (")
operator. It also associates the namespace with the « » brackets so that you can write:

> (a+b)”c+10;
(a+b)”~c+10

> «(a+b)”c»+10;
2x(a+b)+c+10

Note the use of the namespace brackets in the second input line. This changes the meaning
of the ~ operator, which now refers to foo: : ~ instead. Also note that the namespace brackets
themselves are removed from the resulting expression; they are only used to temporarily
switch the namespace to foo inside the bracketed subexpression. This works pretty much
like a namespace declaration (so any active search namespaces remain in effect), but is limited
in scope to the bracketed subexpression and only gives access to the public symbols of the
namespace (like a using namespace declaration would do).

The rules of visibility for the namespace bracket symbols themselves are the same as for any
other symbols. So they need to be in scope if you want to denote them in unqualified form
(which is always the case if they are declared in the default namespace, as in the example
above). If necessary, you can also specify them in their qualified form as usual.

Namespace brackets can be used anywhere inside an expression, even on the left-hand side
of a rule. So, for instance, we might also have written the example above as follows:

outfix « »;
namespace foo (« »);
infixr (::7) *~;
namespace;

«XTY» = 2%X+Y;

Note the use of the namespace brackets on the last line. This rule actually expands to:

X foo::™y = 2xx+y;

The special meaning of namespace brackets can be turned off and back on again at any time
with a corresponding namespace declaration. For instance:

> namespace (« »); // turn off the special meaning of « »
> «(atb)”c»+10;

« (a+b)”c »+10

> namespace foo (« »); // turn it on again

> namespace;

> «(a+b)”c»+10;

2*(a+b)+c+10

(Note that as a side effect these declarations also change the current namespace, so that
we use the namespace; declaration in the second last line to change back to the default
namespace.)

1.6.4 Namespaces 145

Pure Language and Library Documentation, Release 0.59

As shown in the first line of the example above, a namespace brackets declaration without
a namespace just turns off the special processing of the brackets. In order to define a name-
space bracket for the default namespace, you need to explicitly specify an empty namespace
instead, as follows:

> outfix «: :»;

> namespace "" («: :»);
> «(a+h) "« XNy i»»;
2% (a+b)+x"y

As this example illustrates, namespace brackets can also be nested, which is useful, e.g.,
if you need to combine subexpressions from several DSLs in a single expression. In this
example we employ the «:x"y:» subexpression to temporarily switch back to the default
namespace inside the « »-bracketed expression which is parsed in the foo namespace.

Hierarchical Namespaces

Namespace identifiers can themselves be qualified identifiers in Pure, which enables you
to introduce a hierarchy of namespaces. This is useful, e.g., to group related namespaces
together under a common “umbrella” namespace:

namespace my;
namespace my::old;
foo x = x+1;
namespace my::new;
foo x = x-1;

Note that the namespace my, which serves as the parent namespace, must be created before
the my::old and my: :new namespaces, even if it does not contain any symbols of its own.
After these declarations, the my: :old and my: : new namespaces are part of the my namespace
and will be considered in name lookup accordingly, so that you can write:

> using namespace my;
> old::foo 99;

100

> new::foo 99;

98

This works pretty much like a hierarchy of directories and files, where the namespaces play
the role of the directories (with the default namespace as the root directory), the symbols in
each namespace correspond to the files in a directory, and the using namespace declaration
functions similar to the shell’s PATH variable.

Sometimes it is necessary to tell the compiler to use a symbol in a specific namespace, bypass-
ing the usual symbol lookup mechanism. For instance, suppose that we introduce another
global old namespace and define yet another version of foo in that namespace:

namespace old;
foo x = 2xx;
namespace;

146 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

Now, if we want to access that function, with my still active as the search namespace,
we cannot simply refer to the new function as old: :foo, since this name will resolve to
my::old::foo instead. As a remedy, the compiler accepts an absolute qualified identifier of
the form ::o0ld:: foo. This bypasses name lookup and thus always yields exactly the sym-
bol in the given namespace (if it exists; as mentioned previously, the compiler will complain
about an undeclared symbol otherwise):

> old::foo 99;
100

> ::old::foo 99;
198

Also note that, as a special case of the absolute qualifier notation, : : foo always denotes the
symbol foo in the default namespace.

Scoped Namespaces

Pure also provides an alternative scoped namespace construct which makes nested name-
space definitions more convenient. This construct takes the following form:

namespace name with ... end;

The part between with and end may contain arbitrary declarations and definitions, using the
same syntax as the toplevel. These are processed in the context of the given namespace, as if
you had written:

namespace name;
namespace;

However, the scoped namespace construct always returns you to the namespace which was
active before, and thus these declarations may be nested:

namespace foo with
// declarations and definitions in namespace foo
namespace bar with
// declarations and definitions in namespace bar
end;
// more declarations and definitions in namespace foo
end;

Note that this kind of nesting does not necessarily imply a namespace hierarchy as discussed
in Hierarchical Namespaces. However, you can achieve this by using the appropriate quali-
fied namespace names:

namespace foo with
/7 ...
namespace foo::bar with
// ...
end;

1.6.4 Namespaces 147

Pure Language and Library Documentation, Release 0.59

// ...
end;

Another special feature of the scoped namespace construct is that using namespace declara-
tions are always local to the current namespace scope (and other nested namespace scopes
inside it). Thus the previous setting is restored at the end of each scope:

using namespace foo;
namespace foo with
// still using namespace foo here
using namespace bar;
// now using namespace bar
namespace bar with
// still using namespace bar here
using namespace foo;
// now using namespace foo
end;
// back to using namespace bar
end;
// back to using namespace foo at toplevel

Finally, here’s a more concrete example which shows how scoped namespaces might be used
to declare two namespaces and populate them with various functions and operators:

namespace foo with
infixr (::7) 7~
foo x = x+1;
bar x = x-1;
XNy = 2%X+Y;
end;

namespace bar with
outfix <: :>;
foo x = x+2;
bar x = x-2;
end;

using namespace foo(” foo), bar(bar <: :>);

// namespace foo
foo x;
aH

// namespace bar
bar x;
<: X,y >

Pure’s namespaces can thus be used pretty much like “packages” or “modules” in languages
like Ada or Modula-2. They provide a structured way to describe program components
offering collections of related data and operations, which can be brought into scope in a
controlled way by making judicious use of using namespace declarations. They also provide
an abstraction barrier, since internal operations and data structures can be hidden away

148 1.6 Declarations

Pure Language and Library Documentation, Release 0.59

employing private symbols.

Please note that these facilities are not Pure’s main focus and thus they are somewhat limited
compared to programming languages specifically designed for big projects and large teams
of developers. Nevertheless they should be useful if your programs grow beyond a small
collection of simple source modules, and enable you to manage most Pure projects with ease.

1.7 Macros

Macros are a special type of functions to be executed as a kind of “preprocessing stage” at
compile time. In Pure these are typically used to define custom special forms and to perform
inlining of function calls and other kinds of source-level optimizations.

Whereas the macro facilities of most programming languages simply provide a kind of tex-
tual substitution mechanism, Pure macros operate on symbolic expressions and are imple-
mented by the same kind of rewriting rules that are also used to define ordinary functions
in Pure. This makes them robust and easy to use for most common preprocessing purposes.

Syntactically, a macro definition looks just like a function definition with the def keyword in
front of it. Only unconditional rewriting rules are permitted here, i.e., rules without guards
and multiple right-hand sides. However, multiple left-hand sides can be employed as usual
to abbreviate a collection of rules with the same left-hand side, as described in the General
Rules section.

The major difference between function and macro definitions is that the latter are processed
at compile time rather than run time. To these ends, macro calls on the right-hand sides
of function, constant and variable definitions are evaluated by reducing them to normal
form using the available macro rules. The resulting expressions are then substituted for the
macro calls. All macro substitution happens before constant substitutions and the actual
compilation step. Macros can be defined in terms of other macros (also recursively), and are
normally evaluated using call by value (i.e., macro calls in macro arguments are expanded
before the macro gets applied to its parameters).

In the first half of this section we start out with some common uses of macros which should
cover most aspects of macro programming that the average Pure programmer will need.
The remainder of this section then discusses some more advanced features of Pure’s macro
system intended for power users.

1.7.1 Optimization Rules

Let’s begin with a simple example of an optimization rule from the prelude, which eliminates
saturated instances of the right-associative function application operator (you can find this
near the beginning of prelude.pure):

def f $ x = f x;

1.7 Macros 149

Pure Language and Library Documentation, Release 0.59

Like in Haskell, “$" in fact just denotes function application, but it is a low-priority operator
which is handy to write cascading function calls. With the above macro rule, these will be
“inlined” as ordinary function applications automatically. Example:

> foo x = bar $ bar $ 2xx;
> show foo
foo x = bar (bar (2xx));

Note that a macro may have the same name as an ordinary Pure function, which is essential
if you want to inline calls to an existing function. (Just like ordinary functions, the number
of parameters in each rule for a given macro must be the same, but a macro may have a
different number of arguments than the corresponding function.)

When running interactively, you can follow the reduction steps the compiler performs dur-
ing macro evaluation. To these ends, you have to set “tracepoints” on the relevant macros,
using the trace command with the -m option; see Interactive Commands. (This works even
if the interpreter is run in non-debugging mode.) Note that since macro expansion is per-
formed at compile time, you'll have to do this before entering the definitions in which the
macro is used. However, in many cases you can also just enter the right-hand side of the
equation at the interpreter prompt to see how it gets expanded. For instance:

> trace -m $

> bar $ bar $ 2xx;

-- macro ($): bar$2xx --> bar (2x*x)

-- macro ($): bar$bar (2%x) --> bar (bar (2xx))
bar (bar (2xx))

Now let’s see how we can add our own optimization rules. Suppose we’d like to expand
saturated calls of the succ function. This function is defined in the prelude; it just adds 1 to
its single argument. We can inline such calls as follows:

def succ (x+y) = x+(y+l);

def succ x = x+1;

foo x = succ (succ (succ x));
show foo

foo X = x+3;

V V VYV

Again, let’s see exactly what’s going on there:

> trace -m succ

> succ (succ (succ x));

-- macro succ: succ X --> x+1

-- macro succ: succ (x+1) --> x+(1+1)

-- macro succ: succ (x+(1+1)) --> x+(1+1+1)
X+3

Note that the contraction of the subterm 1+1+1 to the integer constant 3 is actually done
by the compiler after macro expansion has been performed. This is also called “constant
folding”, see Constant Definitions in the Caveats and Notes section for details. It is also the
reason that we added the first rule for succ. This rule may seem superflous at first sight, but
actually it is needed to massage the sum into a form which enables constant folding.

150 1.7 Macros

Pure Language and Library Documentation, Release 0.59

Rules like these can help the compiler generate better code. Of course, the above examples
are still rather elementary. Pure macros can do much more elaborate optimizations, but for
this we first need to discuss how to write recursive macros, as well as macros which take
apart special terms like lambdas. After that we’ll return to the subject of optimization rules
in Advanced Optimization below.

1.7.2 Recursive Macros

Macros can also be recursive, in which case they usually consist of multiple rules and make
use of pattern-matching just like ordinary function definitions.

Note: Pure macros are just as powerful as (unconditional) term rewriting systems and thus
they are Turing-complete. This implies that a badly written macro may well send the Pure
compiler into an infinite recursion, which results in a stack overflow at compile time.

As a simple example, let’s see how we can inline invocations of the # size operator on list
constants:

def #[] = 0;
def #(x:xs) = #xs+1;

As you can see, the definition is pretty straightforward; exactly the same rules might also be
used for an ordinary function definition, although the standard library actually implements
a bit differently to make good use of tail recursion. Let’s check that this actually works:

> foo = #[1,2,3,4]1;
> show foo
foo = 4;

Note that the result of macro expansion is actually 0+1+1+1+1 here, you can check that by
running the macro with trace -m #. Constant folding contracts this to 4 after macro expan-
sion, as explained in the previous subsection.

This was rather easy. So let’s implement a more elaborate example: a basic Pure version of
Lisp’s quasiquote which allows you to create a quoted expression from a “template” while
substituting variable parts of the template. (For the sake of brevity, we present a somewhat
abridged version here which does not cover all corner cases. The full version of this macro
can be found as lib/quasiquote.pure in the Pure distribution.)

def quasiquote (unquote x) = X;

def quasiquote (f@_ (splice x)) foldl ($) (quasiquote f) x;
def quasiquote (f@_ x) quasiquote f (quasiquote Xx);
def quasiquote x quote Xx;

(Note the f@_, which is an anonymous “as” pattern forcing the compiler to recognize f as
a function variable, rather than a literal function symbol. See “As” Patterns in the Caveats
and Notes section for an explanation of this trick.)

1.7.2 Recursive Macros 151

Pure Language and Library Documentation, Release 0.59

The first rule above takes care of “unquoting” embedded subterms. The second rule
“splices” an argument list into an enclosing function application. The third rule recurses
into subterms of a function application, and the fourth and last rule takes care of quoting the
“atomic” subterms. Note that unquote and splice themselves are just passive constructor
symbols, the real work is done by quasiquote, using foldl at runtime to actually perform
the splicing. (Putting off the splicing until runtime makes it possible to splice argument lists
computed at runtime.)

If we want, we can also add some syntactic sugar for Lisp weenies. (Note that we cannot
have ’,” for unquoting, so we use *, $" instead.)

prefix 9 * ,$,@ ;
def ‘x = quasiquote x; def ,$x = unquote x; def ,@x = splice x;

Examples:

> ' (2%42+27°12);

2%42+27°12

> 1 (2%42+,%$(2712));

2x42+4096.0

> ‘foo 12 (,@'[2/3,3/4]) (5/6);

foo 1 2 (2/3) (3/4) (5/6)

> ‘foo 1 2 (,@args) (5/6) when args = '[2/3,3/4] end;
foo 1 2 (2/3) (3/4) (5/6)

1.7.3 User-Defined Special Forms

The quasiquote macro in the preceding subsection also provides an example of how you can
use macros to define your own special forms. This works because the actual evaluation of
macro arguments is put off until runtime, and thus we can safely pass them to built-in special
forms and other constructs which defer their evaluation at runtime. In fact, the right-hand
side of a macro rule may be an arbitrary Pure expression involving conditional expressions,
lambdas, binding clauses, etc. These are never evaluated during macro substitution, they
just become part of the macro expansion (after substituting the macro parameters).

Here is another useful example of a user-defined special form, the macro timex which em-
ploys the system function clock to report the cpu time in seconds needed to evaluate a given
expression, along with the computed result:

using systenm;

def timex x = (clock-t0)/CLOCKS_PER_SEC,y when t0 = clock; y = x end;
sum = foldl (+) OL;

timex $ sum (1L..100000L);

.43,5000050000L

©V V VYV

Note that the above definition of timex wouldn’t work as an ordinary function definition,
since by virtue of Pure’s basic eager evaluation strategy the x parameter would have been
evaluated already before it is passed to timex, making timex always return a zero time value.
Try it!

152 1.7 Macros

Pure Language and Library Documentation, Release 0.59

1.7.4 Macro Hygiene

Pure macros are lexically scoped, i.e., the binding of symbols in the right-hand-side of a
macro definition is determined statically by the text of the definition, and macro parameter
substitution also takes into account binding constructs, such as with and when clauses, in
the right-hand side of the definition. Macro facilities with these pleasant properties are also
known as hygienic macros. They are not susceptible to so-called “name capture,” which
makes macros in less sophisticated languages bug-ridden and hard to use.

Macro hygiene is a somewhat esoteric topic for most programmers, so let us take a brief look
at what it’s all about. The problem avoided by hygienic macros is that of name capture. There
are actually two kinds of name capture which may occur in unhygienic macro systems:

¢ A free symbol in the macro body inadvertently becomes bound to the value of a local
symbol in the context in which the macro is called.

* A free symbol in the macro call inadvertently becomes bound to the value of a local
symbol in the macro body.

Pure’s hygienic macros avoid both pitfalls. Here is an example for the first form of name
capture:

> def G x = x+y;
> G 10 when y = 99 end;
10+y

Note that the expansion of the G macro correctly uses the global instance of y, even though
y is locally defined in the context of the macro call. (In some languages this form of name
capture is sometimes used deliberately in order to make the macro use the binding of the
symbol which is active at the point of the macro call. Normally, this won’t work in Pure,
although there is a way to force this behaviour in Pure as well, see Name Capture in the
Caveats and Notes section.)

In contrast, the second form of name capture is usually not intended, and is therefore more
dangerous. Consider the following example:

> def F x = x+y when y = x+1 end;
> Fy;
y+(y+1)

Pure again gives the correct result here. You’'d have to be worried if you got (y+1)+(y+1)
instead, which would result from the literal expansion y+y when y = y+1 end, where the
(free) variable y passed to F gets captured by the local binding of y. In fact, that’s exactly
what you get with C macros:

#define F(x) { int y = x+1; return x+y; }

Here F(y) expandsto { int y = y+1; return y+y; } which is usually not what you want.

This completes our little introduction to Pure’s macro facilities. The above material should
in fact cover all the common uses of macros in Pure. However, if you want to become a real
Pure macro wizard then read on. In the following subsections we’re going to discover some

1.7.4 Macro Hygiene 153

Pure Language and Library Documentation, Release 0.59

more advanced features of Pure’s macro system which let you write macros for manipulating
special forms and give you access to Pure’s reflection capabilities.

1.7.5 Built-in Macros and Special Expressions

As already mentioned in The Quote, special expressions such as conditionals and lambdas
cannot be directly represented as runtime data in Pure. But they can be guoted in which
case they are replaced by corresponding “placeholder terms”. These placeholder terms are
in fact implemented as built-in macros which, when evaluated, construct the corresponding
specials.

macro _ifelse__xyz
This macro expands to the conditional expression if x then y else z during macro
evaluation.

macro __lambda__ [x1,...xn] y
Expands to the lambda expression \x1 ... xn ->y.

macro —case_ X [(x1 —> y1),...,(xn —> yn)]
Expands to the case expression case x of x1 = yl; ...; xn = yn end. Note that
the - -> symbol is used to separate the left-hand side and the right-hand side of each
rule (see below).

macro X —when_— [(x1 —> y1),...,(xn —> yn)]

Expands to the when expression x when x1 = y1; ...; xn = yn end. Here the left-
hand side of a rule may be omitted if it is just the anonymous variable; i.e., x __when__
[foo y] isthesameasx __when__ [_ --> foo y].

macro X —with__ [(x1 —> y1),...,(xn —> yn)]
Expands to the with expression x with x1 = y1; ...; xn = yn end.

Note that the following low-priority infix operators are used to denote equations in the
__case__,__when__ and __with__ macros:

constructor x -->y
Denotes an equation x = y.

constructor x _if__y
Attaches a guard to the right-hand side of an equation. That is, x -->y __if __
z denotes the conditional equation x = y if z. This symbol is only recognized in
__case__and __with__ calls.

In addition, patterns on the left-hand side of equations or in lambda arguments may be
decorated with the following constructor terms to indicate “as” patterns and type tags (these
are infix operators with a very high priority):

constructor x _as__y
Denotes an “as” pattern x @ vy.

constructor x _type__y
Denotes a type tag x :: .

154 1.7 Macros

Pure Language and Library Documentation, Release 0.59

Note that all these symbols are in fact just constructors which are only interpreted in the
context of the built-in macros listed above; they aren’t macros themselves.

It's good to remember the above when you're doing macro programming. However, to see
the placeholder term of a special, you can also just type a quoted expression in the inter-
preter:

> " (\x->x+1);

__lambda__ [x] (x+1)

> '(f with f x = y when y = x+1 end end);
f __with _ [f x-->y __when__ [y-->x+1]]

List and matrix comprehensions can also be quoted. These are basically syntactic sugar for
lambda applications, cf. Primary Expressions. The compiler expands them to their “un-
sugared” form already before macro substitution, so no special kinds of built-in macros are
needed to represent them. When quoted, comprehensions are thus denoted in their unsug-
ared form, which consists of a pile of lambda expressions and list or matrix construction
functions for the generation clauses, and possibly some conditionals for the filter clauses of
the comprehension. For instance:

> "[2xx | x = 1..3];
listmap (__lambda__ [x] (2x*x)) (1..3)

Here’s how type tags and “as” patterns in quoted specials look like:

> "(\x::int->x+1);

__lambda__ [x __type__ int] (x+1)

> "(dup (1..3) with dup xs@(x:_) = x:xs end);

dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs]

Note that the placeholder terms for the specials are quoted here, and hence they are not
evaluated (quoting inhibits macro expansion, just like it prevents the evaluation of ordinary
function calls). Evaluating the placeholder terms executes the corresponding specials:

> "(dup (1..3) with dup xs@(x:_) = x:xs end);

dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs]
> eval ans;

[1,1,2,3]

Of course, you can also just enter the macros directly (without quoting) to have them evalu-
ated:

> dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs];
[1,1,2,3]

> __lambda__ [x __type__ int] (x+1);

#<closure 0x7f1934158dc8>

> ans 99;

100

The __str__ function can be used to pretty-print quoted specials:

1.7.5 Built-in Macros and Special Expressions 155

Pure Language and Library Documentation, Release 0.59

> __str__ ('__lambda__ [x __type__ int] (x+1));

"\\x::int -> x+1"

> __str__ ('(dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs]));
"dup (1..3) with dup xs@(x:_) = x:xs end"

This is useful to see which expression a quoted special will expand to. Note that __str__ can
also be used to define print representations for quoted specials with __show__ (described in
Pretty-Printing) if you always want to have them printed that way by the interpreter.

As quoted specials are just ordinary Pure expressions, they can be manipulated by functions
just like any other term. For instance, here’s how you can define a function which takes a
quoted lambda and swaps its two arguments:

> swap (__lambda__ [x,y] z) = '"(__lambda__ [y,x] z);
> swap ('(\a b->a-b));

__lambda__ [b,a] (a-b)

> eval ans 2 3; // same as (\b a->a-b) 2 3

1

For convenience, a literal special expression can also be used on the left-hand side of an
equation, in which case it actually denotes the corresponding placeholder term. So the swap
function can also be defined like this (note that we first scratch the previous definition of
swap with the clear command, see Interactive Commands):

> clear swap

>swap (\x y ->2z) = "(\y x -> 2z);
> swap ('(\a b->a-b));

__lambda__ [b,a] (a-b)

This is usually easier to write and improves readability. However, there are cases in which
you want to work with the built-in macros in a direct fashion. In particular, this becomes
necessary when writing more generic rules which deal, e.g., with lambdas involving a vari-
able number of arguments, or if you need real (i.e., unquoted) type tags or “as” patterns in a
placeholder pattern. We’ll see examples of these later.

Quoted specials can be manipulated with macros just as well as with functions. In fact, this
is quite common and thus the macro evaluator has some special support to make this more
convenient. Specifically, it is possible to make a macro quote its arguments in an automatic
fashion, by means of the --quoteargs pragma. To illustrate this, let’s redefine swap as a
macro:

clear swap

#! --quoteargs swap

def swap (\x y -> z) = "(\y x -> z);
swap (\a b->a-b);

__lambda__ [b,a] (a-b)

V V V V

The --quoteargs pragma makes the swap macro receive its argument unevaluated, as if
it was quoted (but without a literal quote around it). Therefore the quote on the lambda
argument of swap can now be omitted. However, the result is still a quoted lambda. It’s
tempting to just omit the quote on the right-hand side of the macro definition as well, in

156 1.7 Macros

Pure Language and Library Documentation, Release 0.59

order to get a real lambda instead:

> clear swap

> def swap (\x y -> z) = \y x -> z;
> swap (\a b->a-b);

#<closure 0x7f1934156f00>

> ans 2 3;

a-b

We got a closure all right, but apparently it’s not the right one. Let’s use trace -m to figure
out what went wrong:

> trace -m swap

> swap (\a b->a-b);

-- macro swap: swap (\a b -> a-b) -->\y x -> a-b
#<closure 0x7f1934157248>

Ok, so the result is the lambda \y x -> a-b,not\b a -> a-bas we expected. This happens
because we used a literal (unquoted) lambda on the right-hand side, which does its own
variable binding; consequently, the variables x and y are bound by the lambda in this context,
not by the left-hand side of the macro rule.

So just putting an unquoted lambda on the right-hand side doesn’t do the job. One way to
deal with the situation is to just employ the __lambda__ macro in a direct way, as we’ve seen
before:

> clear swap

> def swap (__lambda__ [x,y] z) = __lambda__ [y,x] z;

> swap (\a b->a-b);

-- macro swap: swap (\a b -> a-b) --> __lambda__ [b,a] (a-b)
-- macro __lambda__: __lambda__ [b,a] (a-b) -->\b a -> a-b
#<closure 0x7f1934156f00>

> ans 2 3;

1

This works, but doesn’t look very nice. Often it’s more convenient to first construct a quoted
term involving the necessary specials and then have it evaluated during macro evaluation.
Pure provides yet another built-in macro for this purpose:

macro —eval__ x
Evaluate x at macro expansion time. This works by stripping one level of (outermost)
quotes from x and performing macro expansion on the resulting unquoted subexpres-
sions.

Using __eval__, we can implement the swap macro as follows:

> clear swap

> def swap (\x y -> z) = __eval__ ('"(\y x -> 2));

> swap (\a b->a-b);

-- macro swap: swap (\a b -> a-b) --> __eval__ (’'__lambda__ [b,a] (a-b))
-- macro __lambda__: __lambda__ [b,a] (a-b) -->\b a -> a-b

-- macro __eval__: __eval__ (’'__lambda__ [b,a] (a-b)) -->\b a -> a-b

#<closure 0x7f7elf867dc8>

1.7.5 Built-in Macros and Special Expressions 157

Pure Language and Library Documentation, Release 0.59

> ans 2 3;
1

Lisp programmers should note the difference. In Lisp, macros usually yield a quoted expres-
sion which is evaluated implicitly during macro expansion. This is never done automatically
in Pure, since many Pure macros work perfectly well without it. Instead, quotes in a macro
expansion are treated as literals, and you'll have to explicitly call __eval__ to remove them
during macro evaluation.

A final caveat: Placeholder terms for specials are just simple expressions; they don’t do any
variable binding by themselves. Thus the rules of macro hygiene don’t apply to them, which
makes it possible to manipulate lambdas and local definitions in any desired way. On the
other hand, this means that it is the programmer’s responsibility to avoid accidental name
capture when using these facilities. Most macro code will work all right when written in a
straightforward way, but there are some corner cases which need special attention (cf. Name
Capture).

Sometimes the only convenient way to avoid name capture is to create new symbols on the
fly. This will often be necessary if a macro generates an entire block construct (case, when,
with or lambda) from scratch. The following built-in macro is provided for this purpose:

macro __gensym__
Create a new unqualified symbol which is guaranteed to not exist at the time of the
macro call. These symbols typically look like __x123__ and can be used for any pur-
pose (i.e., as global or local as well as function or variable symbols).

For instance, here’s how we can implement a macro foo which creates alambda from a given
argument, using __gensym__ to generate a fresh local variable for the lambda argument.
This guarantees that variables in the argument expression don’t get captured by the lambda
variable when the closure is created with a call to the built-in __Tlambda__ macro.

> def foo x = bar __gensym__ x;

> def bar x y = __lambda__ [x] (x+y);

> trace -m foo

> foo (axb);

-- macro foo: foo (axb) --> bar __gensym__ (axb)

-- macro __gensym__: __gensym__ --> __Xx1__

-- macro bar: bar __x1__ (axb) --> __lambda__ [__x1__1 (__x1__+axb)
-- macro __lambda__: __lambda__ [__x1__] (__x1__+axb) --> __x1__ -> __x1__+axb
#<closure 0x7f66f6c88dho>

> ans 77;

77+axb

The __gensym__ macro returns a new variable for each invocation, and always ensures that
it doesn’t accidentally reuse a symbol already introduced by the user (even if it looks like a
symbol that __gensym__ might itself create):

> foo (a*x__x2__);

-- macro foo: foo (ax__x2__) --> bar __gensym__ (a*x__x2__)

-- macro __gensym__: __gensym__ --> __X3__

-- macro bar: bar __x3__ (a*x__x2__) --> __lambda__ [__x3__] (__x3__+a*x__x2__)

158 1.7 Macros

Pure Language and Library Documentation, Release 0.59

-- macro __lambda__: __Tlambda__ [__x3__]1 (__X3__+a*x__x2__) --> __X3__ -> __X3__+a*__X2__
#<closure 0x7f66f6c887e8>

> ans 77;

T7+a*x__x2__

1.7.6 Advanced Optimization

We are now in a position to have a look at some of the trickier optimization macros defined
in the prelude. The following __do__ macro can be found near the end of the prelude.pure
module; it is used to optimize the case of “throwaway” list and matrix comprehensions.
This is useful if a comprehension is evaluated solely for its side effects. To keep things
simple, we discuss a slightly abridged version of the __do__ macro which only deals with
list comprehensions and ignores some obscure corner cases. You can find this version in the
examples/do.pure script. Please also check the prelude for the full version of this macro.

Note that we define our own versions of void and __do__ here which are placed into the my
namespace to avoid conflicts with the prelude.

namespace my;
void _ = ();
#! --quoteargs my::__do__

def void [x] = void x;
def void (catmap f x) | void (listmap f x) = __do__ f x;

// Recurse into embedded generator clauses.

def __do__ (__lambda__ [x] y@(listmap _ _)) |
__do__ (__lambda__ [x] y@(catmap _ _)) =
__do__ $ (__lambda__ [x] (void y));

// Recurse into embedded filter clauses.
def __do__ (__lambda__ [x] (__ifelse__ y z [])) =
__do__ $ (__lambda__ [x] (__ifelse__ y (void z) ()));

// Eliminate extra calls to ’void’ in generator clauses.
def __do__ (__lambda__ [x] (void y)) = __do__ (__lambda__ [x] y);

// Eliminate extra calls to ’void’ in filter clauses.
def __do__ (__lambda__ [x] (__ifelse__ y (void z) ())) =
__do__ (__lambda__ [x] (__ifelse__y z ()));

// Any remaining instances reduce to a plain ’'do’ (this must come last).
def __do__ f = do f;

First, note that the void function simply throws away its argument and returns () instead.
The do function applies a function to every member of a list (like map), but throws away
all intermediate results and just returns (), which is much more efficient if you don’t need
those results anyway. These are both defined in the prelude, but we define our own version

1.7.6 Advanced Optimization 159

Pure Language and Library Documentation, Release 0.59

of void here so that we can hook it up to our simplified version of the __do__ macro.

The __do__ macro eventually reduces to just a plain do call, but applies some optimizations
along the way. While the above rules for __do__ are always valid optimizations for do,
it’s a good idea to use a separate macro here instead of clobbering do itself, so that these
optimizations do not interfere with calls to do in ordinary user code. The prelude handles
this in an analogous fashion.

Before we further delve into this example, a few remarks are in order about the way list
comprehensions are implemented in Pure. As already mentioned, list comprehensions are
just syntactic sugar; the compiler immediately transforms them to an equivalent expression
involving only lambdas and a few other list operations. The latter are essentially equivalent
to piles of nested filters and maps, but for various reasons they are actually implemented
using two special helper operations, catmap and listmap.

The catmap operation combines map and cat; this is needed, in particular, to accumulate the
results of nested generators, such as [i,j | 1 = 1..n; j = 1..m]. The same operation is
also used to implement filter clauses, you can see this below in the examples. However,
for efficiency simple generators like [2+i | i = 1..n] are translated to a listmap instead
(which is basically just map, but works with different aggregate types, so that list compre-
hensions can draw values from aggregates other than lists, such as matrices).

Now let’s see how the rules above transform a list comprehension if we “void” it. (Remem-
ber to switch to the my namespace when trying the following examples.)

catmap (\x -> if x mod 2 then [printf "%g\n" (2"x+1)] else []) (1..5);
do (\x -> if x mod 2 then printf "%gln" (2"x+1) else ()) (1..5);

> using system;

> using namespace my;

> f = [printf "Ssgln" (2"x+1) | x=1..5; x mod 2];

> g = void [printf "%g\n" (2”x+1) | x=1..5; x mod 2];
> show f ¢

f

g

As you can see, the catmap got replaced with a do, and the list brackets inside the lambda
were eliminated as well. These optimizations are just what’s needed to make this code go
essentially as fast as a for loop in traditional programming languages (up to constant factors,
of course). Here’s how it looks like when we run the g function:

> 0,

3

9

33

0

It’s also instructive to have a look at how the above macro rules work in concert to rewrite a
“voided” comprehension. To these ends, you can rerun the right-hand side of g with some
tracing enabled, as follows (we omit the tracing output here for brevity):

> trace -m my::void
> void [printf "%g\n" (2”x+1) | x=1..5; x mod 2];

The above optimization rules also take care of nested list comprehensions, since they recurse

160 1.7 Macros

Pure Language and Library Documentation, Release 0.59

into the lambda bodies of generator and filter clauses. For instance:

> h = void [puts $ str (x,y) | x=1..2; y=1..3];
> show h
h = do (\x -> do (\y -> puts (str (x,y))) (1..3)) (1..2);

Again, you should run this with macro tracing enabled to see how the __do__ macro recurses
into the outer lambda body of the list comprehension. Here’s the rule which actually does
this:

def __do__ (__lambda__ [x] y@(catmap _ _)) =
__do__ $ (__lambda__ [x] (void y));

Note that in order to make this work, __do__ is implemented as a “quoteargs” macro so
that it can inspect and recurse into the lambda terms in its argument. Also note the $ on
the right-hand side of this rule; this is also implemented as a macro in the prelude. Here
the $ operator is used to forcibly evaluate the macro argument __lambda__ [x] (void y),
so that the embedded call to the void macro gets expanded. (Without the $ the argument to
__do__ would be quoted and thus not be evaluated.) A similar rule is used to recurse into
embedded filter clauses, as in the example of the function g above.

It should be mentioned that, while our version of the __do__ macro will properly handle
most list comprehensions, there is a rather obscure corner case which it still refuses to opti-
mize: outermost filter clauses. For instance, consider:

> let c = 2;

> k = void [printf "sgln" (2"x+1) | c>0; x=1..3];

> show k

k = my::void (if c>0 then listmap (\x -> printf "sg\n" (2"x+1)) (1..3) else []);

It’s possible to handle this case as well, but we have to go to some lengths to achieve that.
The complication here is that we don’t want to mess with calls to void in ordinary user code,
so void itself cannot be a “quoteargs” macro. But the quoted form of void’s argument is
needed to detect the “outermost filter clause” situation. The interested reader may refer to
the prelude code to see how the prelude implementation of __do__ uses some helper macros
to make this work. Another detail of the full version of __do__ is the handling of patterns
on the left-hand side of generator clauses, which requires some special magic to filter out
unmatched list elements; we also omitted this here for brevity.

1.7.7 Reflection

The meta representation of specials discussed in Built-in Macros and Special Expressions is
also useful to obtain information about the running program and even modify it. Pure’s
runtime provides some built-in operations to implement these reflection capabilities, which
are comparable in scope to what the Lisp programming language offers.

Specifically, the get_fundef function allows you to retrieve the definition of a global Pure
function. Given the symbol denoting the function, get_fundef returns the list of rewriting

1.7.7 Reflection 161

Pure Language and Library Documentation, Release 0.59

rules implementing the functions, using the same lhs --> rhs formatused by the _case__,
__when__ and __with__ macros discussed above. For instance:

> fact n = 1 if n<=1;

> = nxfact (n-1) otherwise;

> get_fundef fact;

[(fact n-->1 __if__ n<=1), (fact n-->nxfact (n-1))]

Defining a new function or extending an existing function definition can be done just as
easily, using the add_fundef function:

> add_fundef $ '[(fib n-->1 __if__ n<=1), (fib n-->fib (n-2)+fib (n-1))1];
()

> show fib

fib n = 1 if n<=1;

fib n = fib (n-2)+fib (n-1);

> map fib (0..10);

[1,1,2,3,5,8,13,21,34,55,89]

Note that, to be on the safe side, we quoted the rule list passed to add_fundef to prevent
premature evaluation of symbols used in the rules. This is necessary because add_fundef is
an ordinary function, not a macro. (Of course, you could easily define a macro which would
take care of this, if you like. We leave this as an exercise to the reader.)

Also note that add_fundef doesn’t override existing function definitions. It simply keeps
on adding rules to the current program, just as if you typed the equations at the command
prompt of the interpreter. It is possible to delete individual equations with del_fundef:

> del_fundef $ ’'(fib n-->fib (n-2)+fib (n-1));
()

> show fib

fib n = 1 if n<=1;

Moreover, the clearsym function allows you to completely get rid of an existing function:

> clearsym fib 0;
()

> show fib

> fib 9;

fib 9

There’s also a companion function, globsym, which enables you to get a list of defined sym-
bols which match a given glob pattern:

> globsym "fact" 0;

[fact]

> globsym "x" 0;

[CH), (P0), (#),(3),(3%),...]
> #globsym "x" 0;

304

Note that globsym also returns symbols defined as types, macros, variables or constants. But
we can easily check for a given type of symbol by using the appropriate function to retrieve

162 1.7 Macros

Pure Language and Library Documentation, Release 0.59

the rules defining the symbol, and filter out symbols with an empty rule list:

> #[sym | sym = globsym "x" 0; ~null (get_fundef sym)];
253

Pure also provides the operations get_typedef, get_macdef, get_vardef and get_constdef,
which are completely analogous to get_fundef, but return the definitions of types, macros,
(global) variables and constants. Note that in the latter two cases the rule list takes the form
[var-->val] if the symbol is defined, [] if it isn’t.

For instance, let’s check the definition of the $ macro (cf. Optimization Rules) and the list
type (cf. Recursive Types):

> get_macdef ($);

[f$x-->F x]

> get_typedef list;

[(list [1-->1),(list (_:_)-->1)]

Or let’s lists all global variables along with their values:

> catmap get_vardef (globsym "x" 0);
[(argc-->0),(argv-->[1), (compiling-->0),
(sysinfo-->"x86_64-unknown-linux-gnu"), (version-->"0.59")]

The counterparts of add_fundef and del_fundef are provided as well. Not very surprisingly,
they are named add_typedef, del_typedef, etc. For instance:

> add_vardef [’'x-->3%33];
()

> show x
let x = 99;
> del_vardef ('x);

()

> show X

The above facilities should cover most metaprogramming needs. For even more exotic re-
quirements, you can also use the eval and evalcmd primitives to execute arbitrary Pure code
in text form; please see the Pure Library Manual for details.

Finally, a word of caution: The use of add_fundef, del_fundef and similar operations
to modify a running program breaks referential transparency and hence these functions
should be used with care. Moreover, at present the JIT compiler doesn’t support truly self-
modifying code (i.e., functions modifying themselves while they’re executing); this results
in undefined behaviour. Also, note that none of the inspection and mutation capabilities
provided by these operations will work in batch-compiled programs, please check the Batch
Compilation section for details.

1.8 Exception Handling

Pure also offers a useful exception handling facility. To raise an exception, you just invoke
the built-in function throw with the value to be thrown as the argument. Exceptions are

1.8 Exception Handling 163

Pure Language and Library Documentation, Release 0.59

caught with the built-in special form catch which is invoked as follows:

catch handler x
Catch an exception. The first argument denotes the exception handler (a function to be
applied to the exception value). The second (call-by-name) argument is the expression
to be evaluated.

For instance:

> catch error (throw hello_world);
error hello_world

Exceptions are also generated by the runtime system if the program runs out of stack space,
when a guard does not evaluate to a truth value, and when the subject term fails to match
the pattern in a pattern-matching lambda abstraction, or a let, case or when construct.
These types of exceptions are reported using the symbols stack_fault, failed_cond and
failed_match, respectively, which are declared as nonfix symbols in the standard prelude.
You can use catch to handle these kinds of exceptions just like any other. For instance:

> fact n = if n>0 then nxfact(n-1) else 1;
> catch error (fact foo);

error failed_cond

> catch error (fact 1000000);

error stack_fault

Unhandled exceptions are reported by the interpreter with a corresponding error message:

> fact foo;
<stdin>, line 2: unhandled exception ’'failed_cond’ while evaluating ’'fact foo’

Note that since the right-hand side of a type definition (cf. Type Rules) is just ordinary Pure
code, it may be susceptible to exceptions, too. Such exceptions are reported or caught just
like any other. In particular, if you want to make a type definition just fail silently in case of
an exception, you'll have to wrap it up in a suitable catch clause:

foo x = throw foo; // dummy predicate which always throws an exception
type bar x = foo x;

type baz x = catch (cst false) (foo x);

test_bar x::bar = x;

test_baz x::baz = x;

test_bar ();

<stdin>, line 6: unhandled exception ’'foo’ while evaluating ’test_bar ()’
> test_baz ();

test_baz ()

V V VYV VYV

Exceptions also provide a way to handle asynchronous signals. Pure’s system module pro-
vides symbolic constants for common POSIX signals and also defines the operation trap
which lets you rebind any signal to a signal exception. For instance, the following lets you
handle the SIGQUIT signal:

> using systenm;
> trap SIG_TRAP SIGQUIT;

164 1.8 Exception Handling

Pure Language and Library Documentation, Release 0.59

You can also use trap to just ignore a signal or revert to the system’s default handler (which
might take different actions depending on the type of signal, see signal(7) for details):

> trap SIG_IGN SIGQUIT; // signal is ignored
> trap SIG_DFL SIGQUIT; // reinstalls the default signal handler

Note that when the interpreter runs interactively, for convenience most standard termina-
tion signals (SIGINT, SIGTERM, etc.) are already set up to produce corresponding Pure ex-
ceptions of the form signal SIG where SIG is the signal number. If a script is to be run
non-interactively then you'll have to do this yourself (otherwise most signals will terminate
the program).

While exceptions are normally used to report abnormal error conditions, they also provide
a way to implement non-local value returns. For instance, here’s a variation of our n queens
algorithm (cf. List Comprehensions) which only returns the first solution. Note the use of
throw in the recursive search routine to bail out with a solution as soon as we found one. The
value thrown there is caught in the main routine. Also note the use of void in the second
equation of search. This effectively turns the list comprehension into a simple loop which
suppresses the normal list result and just returns () instead. Thus, if no value gets thrown
then the function regularly returns with () to indicate that there is no solution.

gqueens n = catch reverse (search n 1 []) with
search n i p = throw p if i>n;
= void [search n (i+l) ((i,j):p) | j = 1..n; safe (i,j) pl;
safe (i,j) p = ~any (check (i,j)) p;
check (il,jl) (i2,j2)
= il==i2 || j1l==j2 || il+jl==i2+j2 || il-jl==i2-j2;
end;

E.g., let’s compute a solution for a standard 8x8 board:

> queens 8;
[(1,1),(2,5),(3,8),(4,6),(5,3),(6,7),(7,2),(8,4)]

1.9 Standard Library

Pure comes with a collection of Pure library modules, which includes the standard prelude
(loaded automatically at startup time) and some other modules which can be loaded explic-
itly with a using clause. The prelude offers the necessary functions to work with the built-in
types (including arithmetic and logical operations) and to do most kind of list processing
you can find in ML- and Haskell-like languages. It also provides a collection of basic string
and matrix operations. Please refer to the Pure Library Manual for details on the provided
operations. Here is a very brief summary of some of the prelude operations which, besides
the usual arithmetic and logical operators, are probably used most frequently:

X+y
The arithmetic + operation is also used to denote list and string concatenation in Pure.

1.9 Standard Library 165

Pure Language and Library Documentation, Release 0.59

x:y
This is the list-consing operation. x becomes the head of the list, y its tail. As “:“is a
constructor symbol, you can use it in patterns on the left hand side of rewriting rules.

X..y
Constructs arithmetic sequences. x:y..z can be used to denote sequences with arbi-

trary stepsize y-x. Infinite sequences can be constructed using an infinite bound (i.e.,
inf or -inf). E.g., 1:3..inf denotes the stream of all odd integers starting at 1.

X,y
This is the pair constructor, used to create tuples of arbitrary sizes. Tuples provide
an alternative way to represent aggregate values in Pure. In contrast to lists, tuples
are always “flat”, so that (x,y),z and x, (y, z) denote the same triple x,y, z. (This is
explained in more detail in the Primary Expressions section.)

#x
The size (number of elements) of the list, tuple, matrix or string x. In addition, dim x
yields the dimensions (number of rows and columns) of a matrix.

xly
This is Pure’s indexing operation, which applies to lists, tuples, matrices and strings.
Note that all indices in Pure are zero-based, thus x!'0 and x! (#x-1) are the first and
last element of x. In the case of matrices, the subscript may also be a pair of row and
column indices, such as x! (1,2).

x!lys

This is the “slicing” operation, which returns the list, tuple, matrix or string of all
x!y while y runs through the elements of the list or matrix ys. Thus, e.g., x! ! (i..])
returns all the elements between i and j (inclusive). Indices which fall outside the
valid index range are quietly discarded. The index range ys may contain any number
of indices (also duplicates), in any order. Thus x! ! [0]i=1..n] returns the first element
of x n times, and, if ys is a permutation of the range 0..#x-1, then x!!ys yields the
corresponding permutation of the elements of x. In the case of matrices the index
range may also contain two-dimensional subscripts, or the index range itself may be
specified as a pair of row/column index lists such as x! ! (i..j,k..1).

The prelude also offers support operations for the implementation of list and matrix compre-
hensions, as well as the customary list operations like head, tail, drop, take, filter, map,
foldl, foldr, scanl, scanr, zip, unzip, etc., which make list programming so much fun in
modern FPLs. In Pure, these also work on strings as well as matrices, although, for reasons
of efficiency, these data structures are internally represented as arrays.

Besides the prelude, Pure’s standard library also comprises a growing number of additional
library modules which we can only mention in passing here. In particular, the math module
provides additional mathematical functions as well as Pure’s complex and rational number
data types. Common container data structures like sets and dictionaries are implemented in
the set and dict modules, among others. Moreover, the system interface can be found in
the system module. In particular, this module also provides operations to do basic C-style
I/0, including printf and scanf.

166 1.9 Standard Library

Pure Language and Library Documentation, Release 0.59

1.10 C Interface

Pure makes it very easy to call C functions (as well as functions in a number of other lan-
guages supported by the GNU compiler collection). To call an existing C function, you just
need an extern declaration of the function, as described below. By these means, all func-
tions in the standard C library and the Pure runtime are readily available to Pure scripts.
Functions can also be loaded from dynamic libraries and LLVM bitcode files at runtime. In
the latter case, you don’t even need to write any extern declarations, the interpreter will do
that for you. As of Pure 0.45, you can also add inline C/C++ and Fortran code to your Pure
scripts and have the Pure interpreter compile them on the fly, provided that you have the
corresponding compilers from the LLVM project installed.

In some cases you will still have to rely on big and complicated third-party and system
libraries which aren’t readily available in bitcode form. It goes without saying that writing
all the extern declarations for such libraries can be a daunting task. Fortunately, there is a
utility to help with this, by extracting the extern declarations automatically from C headers.
Please see External C Functions in the Caveats and Notes section for details.

1.10.1 Extern Declarations

To access an existing C function in Pure, you need an extern declaration of the function,
which is a simplified kind of C prototype. The syntax of these declarations is described by
the following grammar rules:

extern_decl := [scope] “extern” prototype (”,” prototype) ";"

prototype = c_type identifier “(” [parameters | "..."] ")" ["=" identifier]
parameters = parameter (”,” parameter)x [",” "..."]

parameter u= c_type [identifier]

c_type = identifier “x"x

Extern functions can be called in Pure just like any other. For instance, the following com-
mands, entered interactively in the interpreter, let you use the sin function from the C library
(of course you could just as well put the extern declaration into a script):

> extern double sin(double);
> sin 0.3;
0.29552020666134

An extern declaration can also be prefixed with a public/private scope specifier:

private extern double sin(double);

Multiple prototypes can be given in one extern declaration, separating them with commas:

extern double sin(double), double cos(double), double tan(double);

For clarity, the parameter types can also be annotated with parameter names (these only
serve informational purposes and are for the human reader; they are effectively treated as

1.10 C Interface 167

Pure Language and Library Documentation, Release 0.59

comments by the compiler):

extern double sin(double x);

Pointer types are indicated by following the name of the element type with one or more
asterisks, as in C. For instance:

> extern charx strchr(char *s, int c);
> strchr "foo bar" (ord "b");
Ilbarll

As you can see in the previous example, some pointer types get special treatment, allowing
you to pass certain kinds of Pure data (such as Pure strings as charx in this example). This
is discussed in more detail in C Types below.

The interpreter makes sure that the parameters in a call match; if not, then by default the call
is treated as a normal form expression:

> extern double sin(double);
> sin 0.3;

0.29552020666134

> sin 0;

sin 0

This gives you the opportunity to augment the external function with your own Pure equa-
tions. To make this work, you have to make sure that the extern declaration of the function
comes first. For instance, we might want to extend the sin function with a rule to handle
integers:

> sin x::int = sin (double x);
> sin 0;
0.0

Sometimes it is preferable to replace a C function with a wrapper function written in Pure. In
such a case you can specify an alias under which the original C function is known to the Pure
program, so that you can still call the C function from the wrapper. An alias is introduced
by terminating the extern declaration with a clause of the form = alias. For instance:

> extern double sin(double) = c_sin;
> sin x::double = c_sin x;

> sin x::int = c_sin (double x);

> sin 0.3; sin 0;

0.29552020666134

0.0

Aliases are just one way to declare a synonym of an external function. As an alternative, you
can also declare the C function in a special namespace (cf. Namespaces in the Declarations
section):

> namespace C;

> extern double sin(double);
> c::s5in 0.3;
0.29552020666134

168 1.10 C Interface

Pure Language and Library Documentation, Release 0.59

Note that the namespace qualification only affects the Pure side; the underlying C function is
still called under the unqualified name as usual. The way in which such qualified externs are
accessed is the same as for ordinary qualified symbols. In particular, the using namespace
declaration applies as usual, and you can declare such symbols as private if needed. It is
also possible to combine a namespace qualifier with an alias:

> namespace C;

> extern double sin(double) = mysin;
> c::mysin 0.3;

0.29552020666134

In either case, different synonyms of the same external function can be declared in slightly
different ways, which makes it possible to adjust the interpretation of pointer values on
the Pure side. This is particularly useful for string arguments which, as described below,
may be passed both as charx (which implies copying and conversion to or from the system
encoding) and as void* (which simply passes through the character pointers). For instance:

> extern char xstrchr(char *s, int c) = foo;
> extern void *xstrchr(void *s, int c) = bar;
> foo "foo bar" 98; bar "foo bar" 98;

"bar"

#<pointer 0x12c2f24>

Also note that, as far as Pure is concerned, different synonyms of an external function are
really different functions. In particular, they can each have their own set of augmenting Pure
equations. For instance:

extern double sin(double);
extern double sin(double) = mysin;
sin === sin;

sin === mysin;

sin 1.0; mysin 1.0;
.841470984807897
.841470984807897

sin x::int = sin (double Xx);
sin 1; mysin 1;
.841470984807897

mysin 1

®V VoOooVoV =YV VYV

1.10.2 Variadic C Functions

Variadic C functions are declared as usual by terminating the parameter list with an ellipsis

(vou):

> extern int printf(charx, ...);
> printf "Hello, world\n";
Hello, world

13

1.10.2 Variadic C Functions 169

Pure Language and Library Documentation, Release 0.59

Note that the variadic prototype is mandatory here, since the compiler needs to know about
the optional arguments so that it can generate the proper code to call the function. However,
in Pure a function always has a fixed arity, so, as far as Pure is concerned, the function is still
treated as if it had no extra arguments. Thus the above declaration only allows you to call
printf with a single argument.

To make it possible to pass optional arguments to a variadic function, you must explicitly
give the (non-variadic) prototypes with which the function is to be called. To these ends,
the additional prototypes are declared as synonyms of the original variadic function. This
works because the compiler only checks the non-variadic parameters for conformance. For
instance:

> extern int printf(charx, charx) = printf_s;
> printf_s "Hello, %s\n" "world";
Hello, world

13

> extern int printf(charx, int) = printf_d;
> printf_d "Hello, %d\n" 99;

Hello, 99

10

1.10.3 C Types

As indicated in the previous section, the data types in extern declarations are either C type
names or pointer types derived from these. The special expr* pointer type is simply passed
through; this provides a means to deal with Pure data in C functions in a direct fashion. For
all other C types, Pure values are “marshalled” (converted) from Pure to C when passed as
arguments to C functions, and the result returned by the C function is then converted back
from C to Pure. All of this is handled by the runtime system in a transparent way, of course.

Note that, to keep things simple, Pure does not provide any notations for C structs or func-
tion types, although it is possible to represent pointers to such objects using void* or some
other appropriate pointer types. In practice, this simplified system should cover most kinds
of calls that need to be done when interfacing to C libraries, but there are ways to work
around these limitations if you need to access C structs or call back from C to Pure, see
External C Functions in the Caveats and Notes section for details.

Basic C Types

Pure supports the usual range of basic C types: void, bool, char, short, int, long, float,
double, and converts between these and the corresponding Pure data types (machine ints,
bigints and double values) in a straightforward way.

The void type is only allowed in function results. It is converted to the empty tuple ().

Both float and double are supported as floating point types. Single precision float ar-
guments and return values are converted from/to Pure’s double precision floating point
numbers.

170 1.10 C Interface

Pure Language and Library Documentation, Release 0.59

A variety of C integer types (bool, char, short, int, long) are provided which are converted
from/to the available Pure integer types in a straightforward way. In addition, the synonyms
int8, int16 and int32 are provided for char, short and int, respectively, and int64 denotes
64 bit integers (a.k.a. ISO C99 long long). Note that long is equivalent to int32 on 32 bit
systems, whereas it is the same as int64 on most 64 bit systems. To make it easier to interface
to various system routines, there’s also a special size_t integer type which usually is 4 bytes
on 32 bit and 8 bytes on 64 bit systems.

All integer parameters take both Pure ints and bigints as actual arguments; truncation or
sign extension is performed as needed, so that the C interface behaves as if the argument
was “cast” to the C target type. Returned integers use the smallest Pure type capable of
holding the result, i.e., int for the C char, short and int types, bigint for int64.

Pure considers all integers as signed quantities, but it is possible to pass unsigned integers
as well (if necessary, you can use a bigint to pass positive values which are too big to fit
into a machine int). Also note that when an unsigned integer is returned by a C routine,
which is too big to fit into the corresponding signed integer type, it will “wrap around” and
become negative. In this case, depending on the target type, you can use the ubyte, ushort,
uint, ulong and uint64 functions provided by the prelude to convert the result back to an
unsigned quantity.

Pointer Types

The use of pointer types is also fairly straightforward, but Pure has some special rules for
the conversion of certain pointer types which make it easy to pass aggregate Pure data to
and from C routines, while also following the most common idioms for pointer usage in C.
The following types of pointers are recognized both as arguments and return values of C
functions.

Bidirectional pointer conversions:

¢ charx is used for string arguments and return values which are converted from Pure’s
internal utf-8 based string representation to the system encoding and vice versa. (Thus
a C routine can never modify the raw Pure string data in-place; if this is required then
youll have to pass the string argument as a voidx, see below.)

* voidx is for any generic pointer value, which is simply passed through unchanged.
When used as an argument, you can also pass Pure strings, matrices and bigints. In
this case the raw underlying data pointer (charx in the case of strings, int*, doublex
or exprx in the case of numeric and symbolic matrices, and the GMP type mpz_t in the
case of bigints) is passed, which allows the data to be modified in place (with care). In
particular, passing bigints as void* makes it possible to call most GMP integer routines
directly from Pure.

* dmatrixx, cmatrix*x and imatrix* allow you to pass numeric Pure matrices of the
appropriate types (double, complex, int). Here a pointer to the underlying GSL matrix
structure is passed (not just the data itself). This makes it possible to transfer GSL
matrices between Pure and GSL routines in a direct fashion without any overhead.

1.10.3 C Types 171

Pure Language and Library Documentation, Release 0.59

(For convenience, there are also some other pointer conversions for marshalling matrix
arguments to numeric C vectors, which are described in Pointers and Matrices below.)

¢ exprx is for any kind of Pure value. A pointer to the expression node is passed to or
from the C function. This type is to be used for C routines which are prepared to deal
with pristine Pure data, using the corresponding functions provided by the runtime.
You can find many examples of this in the standard library.

All other pointer types are simply taken at face value, allowing you to pass Pure pointer
values as is, without any conversions. This also includes pointers to arbitrary named types
which don’t have a predefined meaning in Pure, such as FILEx. As of Pure 0.45, the inter-
preter keeps track of the actual names of all pointer types and checks (at runtime) that the
types match in an external call, so that you can’t accidentally get a core dump by passing,
say, a FILEx for a char*. (The call will then simply fail and yield a normal form, which
gives you the opportunity to hook into the function with your own Pure definitions which
may supply any desired data conversions.) Typing information about pointer values is also
available to Pure scripts by means of corresponding library functions, please see the Tagged
Pointers section in the Pure Library Manual for details.

Pointers and Matrices

The following additional pointer conversions are provided to deal with Pure matrix values
in arguments of C functions, i.e., on the input side. These enable you to pass Pure matrices
for certain kinds of C vectors. Note that in any case, you can also simply pass a suitable
plain pointer value instead. Also, these types aren’t special in return values, where they will
simply yield a pointer value (with the exception of charx which gets special treatment as
explained in the previous subsection). Thus you will have to decode such results manually
if needed. The standard library provides various routines to do this, please see the String
Functions and Matrix Functions sections in the Pure Library Manual for details.

Numeric pointer conversions (input only):

e charx*, short*, int*, int64x, float*, double* can be used to pass numeric matrices
as C vectors. This kind of conversion passes just the matrix data (not the GSL matrix
structure, as the dmatrixx et al conversions do) and does conversions between integer
or floating point data of different sizes on the fly. You can either pass an int matrix as
a charx, short* int* or int64* argument, or a double or complex matrix as a floatx*
or doublex argument (complex values are then represented as two separate double
numbers, first the real, then the imaginary part, for each matrix element).

® charxx, shortxx, int**, int64x**, float**, doublex* provide yet another way to pass
numeric matrix arguments. This works analogously to the numeric vector conversions
above, but here a temporary C vector of pointers is passed to the C function, whose
elements point to the rows of the matrix.

Argv-style conversions (input only):

* charx** and void*x* can be used to pass argv-style vectors as arguments to C functions.
In this case, the Pure argument must be a symbolic vector of strings or generic pointer

172 1.10 C Interface

Pure Language and Library Documentation, Release 0.59

values. charxx converts the string elements to the system encoding, whereas voidxx
passes through character string data and other pointers unchanged (and allows in-
place modification of the data). A temporary C vector of these elements is passed to
the C function, which is always NULL-terminated and can thus be used for almost any
purpose which requires such argv-style vectors.

Note that in the numeric pointer conversions, the matrix data is passed “per reference” to
C routines, i.e., the C function may modify the data “in place”. This is true even for tar-
get data types such as shortx* or float** which involve automatic conversions and hence
need temporary storage. In this case the data from the temporary storage is written back to
the original matrix when the function returns, to maintain the illusion of in-place modifica-
tion. Temporary storage is also needed when the GSL matrix has the data in non-contiguous
storage. You may want to avoid this if performance is critical, by always using “packed”
matrices (see pack in Matrix Functions) of the appropriate types.

Pointer Examples

Let’s finally have a look at some instructive examples to explain some of the trickier pointer
types.

First, the matrix pointer types dmatrix*, cmatrix* and imatrix* can be used to pass double,
complex double and int matrices to GSL functions taking pointers to the corresponding GSL
types (gsl_matrix, gsl_matrix_complex and gsl_matrix_int) as arguments or returning
them as results. (Note that there is no special marshalling of Pure’s symbolic matrix type, as
these aren’t supported by GSL anyway.) Also note that matrices are always passed by refer-
ence. Thus, if you need to pass a matrix as an output parameter of a GSL matrix routine, you
should either create a zero matrix or a copy of an existing matrix to hold the result. The pre-
lude provides various operations for that purpose (in particular, see the dmatrix, cmatrix,
imatrix and pack functions in matrices.pure). For instance, here is how you can quickly
wrap up GSL’s double matrix addition function in a way that preserves value semantics:

> using "lib:gsl";

> extern int gsl_matrix_add(dmatrixx, dmatrixx);

> x::matrix + y::matrix = gsl_matrix_add x y $$ x when x = pack x end;
> let x = dmatrix {1,2,3}; let y = dmatrix {2,3,2}; x; y; x+y;

{ 0}

{ }

{ }

1.0,2.0,3.
2.0,3.0,2.0
3.0,5.0,5.0
Most GSL matrix routines can be wrapped in this fashion quite easily. A ready-made GSL
interface providing access to all of GSL’s numeric functions is in the works; please check the

Pure website for details.

For convenience, it is also possible to pass any kind of numeric matrix for a charx, shortx,
intx, int64*, float* or doublex parameter. This requires that the pointer and the matrix
type match up; conversions between char, short, int64 and int data and, likewise, between
float and double are handled automatically, however. For instance, here is how you can call
the puts routine from the C library with an int matrix encoding the string "Hello, world!"
as byte values (ASCII codes):

1.10.3 C Types 173

Pure Language and Library Documentation, Release 0.59

> extern int puts(charx);

> puts {72,101,108,108,111,44,32,119,111,114,108,100,33,0};
Hello, world!

14

Pure 0.45 and later also support char*, shortxx, int**, int64x*x*, float+* and doublexx
parameters which encode a matrix as a vector of row pointers instead. This kind of matrix
representation is often found in audio and video processing software (where the rows of the
matrix might denote different audio channels, display lines or video frames), but it’s also
fairly convenient to do any kind of matrix processing in C. For instance, here’s how to do
matrix multiplication (the naive algorithm):

void matmult(int n, int 1, int m, double x*xx, double *xy, double x*xz)
{
int i, j, k;
for (i = 0; i < n; i++)
for (j =0; j <m; j++) {
z[i][j] = 0.0;
for (k = 0; k < 1; k++)
z[11[j] += x[1i]1[KI*y[KI[jl;

}

As you can see, this multiplies a n times 1 matrix x with a 1 times m matrix y and puts the
result into the n times m matrix z:

extern void matmult(int, int, int, doublexx, doublexx*, doublexx);
let x = {0.11,0.12,0.13;0.21,0.22,0.23%};
let y = {1011.0,1012.0;1021.0,1022.0;1031.0,1032.0};

let z = dmatrix (2,2);
matmult 2 3 2 xy z $$ z;
{367.76,368.12;674.06,674.72}

V V V VYV

Also new in Pure 0.45 is the support for passing argv-style vectors as arguments. For in-
stance, here is how you can use fork and execvp to implement a poor man’s version of the
C system function. (This is Unix-specific and doesn’t do much error-checking, but you get
the idea.)

extern int fork();
extern int execvp(char *path, char xxargv);
extern int waitpid(int pid, int *xstatus, int options);

system cmd::string = case fork of
// child: execute the program, bail out if error
0 = execvp "/bin/sh" {"/bin/sh","-c",cmd} $$ exit 1;
// parent: wait for the child and return its exit code
pid = waitpid pid status 0 $$ status!0 >> 8
when status = {0} end if pid>=0;
end;

system "echo Hello, world!";

174 1.10 C Interface

Pure Language and Library Documentation, Release 0.59

system "ls -1 *.pure";
system "exit 1";

1.10.4 Importing Dynamic Libraries

By default, external C functions are resolved by the LLVM runtime, which first looks for
the symbol in the C library and Pure’s runtime library (or the interpreter executable, if the
interpreter was linked statically). Thus all C library and Pure runtime functions are readily
available in Pure programs. Other functions can be provided by adding them to the runtime,
or by linking them into the runtime or the interpreter executable. Better yet, you can just
“dlopen” shared libraries at runtime with a special form of the using clause:

using "lib:libname[.ext]";

For instance, if you want to call the functions from library libxyz directly from Pure:
using "lib:libxyz";

After this declaration the functions from the given library will be ready to be imported into
your Pure program by means of corresponding extern declarations.

Shared libraries opened with using clauses are searched for in the same way as source scripts
(see section Modules and Imports above), using the -L option and the PURE_LIBRARY envi-
ronment variable in place of -I and PURE_INCLUDE. If the library isn’t found by these means,
the interpreter will also consider other platform-specific locations searched by the dynamic
linker, such as the system library directories and LD_LIBRARY_PATH on Linux. The necessary
filename suffix (e.g., .so0 on Linux or .dll on Windows) will be supplied automatically when
needed. Of course you can also specify a full pathname for the library if you prefer that. If
a library file cannot be found, or if an extern declaration names a function symbol which
cannot be resolved, an appropriate error message is printed.

1.10.5 Importing LLVM Bitcode

As of Pure 0.44, the interpreter also provides a direct way to import LLVM bitcode modules
in Pure scripts. The main advantage of this method over the “plain” C interface explained
above is that the bitcode loader knows all the call interfaces and generates the necessary
extern declarations automatically. This is more than just a convenience, as it also eliminates
at least some of the mistakes in extern declarations that may arise when importing functions
manually from dynamic libraries.

Note: The facilities described below require that you have an LLVM-capable C/C++ com-
piler installed. The available options right now are clang, llvm-gcc and dragonegg. Please
check the Pure installation instructions on how to get one of these (or all of them) up and run-
ning. Note that clang and llvm-gcc are standalone compilers, while dragonegg is supplied
as a gcc plugin which hooks into your existing system compiler (gcc 4.5 or later is required
for that). Any of these enable you to compile C/C++ source to LLVM assembler or bitcode.

1.10.4 Importing Dynamic Libraries 175

Pure Language and Library Documentation, Release 0.59

The clang compiler is recommended for C/C++ development, as it offers faster compilation
times and has much better diagnostics than gcc. On the other hand, llvm-gcc and dragonegg
have the advantage that they also support alternative frontends so that you can compile For-
tran and Ada code as well. (But note that, as of LLVM 3.x, llvm-gcc is not supported any
more.)

LLVM bitcode is loaded in a Pure script using the following special format of the using
clause:

using "bc:modname[.bc]";

(Here the bc tag indicates a bitcode file, and the default .bc bitcode filename extension is
supplied automatically. Also, the bitcode file is searched for on the usual library search
path.)

That’s it, no explicit extern declarations are required on the Pure side. The Pure interpreter
automatically creates extern declarations (in the current namespace) for all the external
functions defined in the LLVM bitcode module, and generates the corresponding wrappers
to make the functions callable from Pure. (This also works when batch-compiling a Pure
script. In this case, the bitcode file actually gets linked into the output code, so the loaded
bitcode module only needs to be present at compile time.)

By default the imported symbols will be public. You can also specify the desired scope of
the symbols explicitly, by placing the public or private keyword before the module name.
For instance:

using private "bc:modname";

You can also import the same bitcode module several times, possibly in different name-
spaces. This will not actually reload the module, but it will create synonyms for the external
functions in different namespaces:

namespace foo;

using "bc:modname";
namespace bar;

using private "bc:modname";

You can load any number of bitcode modules along with shared libraries in a Pure script, in
any order. The JIT will try to satisfy external references in modules and libraries from other
loaded libraries and bitcode modules. This is deferred until the code is actually JIT-compiled,
so that you can make sure beforehand that all required libraries and bitcode modules have
been loaded. If the JIT fails to resolve a function, the interpreter will print its name and also
raise an exception at runtime when the function is being called from other C code. (You can
then run your script in the debugger to locate the external visible in Pure from which the
unresolved function is called.)

Let’s take a look at a concrete example to see how this actually works. Consider the follow-
ing C code which defines a little function to compute the greatest common divisor of two
(machine) integers:

176 1.10 C Interface

Pure Language and Library Documentation, Release 0.59

int mygcd(int x, int y)
{
if (y == 0)
return x;
else
return mygcd(y, X%y);
}

Let’s say that this code is in the file mygcd. ¢, then you’d compile it to a bitcode module using
clang as follows:

clang -emit-1lvm -c mygcd.c -o mygcd.bc

Note that the -emit-1lvm -c options instruct clang to build an LLVM bitcode module. Of
course, you can also add optimizations and other options to the compile command as de-
sired.

Using dragonegg is somewhat more involved, as it doesn’t provide a direct way to produce
a bitcode file yet. However, you can create an LLVM assembler file which can then be trans-
lated to bitcode using the llvm-as program as follows:

gcc -fplugin=dragonegg -flto -S mygcd.c -o mygcd.ll
1lvm-as mygcd.ll -o mygcd.bc

(Note that the - fplugin option instructs gcc to use the dragonegg plugin, which in conjunc-
tion with the - flto flag switches it to LLVM output. Please check the dragonegg website for
details.)

In either case, you can now load the resulting bitcode module and run the mygcd function in
the Pure interpreter simply as follows:

> using "bc:mygcd";
> mygcd 75 105;
15

To actually see the generated extern declaration of the imported function, you can use the
interactive show command:

> show mygcd
extern int mygcd(int, int);

Some more examples showing how to use the bitcode interface can be found in the Pure
sources. In particular, the interface also works with Fortran (using llvm-gfortran or gfortran
with dragonegg), and there is special support for interfacing to Grame’s functional DSP
programming language Faust (the latter uses a special variant of the bitcode loader, which
is selected with the dsp tag in the using clause). Further details about these can be found
below.

Please note that at this time the LLVM bitcode interface is still somewhat experimental, and
there are some known limitations:

¢ LLVM doesn’t distinguish between charx and voidx in bitcode, so all void* parameters

1.10.5 Importing LLVM Bitcode 177

Pure Language and Library Documentation, Release 0.59

and return values in C code will be promoted to charx on the Pure side. Also, pointers
to types which neither have a predefined meaning in Pure nor a proper type name in
the bitcode file, will become a generic pointer type (voidx, void*x, etc.) in Pure. If this
is a problem then you can just redeclare the corresponding functions under a synonym
after loading the bitcode module, giving the proper argument and result types (see
Extern Declarations above). For instance:

> using "bc:foo";

> show foo

extern charx foo(charx);

> extern void *xfoo(voidx) = myfoo;
> show myfoo

extern voidx foo(voidx) = myfoo;

¢ The bitcode interface is limited to the same range of C types as Pure’s plain C interface.
In practice, this should cover most C code, but it’s certainly possible that you run into
unsupported types for arguments and return values. The compiler will then print a
warning; the affected functions will still be linked in, but they will not be callable from
Pure. Also note that calling conventions for passing C structs by value depend on the
host ABI, so you should have a look at the resulting extern declaration (using show) to
determine how the function is actually to be called from Pure.

1.10.6 Inline Code

Instead of manually compiling source files to bitcode modules, you can also just place the
source code into a Pure script, enclosing it in %< ... %>. (Optionally, the opening brace
may also be preceded with a public or private scope specifier, which is used in the same
way as the scope specifier following the using keyword when importing bitcode files.)

For instance, here is a little script showing inline code for the mygcd function from the previ-
ous subsection:

%<
int mygcd(int x, int y)
{
if (y == 0)
return x;
else
return mygcd(y, x%y);

e

mygcd 75 105;

The interpreter automatically compiles the inlined code to LLVM bitcode which is then
loaded as usual. (Of course, this will only work if you have the corresponding LLVM com-
pilers installed.) This method has the advantage that you don’t have to write a Makefile
and you can create self-contained Pure scripts which include all required external functions.
The downside is that the inline code sections will have to be recompiled every time you run

178 1.10 C Interface

Pure Language and Library Documentation, Release 0.59

the script with the interpreter which may considerably increase startup times. If this is a
problem then it’s usually better to import a separate bitcode module instead (see Importing
LLVM Bitcode), or batch-compile your script to an executable (see Batch Compilation).

At present, C, C++, Fortran and Faust are supported as foreign source languages, with clang,
clang++, gfortran (with the dragonegg plugin) and faust as the corresponding (default) com-
pilers. C is the default language. The desired source language can be selected by placing an
appropriate tag into the inline code section, immediately after the opening brace. (The tag is
removed before the code is submitted to compilation.) For instance:

%< -*- Fortran90 -x-
function fact(n) result(p)
integer n, p

p=1
doi=1,n

p = pxi
end do

end function fact

%>

fact n::int = fact_ {n};
map fact (1..10);

As indicated, the language tag takes the form -*- lang -x*- where lang can currently be any
of ¢, c++, fortran and dsp (the latter indicates the Faust language). Case is insignificant here,
SO you can also write C, C++, Fortran, DSP etc. For the fortran tag, you may also have to
specify the appropriate language standard, such as fortran96 which is used in the example
above. The language tag can also be followed by a module name, using the format -*-
lang:name -x-. This is optional for all languages except Faust (where the module name
specifies the namespace for the interface routines of the Faust module; see Interfacing to
Faust below). So, e.g., a Faust DSP named test would be specified with a dsp:test tag.
Case is significant in the module name.

The Pure interpreter has some built-in knowledge on how to invoke the LLVM compilers
to produce a working bitcode file ready to be loaded by the interpreter, so the examples
above should work out of the box if you have the required compilers installed on your PATH.
However, there are also some environment variables you can set for customization purposes.
Specifically, PURE_CC is the command to invoke the C compiler. This variable lets you specify
the exact name of the executable along with any debugging and optimization options that
you may want to add. Likewise, PURE_CXX, PURE_FC and PURE_FAUST are used for the C++,
Fortran and Faust compilers, respectively.

For instance, if you prefer to use llvm-gcc as your C compiler, and you’d like to invoke it
with the -03 optimization option, you would set PURE_CC to "1lvm-gcc -03". (To verify
the settings you made, you can have the interpreter echo the compilation commands which
are actually executed, by running Pure with the -v0100 option, see Verbosity and Debug-
ging Options. Also note that the options necessary to produce LLVM bitcode will be added
automatically, so you don’t have to specify these.)

Beginning with Pure 0.48, the dragonegg gcc plugin is also fully supported. To make this

1.10.6 Inline Code 179

Pure Language and Library Documentation, Release 0.59

work, you need to explicitly specify the name of the plugin in the compilation command, so
that the Pure interpreter can add the proper set of options needed for bitcode compilation.
For instance:

PURE_CC="gcc -fplugin=dragonegg -03"

Some further details on the bitcode support for specific target languages can be found in the
subsections below.

1.10.7 Interfacing to C++

Interfacing to C++ code requires additional preparations because of the name mangling per-
formed by C++ compilers. Usually, you won’t be able to call C++ functions and methods
directly, so you’ll have to expose the required functionality using functions with C binding
(extern "C"). For instance, the following example shows how to work with STL maps from
Pure.

%< -%- C++ -%-

#include <pure/runtime.h>
#include <string>
#include <map>

// An STL map mapping strings to Pure expressions.

using namespace std;
typedef map<string,pure_expr*> exprmap;

// Since we can’t directly deal with C++ classes in Pure, provide some C
// functions to create, destroy and manipulate these objects.

extern "C" exprmap *map_create()
{
return new exprmap;

}

extern "C" void map_add(exprmap *m, const char xkey, pure_expr *x)
{

exprmap::iterator it = m->find(string(key));

if (it !'= m->end()) pure_free(it->second);

(*m) [key] = pure_new(x);

}

extern "C" void map_del(exprmap *m, const char xkey)
{
exprmap::iterator it = m->find(key);
if (it !'= m->end()) {
pure_free(it->second);
m->erase(it);
}
}

180 1.10 C Interface

Pure Language and Library Documentation, Release 0.59

extern "C" pure_expr xmap_get(exprmap *m, const char xkey)
{

exprmap::iterator it = m->find(key);

return (it !'= m->end())?it->second:0;

}

extern "C" pure_expr xmap_keys(exprmap xm)
{
size_t 1 =0, n = m->size();
pure_expr xxXs = new pure_exprx[n];
for (exprmap::iterator it = m->begin(); it != m->end(); ++it)
XSs[i++] = pure_string_dup(it->first.c_str());
pure_expr xx = pure_listv(n, xs);
delete[] xs;

return x;
}
extern "C" void map_destroy(exprmap *m)
{
for (exprmap::iterator it = m->begin(); it !'= m->end(); ++it)
pure_free(it->second);
delete m;
}

o°
Y

// Create the STL map and add a sentry so that it garbage-collects itself.
let m = sentry map_destroy map_create;

// Populate the map with some arbitrary Pure data.
do (\(x=>y) -> map_add m x y) ["foo"=>99, "bar"=>bar 4711L, "baz"=>1..5];

// Query the map.
map_keys m; // => ["bar","baz","foo0"]
map (map_get m) (map_keys m); // => [bar 4711L,[1,2,3,4,5],99]

// Delete an element.

map_del m "foo";

map_keys m; // => ["bar", "baz"]

map (map_get m) (map_keys m); // => [bar 4711L,[1,2,3,4,5]]

1.10.8 Interfacing to Faust

Faust is a functional dsp (digital signal processing) programming language developed at
Grame, which is tailored to the task of generating and transforming streams of numeric data
at the sample level. It is typically used to program sound synthesis and audio effect units,
but can in fact be employed to process any kind of numeric vector and matrix data. The Faust
compiler is capable of generating very efficient code for such tasks which is comparable in
performance with carefully handcrafted C routines. Pure’s Faust interface lets you use these

1.10.8 Interfacing to Faust 181

Pure Language and Library Documentation, Release 0.59

capabilities in order to process sample data stored in Pure matrices.

Pure’s LLVM bitcode loader has some special knowledge about Faust built into it, which
makes interfacing to Faust programs simple and efficient. At present, you'll need a special
LLVM-capable version of Faust to make this work, which is available under the “faust2”
branch in Faust’s git repository. Some information on how to get this up and running can be
found on the LLVM backend for Faust website.

Note: There’s also an alternative interface to Faust which is available as a separate package
and works with either Faust2 or the stable Faust version. Please check the pure-faust package
for details. This package also provides the faust2 compatibility module which implements
the pure-faust API on top of Pure’s built-in Faust interface, so that you can also use the
operations of this module instead. (The pure-faust API can in fact be more convenient to use
in some cases, especially if you want to load a lot of different Faust modules dynamically at
runtime.)

The -lang 11lvmoption instructs the Faust compiler to output LLVM bitcode. Also, you want
to add the -double option to make the compiled Faust module use double precision floating
point values for samples and control values. So you’d compile an existing Faust module in
the source file example.dsp as follows:

faust -double -lang llvm example.dsp -o example.bc

The -double option isn’t strictly necessary, but it makes interfacing between Pure and Faust
easier and more efficient, since Pure uses double as its native floating point format.

Alternatively, you can also use the Faust pure. c architecture (included in recent Faust2 re-
visions and also in the pure-faust package) to compile a Faust program to corresponding C
source which can then be fed into an LLVM-capable C compiler to produce bitcode which
is compatible with Pure’s Faust bitcode loader. This is useful, in particular, if you want to
make use of special optimization options provided by the C compiler, or if the Faust module
needs to be linked against additional C/C++ code. For instance:

faust -double -a pure.c -lang c example.dsp -o example.c
clang -emit-1lvm -03 -c example.c -0 example.bc

A third possibility is to just inline Faust code in a Pure script, as described in the Inline Code
section. The compilation step is then handled by the Pure compiler and the -double option is
added automatically. The PURE_FAUST environment variable can be used to specify a custom
Faust command to be invoked by the Pure interpreter. This is useful if you'd like to invoke
the Faust compiler with some special options, e.g.:

PURE_FAUST="faust -single -vec"

(Note that you do not have to include the -lang 1lvm option; the inline compiler will supply
it automatically.)

Moreover, you can also set the FAUST_OPT environment variable to specify any needed post-
processing of the output of the Faust compiler; this is typically used to invoke the LLVM

182 1.10 C Interface

https://bitbucket.org/purelang/pure-lang/wiki/Faust2

Pure Language and Library Documentation, Release 0.59

opt utility in a pipeline, in order to have some additional optimizations performed on the
Faust-generated code:

FAUST_OPT="| opt -03"

After loading or inlining the Faust module, the Pure compiler makes the interface routines
of the Faust module available in its own namespace. Thus, e.g., the interface routines for the
example.dsp module will end up in the example namespace.

Pure’s Faust interface offers another useful feature not provided by the general bitcode in-
terface, namely the ability to reload Faust modules on the fly. If you repeat the import clause
for a Faust module, the compiler checks whether the module was modified and, if so, re-
places the old module with the new one. Retyping an inline Faust code section has the same
effect. This is mainly intended as a convenience for interactive usage, so that you can test
different versions of a Faust module without having to restart the Pure interpreter. But it is
also put to good use in addon packages like pd-faust which allows Faust dsps to be reloaded
at runtime.

For instance, consider the following little Faust program, which takes a stereo audio signal
as input, mixes the two channels and multiplies the resulting mono signal with a gain value
given by a corresponding Faust control variable:

gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : x(gain);

The interface routines of this Faust module look as follows on the Pure side:

> show -g example::x*

extern void buildUserInterface(struct_dsp_examplex, struct_UIGluex) = example::buildUserInterface;
extern void classInit(int) = example::classInit;

extern void compute(struct_dsp_examplex, int, doublexx, doublexx) = example::compute;
extern void delete(struct_dsp_examplex) = example::delete;

extern void destroy(struct_dsp_examplex) = example::destroy;

extern int getNumInputs(struct_dsp_examplex) = example::getNumInputs;

extern int getNumOutputs(struct_dsp_examplex) = example::getNumOutputs;

extern int getSampleRate(struct_dsp_examplex) = example::getSampleRate;

extern exprx info(struct_dsp_examplex) = example::info;

extern void init(struct_dsp_examplex, int) = example::init;

extern void instanceInit(struct_dsp_examplex, int) = example::instancelnit;

extern exprx meta() = example::meta;

extern void metadata(struct_MetaGluex) = example::metadata;

extern struct_dsp_examplex new() = example::new;

extern struct_dsp_examplex newinit(int) = example::newinit;

The most important interface routines are new, init and delete (used to create, initialize
and destroy an instance of the dsp) and compute (used to apply the dsp to a given block of
samples). Some useful convenience functions are added by the Pure compiler:

® newinit combines new and init;

* info yields pertinent information about the dsp as a Pure tuple containing the number
of input and output channels and the Faust control descriptions;

1.10.8 Interfacing to Faust 183

Pure Language and Library Documentation, Release 0.59

* meta yields metadata about the dsp, as declared in the Faust source.

The latter two are provided in a symbolic format ready to be used in Pure; more about that
below.

Note that there’s usually no need to explicitly invoke the delete routine in Pure pro-
grams; the Pure compiler makes sure that this routine is added automatically as a finalizer
(see sentry) to all dsp pointers created through the new and newinit routines so that dsp
instances are destroyed automatically when the corresponding Pure objects are garbage-
collected. (If you prefer to do the finalization manually then you must also remove the
sentry from the dsp object, so that it doesn’t get deleted twice.)

Another point worth mentioning here is that the Pure compiler always generates code that
ensures that the Faust dsp instances (the struct_dsp pointers) are fully typechecked at run-
time. Thus it is only possible to pass a dsp struct pointer to the interface routines of the Faust
module it was created with.

Let’s have a brief look at how we can actually run a Faust module in Pure to process some
audio samples.

Step 1: Load the Faust dsp. This assumes that the Faust source has already been compiled
to a bitcode file, as shown above. You can then load the module in Pure as follows:

> using "dsp:example";

Note that the .bc bitcode extension is supplied automatically. Also note the special dsp tag;
this tells the compiler that this is a Faust-generated module, so that it does some Faust-
specific processing while linking the module.

Alternatively, you can also just inline the code of the Faust module. For the example above,
the inline code section looks as follows:

%< -*- dsp:example -x-
gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : x(gain);

%>

You can either add this code to a Pure script, or just type it directly in the Pure interpreter.

Finally, you may want to verify that the module has been properly loaded by typing show
-g example: :*. The output should look like the listing above.

Step 2: Create and initialize a dsp instance. After importing the Faust module you can now
create an instance of the Faust signal processor using the newinit routine, and assign it to a
Pure variable as follows:

> let dsp = example::newinit 44100;

Note that the constant 44100 denotes the desired sample rate in Hz. This can be an arbitrary
integer value, which is available in the Faust program by means of the SR variable. It’s
completely up to the dsp whether it actually uses this value in some way (our example
doesn’t, but we need to specify a value anyway).

184 1.10 C Interface

Pure Language and Library Documentation, Release 0.59

The dsp is now fully initialized and we can use it to compute some samples. But before we
can do this, we’ll need to know how many channels of audio data the dsp consumes and
produces, and which control variables it provides. This information can be extracted with
the info function, and be assigned to some Pure variables as follows:

> let k,1,ui = example::info dsp;

(We'll have a closer look at the contents of the ui variable below.)

In a similar fashion, the meta function provides some “metadata” about the Faust dsp, as
a list of key=>val string pairs. This is static data which doesn’t belong to any particular
dsp instance, so it can be extracted without actually creating an instance. In our case the
metadata will be empty, since we didn’t supply any in the Faust program. If needed, we can
add some metadata as follows:

declare descr "Faust Hello World";
declare author "Faust Guru";

declare version "1.0";

gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : x(gain);

If we now reload the Faust dsp, we’ll get:

> test::meta;
["descr"=>"Faust Hello World",6 "author"=>"Faust Guru","version"=>"1.0"]

Step 3: Prepare input and output buffers. Pure’s Faust interface allows you to pass Pure
double matrices as sample buffers, which makes this step quite convenient. For given num-
bers k and | of input and output channels, respectively, we'll need a k x n matrix for the input
and a I x n matrix for the output, where n is the desired block size (the number of samples
to be processed per channel in one go). Note that the matrices have one row per input or
output channel. Here’s how we can create some suitable input and output matrices using a
Pure matrix comprehension and the dmatrix function available in the standard library:

> let n = 10; // the block size
> let in = {i*10.0+j | i = 1..k; j = 1..n};
> let out dmatrix (1,n);

In our example, k=2 and 1=1, thus we obtain the following matrices:

> in;
{11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0;
21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0}
> out;

{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}

Step 4: Apply the dsp to compute some samples. With the in and out matrices as given
above, we can now apply the dsp by invoking its compute routine:
> example::compute dsp n in out;

This takes the input samples specified in the in matrix and stores the resulting output in the
out matrix. The output matrix now looks as follows:

1.10.8 Interfacing to Faust 185

Pure Language and Library Documentation, Release 0.59

> out;
{9.6,10.2,10.8,11.4,12.0,12.6,13.2,13.8,14.4,15.0}

Note that the compute routine also modifies the internal state of the dsp instance so that a
subsequent call will continue with the output stream where the previous call left off. (This
isn’t relevant in this specific example, but in general a Faust dsp may contain delays and
similar constructions which need a memory of past samples to be maintained between dif-
ferent invocations of compute.) Thus we can now just keep on calling compute (possibly with
different in buffers) to compute as much of the output signal as we need.

Step 5: Inspecting and modifying control variables. Recall that our sample dsp also has
a Faust control variable gain which lets us change the amplification of the output signal.
We’ve already assigned the corresponding information to the ui variable, let’s have a look
at it now:

> ui;

vgroup [] ("test",[nentry #<pointer 0x1611f00> [] ("gain",0.3,0.0,10.0,0.01)])

In general, this data structure takes the form of a tree which corresponds to the hierarchical
layout of the control groups and values in the Faust program. In this case, we just have
one toplevel group containing a single gain parameter, which is represented as a Pure term
containing the relevant information about the type, name, initial value, range and stepsize
of the control, along with a double pointer which can be used to inspect and modify the
control value. While it’s possible to access this information in a direct fashion, there’s also
a faustui.pure module in the standard library which makes this easier. First we extract the
mapping of control variable names to the corresponding double pointers as follows:

> using faustui;
> let ui = control_map $ controls ui; ui;
{"gain"=>#<pointer 0xd81820>}

The result is a record value indexed by control names, thus the pointer which belongs to our
gain control can now be obtained with ui!"gain". The faustui.pure module also provides
convenience functions to inspect a control and change its value:

> let gain = ui!"gain";
> get_control gain;
0.3

> put_control gain 1.0;
()

> get_control gain;

1.0

Let’s rerun compute to get another block of samples from the same input data, using the new
gain value:

> example::compute dsp n in out;
> out;
{32.0,34.0,36.0,38.0,40.0,42.0,44.0,46.0,48.0,50.0}

Faust also allows metadata to be attached to individual controls and control groups, which

186 1.10 C Interface

Pure Language and Library Documentation, Release 0.59

is available in the same form of a list of key=>val string pairs that we have seen already with
the meta operation. This metadata is used to provide auxiliary information about a control
to specific applications. It's completely up to the application how to interpret this metadata.
Typical examples are style hints about GUI renderings of a control, or the assignment of
external “MIDI” controllers. (MIDI is the “Musical Instruments Digital Interface”, a stan-
dardized hardware and software interface for electronic music instruments and other digital
multimedia equipment.)

In our example these metadata lists are all empty. Control metadata is specified in a Faust
program in the labels of the controls using the syntax [key:val], please see the Faust doc-
umentation for details. For instance, if we’d like to assign MIDI controller 7 (usually the
“volume controller” on MIDI keyboards) to our gain control, this might be done as follows:

gain = nentry("gain [midi:ctrl 7]", 0.3, 0, 10, 0.01);

After reloading the dsp and creating a new instance, this metadata is available in the ui
structure and can be extracted with the control_meta function of the faustui module as
follows:

> let dsp = test::newinit SR;

> let k,1l,ui = example::info dsp;

> controls ui!@;

nentry #<pointer 0x1c97070> ["midi"=>"ctrl 7"] ("gain",0.3,0.0,10.0,0.01)
> control_meta ans;

["midi"=>"ctrl 7"]

As you can see, all these steps are rather straightforward. Of course, in a real program we
would probably run compute in a loop which reads some samples from an audio device or
sound file, applies the dsp, and writes back the resulting samples to another audio device or
file. We might also have to process MIDI controller input and change the control variables
accordingly. This can all be done quite easily using the appropriate addon modules available
on the Pure website.

We barely scratched the surface here, but it should be apparent that the programming tech-
niques sketched out in this section open the door to the realm of sophisticated multimedia
and signal processing applications. More Faust-related examples can be found in the Pure
distribution. Also, have a look at the pd-pure and pd-faust packages to see how these facilities
can be used in Pd modules written in Pure.

1.11 Interactive Usage

In interactive mode, the interpreter reads definitions and expressions and processes them as
usual. You can use the -i option to force interactive mode when invoking the interpreter
with some script files. Additional scripts can be loaded interactively using either a using
declaration or the interactive run command (see the description of the run command below
for the differences between these). Or you can just start typing away, entering your own
definitions and expressions to be evaluated.

1.11 Interactive Usage 187

Pure Language and Library Documentation, Release 0.59

The input language is mostly the same as for source scripts, and hence individual defini-
tions and expressions must be terminated with a semicolon before they are processed. For
instance, here is a simple interaction which defines the factorial and then uses that definition
in some evaluations. Input lines begin with “>”, which is the interpreter’s default command
prompt:

> fact 1 1;

> fact n = nxfact (n-1) if n>1;

> let x = fact 10; x;

3628800

> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

As indicated, in interactive mode the normal forms of toplevel expressions are printed after
each expression is entered. This is also commonly known as the read-eval-print loop. Nor-
mal form expressions are usually printed in the same form as you’d enter them. However,
there are a few special kinds of objects like anonymous closures, thunks (“lazy” values to
be evaluated when needed) and pointers which don’t have a textual representation in the
Pure syntax and will be printed in the format #<object description> by default. It is also possi-
ble to override the print representation of any kind of expression by means of the __show__
function, see Pretty-Printing below for details.

A number of other special features of Pure’s command line interface are discussed in the
following subsections.

1.11.1 Command Syntax

Besides Pure definitions and expressions, the interpreter also understands a number of spe-
cial interactive commands for performing basic maintenance tasks, such as loading source
scripts, exiting and restarting the interpreter, changing the working directory, escaping to
the shell, getting help and displaying definitions. In contrast to the normal input language,
the command language is line-oriented; it consists of special command words to be typed
at the beginning of an input line, which may be followed by some parameters as required
by the command. The command language is intended solely for interactive purposes and
thus doesn’t offer any programming facilities of its own. However, it can be extended with
user-defined commands implemented as ordinary Pure functions; this is described in the
User-Defined Commands section below.

In fact, as of Pure 0.56 the interpreter actually provides two slightly different command
syntaxes, which we’ll refer to as “default” and “escape mode”. The manual assumes that
you're running the interpreter in its traditional default mode where interactive commands
are typed simply as they are shown in the following subsections, with the command word at
the very beginning of the line. However, this mode has its pitfalls, especially for beginners.
As most of the commands look just like ordinary identifiers, you may run into situations
where the beginning of an expression or definition to be typed at the prompt can be mis-
taken for a command word. In such cases the default mode requires that you insert one
or more spaces at the beginning of the line, so that the interpreter reads the line as normal

188 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

Pure code. Unfortunately, it’s much too easy to forget this if you're not familiar with the
command language.

Therefore there is an alternative escape mode available which handles special command in-
put more like some other popular programming language interpreters. In escape mode all
interactive commands have to be escaped by prefixing them with a special character at the
very beginning of the line. The command itself must follow the prefix character, without any
intervening whitespace. Any line not prefixed with the prefix character will then be consid-
ered normal Pure code. This mode can be enabled with the --escape option, which takes
the desired prefix character as an argument, or you can just set the PURE_ESCAPE variable in
your environment to enable escape mode by default.

For example, to set the escape character to “:” you'll invoke the interpreter as follows:

$ pure --escape=':"’

Alternatively, you could also set the PURE_ESCAPE environment variable like this (using
Bourne shell syntax):

$ export PURE_ESCAPE=":"’

Note that specifying the prefix character with the - -escape option overrides the value of the
environment variable, and only the initial character in the value of - -escape or PURE_ESCAPE
will be used. If the specified value is empty, the interpreter reverts to the default mode.
The following prefix characters can be used: !$%&+,:<>@\|. Note that these all belong to
7 bit ASCII, and only some of the ASCII punctuation characters are permitted in order to
prevent conflicts with ordinary Pure code. In any case, all of these characters can also occur in
ordinary Pure code, so you should use a prefix that you aren’t likely to type at the beginning
of a line in your usual coding style.

Many Pure programmers prefer escape mode, and in fact we recommend it for Pure novices
even though it’s not the default (yet). Others may prefer default mode because it’s less effort
to type. For the manual we stick to the default mode syntax. This means that if you're
running the interpreter in escape mode then you’ll have to do the necessary translation of
the command syntax yourself. For instance, if the manual tells you to type the following
command,

> show foldl

and you are using “:“ as the command prefix, then you will have to type this in escape mode
instead:

> :show foldl

Note that in this case “!” continues to serve as a shell escape:
> | find . ’*.pure’
This will not work, however, if you use ‘!“ as your command prefix. In this case you will

have to type two exclamation marks instead (the same caveat applies if you escape a shell
command in the debugger, cf. Debugging):

1.11.1 Command Syntax 189

Pure Language and Library Documentation, Release 0.59

> Il find . '*.pure’

This should be rather straightforward, so in the following we just use the default mode
command syntax throughout without further notice.

Note: Escape mode only applies to the interactive command line. It doesn’t affect the
evalcmd function in any way, so interactive commands in the string argument of evalcmd are
always specified without the escape character prefix no matter which mode the interpreter
is running in.

1.11.2 Online Help

Online help is available in the interpreter with the interactive help command, which gives
you access to all the available documentation in html format; this includes the present man-
ual, the Pure Library Manual, as well as all manuals of the addon modules available from the
Pure website.

You need to have a html browser installed to make this work. By default, the help com-
mand uses w3m, but you can change this by setting either the PURE_HELP or the BROWSER
environment variable accordingly.

When invoked without arguments, the help command displays an overview of the available
documentation, from which you can follow the links to the provided manuals:

> help

(If the interpreter gives you an error message when you do this then you haven’t installed
the documentation yet. The complete set of manuals is provided as a separate package at
the Pure website, please see the Pure installation instructions for details.)

The help command also accepts a parameter which lets you specify a search term which is
looked up in the global index, e.g.:

> help foldl

Besides Pure functions, macros, variables and constants described in the manual you can
also look up program options and environment variables, e.g.:

> help -x
> help pure-gen -x
> help PURE_STACK

(Note that you can specify the program name to disambiguate between options for differ-
ent utilities, such as the -x option which is accepted both by the Pure interpreter and the
pure-gen program.)

If the search term doesn’t appear in the index, it is assumed to be a topic (a link target,
usually a section title) in the Pure manual. Note that the docutils tools used to generate the
html source of the Pure documentation mangle the section titles so that they are in lowercase

190 1.11 Interactive Usage

http://docutils.sourceforge.net/

Pure Language and Library Documentation, Release 0.59

and blanks are replaced with hyphens. So to look up the present section in this manual you'd
have to type:

> help online-help

The help files are in html format and located in the docs subdirectory of the Pure library
directory (i.e., /usr/local/lib/pure/docs by default). You can look up topics in any of the
help files with a command like the following:

> help pure-gsl#matrices

Here pure-gs1 is the basename of the help file (library path and .html suffix are supplied
automatically), and matrices is a link target in that document. To just read the pure-gsl.html
file without specifying a target, type the following;:

> help pure-gsl#

(Note thatjust help pure-gsl won't work, since it would look for a search term in the index
or a topic in the Pure manual.)

Last but not least, you can also point the help browser to any html document (either a local
file or some website) denoted by a proper URL, provided that your browser program can
handle these. For instance:

> help file:mydoc.html#foo
> help http://purelang.bitbucket.org

1.11.3 Interactive Commands

The following built-in commands are always understood by the interpreter. (In addition,
you can define your own commands for frequently-used operations; see User-Defined Com-
mands below.)

! command
Shell escape.

break [symbol ...]
Sets breakpoints on the given function or operator symbols. All symbols must be spec-
ified in fully qualified form, see the remarks below. If invoked without arguments,
prints all currently defined breakpoints. This requires that the interpreter was invoked
with the - g option to enable debugging support. See Debugging below for details.

bt
Prints a full backtrace of the call sequence of the most recent evaluation, if that eval-
uation ended with an unhandled exception. This requires that the interpreter was
invoked with the -g option to enable debugging support. See Debugging below for
details.

cd dir

Change the current working dir.

1.11.3 Interactive Commands 191

Pure Language and Library Documentation, Release 0.59

clear [option ...] [symbol ...]

Purge the definitions of the given symbols (functions, macros, constants or global vari-
ables). All symbols must be specified in fully qualified form, see the remarks below.
If invoked as clear ans, clears the ans value (see Last Result below). When invoked
without any arguments, clear purges all definitions at the current interactive “level”
(after confirmation) and returns you to the previous level, if any. (It might be a good
idea to first check your current definitions with show or back them up with dump before
you do that.) The desired level can be specified with the -t option. See the description
of the save command and Definition Levels below for further details. A description of
the common options accepted by the clear, dump and show commands can be found in
Specifying Symbol Selections below.

del [-b|-m|-t] [symbol ...]
Deletes breakpoints and tracepoints on the given function or operator symbols. If the
-b option is specified then only breakpoints are deleted; similarly, del -t only deletes
tracepoints. If none of these are specified then both breakpoints and tracepoints are
deleted. All symbols must be specified in fully qualified form, see the remarks below.
If invoked without non-option arguments, del clears all currently defined breakpoints
and/or tracepoints (after confirmation); see Debugging below for details.

The -m option works similarly to - t, but deletes macro rather than function tracepoints,
see the description of the trace command below.

dump [-n filename] [option ...] [symbol ...]

Dump a snapshot of the current function, macro, constant and variable definitions in
Pure syntax to a text file. All symbols must be specified in fully qualified form, see the
remarks below. This works similar to the show command (see below), but writes the
definitions to a file. The default output file is .pure in the current directory, which is
then reloaded automatically the next time the interpreter starts up in interactive mode
in the same directory. This provides a quick-and-dirty way to save an interactive ses-
sion and have it restored later, but note that this isn’t perfect. In particular, declarations
of extern symbols won't be saved unless they’re specified explicitly, and some objects
like closures, thunks and pointers don’t have a textual representation from which they
could be reconstructed. To handle these, you'll probably have to prepare a correspond-
ing .purerc file yourself, see Interactive Startup below.

A different filename can be specified with the -n option, which expects the name of the
script to be written in the next argument, e.g: dump -n myscript.pure. You can then
edit that file and use it as a starting point for an ordinary script or a .purerc file, or you
can just run the file with the run command (see below) to restore the definitions in a
subsequent interpreter session.

help [topic]
Display online documentation. If a topic is given, it is looked up in the index. Alterna-
tively, you can also specify a link target in any of the installed help files, or any other
html document denoted by a proper URL. Please see Online Help above for details.

1s [args]
List files (shell Is command).

192 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

mem

Print current memory usage. This reports the number of expression cells currently in
use by the program, along with the size of the freelist (the number of allocated but cur-
rently unused expression cells). Note that the actual size of the expression storage may
be somewhat larger than this, since the runtime always allocates expression memory
in bigger chunks. Also, this figure does not reflect other heap-allocated memory in use
by the program, such as strings or malloc’ed pointers.

override

pwd

quit

Enter “override” mode. This allows you to add equations “above” existing definitions
in the source script, possibly overriding existing equations. See Definition Levels be-
low for details.

Print the current working dir (shell pwd command).

Exits the interpreter.

run [-g|script]

save

show

When invoked without arguments or with the -g option, run does a “cold” restart of
the interpreter, with the scripts and options given on the interpreter’s original com-
mand line. If just - g is specified as the argument, the interpreter is run with debugging
enabled. Otherwise the interpreter is invoked without debugging support. (This over-
rides the corresponding option from the interpreter’s command line.) This command
provides a quick way to rerun the interpreter after changes in some of the loaded script
files, or if you want to enable or disable debugging on the fly (which requires a restart
of the interpreter). You'll also loose any definitions that you entered interactively in
the interpreter, so you may want to back them up with dump beforehand.

When invoked with a script name as argument, run loads the given script file and adds
its definitions to the current environment. This works more or less like a using clause,
but only searches for the script in the current directory and places the definitions in the
script at the current temporary level, so that clear can be used to remove them again.
Also note that namespace and pragma settings of scripts loaded with run stick around
after loading the script. This allows you to quickly set up your environment by just
running a script containing the necessary namespace declarations and compiler direc-
tives. (Alternatively, you can also use the interpreter’s startup files for that purpose,
see Interactive Startup below.)

Begin a new level of temporary definitions. A subsequent clear command (see above)
will purge the definitions made since the most recent save command. See Definition
Levels below for details.

[option ...] [symbol ...]

Show the definitions of symbols in various formats. See The show Command below for
details. All symbols must be specified in fully qualified form, see the remarks below. A
description of the common options accepted by the clear, dump and show commands
can be found in Specifying Symbol Selections below.

1.11.3 Interactive Commands 193

Pure Language and Library Documentation, Release 0.59

stats [-m] [on]|off]

Enables (default) or disables “stats” mode, in which some statistics are printed after
an expression has been evaluated. Invoking just stats or stats on only prints the
cpu time in seconds for each evaluation. If the -m option is specified, memory usage is
printed along with the cpu time, which indicates the maximum amount of expression
memory (in terms of expression cells) used during the computation. Invoking stats
of f disables stats mode, while stats -m off just disables the printing of the memory
usage statistics.

trace [-a] [-m] [-r] [-s] [symbol ...]
Sets tracepoints on the given function or operator symbols. Without the -m option,
this works pretty much like the break command (see above) but only prints rule in-
vocations and reductions without actually interrupting the evaluation; see Debugging
below for details.

The -m option allows you to trace macro (rather than function) calls. If this option is
specified, the compiler prints reduction sequences involving the given macro symbol,
which is useful when debugging macros; see the Macros section for details and ex-
amples. Note that macro tracing works even if the interpreter was invoked without
debugging mode.

If the -a option is specified, tracepoints are set on all global function or macro symbols,
respectively (in this case the symbol arguments are ignored). This is convenient if you
want to see any and all reductions performed in a computation.

Tracing can actually be performed in two different modes, recursive mode in which the
trace is triggered by any of the active tracepoints and continues until the corresponding
call is finished, or skip mode in which only calls by the active tracepoints are reported.
The former is usually more helpful and is the default. The -s option allows you to
switch to skip mode, while the - r option switches back to recursive mode.

Finally, if neither symbols nor any of the -a, -r and -s options are specified then the
currently defined tracepoints are printed. Note that, as with the break command, ex-
isting tracepoints can be deleted with the del command (see above).

underride
Exits “override” mode. This returns you to the normal mode of operation, where new
equations are added “below” previous rules of an existing function. See Definition
Levels below for details.

Commands that accept options generally also understand the -h (help) option which prints
a brief summary of the command syntax and the available options.

Note that symbols (identifiers, operators etc.) must always be specified in fully qualified
form. No form of namespace lookup is performed by commands like break, clear, show
etc. Thus the specified symbols always work the same no matter what namespace and using
namespace declarations are currently in effect.

Besides the commands listed above, the interpreter also provides some special commands
for the benefit of other programs such as emacs driving the interpreter; currently these are
completion_matches, help_matches and help_index. These aren’t supposed to be invoked

194 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

directly by the user, although they may sometimes be useful to implement custom function-
ality, see User-Defined Commands.

1.11.4 Specifying Symbol Selections

The clear, dump and show commands all accept the following options for specifying a subset
of symbols and definitions on which to operate. All symbols must be specified in fully
qualified form. Options may be combined, thus, e.g., show -mft is the same as show -m
-f -t. Some options specify optional numeric parameters; these must follow immediately
behind the option character if present, as in - t0.

-c Select defined constants.
-f Select defined functions.

-g Indicates that the following symbols are actually shell glob patterns and that all match-
ing symbols should be selected.

-m Select defined macros.

-pflag Select only private symbols if flag is nonzero (the default), otherwise (flag is zero) se-
lect only public symbols. If this option is omitted then both private and public symbols
are selected.

-tlevel Select symbols and definitions at the given “level” of definitions and above. This
is described in more detail below. Briefly, the executing program and all imported
modules (including the prelude) are at level 0, while “temporary” definitions made
interactively in the interpreter are at level 1 and above. Thus a level of 1 restricts the
selection to all temporary definitions, whereas 0 indicates all definitions (i.e., every-
thing, including the prelude). If level is omitted, it defaults to the current definitions
level.

-v Select defined variables.
-y Select defined types.

In addition, the -h option prints a short help message describing all available options of the
command at hand.

If none of the -c, -f, -m, -v and -y options are specified, then all kinds of symbols (constants,
functions, macros, variables and types) are selected, otherwise only the specified categories
will be considered.

A reasonable default is used if the -t option is omitted. By default, if no symbols are spec-
ified, only temporary definitions are considered, which corresponds to -t1. Otherwise the
command applies to all corresponding definitions, no matter whether they belong to the ex-
ecuting program, the prelude, or some temporary level, which has the same effect as -t0.
This default choice can be overridden by specifying the desired level explicitly.

As a special case, just clear (without any other options or symbol arguments) always backs
out to the previous definitions level (instead of level #1). This is inconsistent with the rules
set out above, but is implemented this way for convenience and backward compatibility.

1.11.4 Specifying Symbol Selections 195

Pure Language and Library Documentation, Release 0.59

Thus, if you really want to delete all your temporary definitions, use clear -t1 instead.
When used in this way, the clear command will only remove temporary definitions; if you
need to remove definitions at level #0, you must specify those symbols explicitly.

Note that clear -g * will have pretty much the same disastrous consequences as the Unix
command rm -rf *, so don’t do that. Also note that a macro or function symbol may well
have defining equations at different levels, in which case a command like clear -tn foo
might only affect some part of foo’s definition. The dump and show commands work analo-
gously (albeit less destructively). See Definition Levels below for some examples.

1.11.5 The show Command

The show command can be used to obtain information about defined symbols in various
formats. Besides the common selection options discussed above, this command recognizes
the following additional options for specifying the content to be listed and the format to use.

-a Disassembles pattern matching automata. Works like the -v4 option of the interpreter.

-d Disassembles LLVM IR, showing the generated LLVM assembler code of a function.
Works like the -v8 option of the interpreter.

-e Annotate printed definitions with lexical environment information (de Bruijn indices,
subterm paths). Works like the -v2 option of the interpreter.

-1 Long format, prints definitions along with the summary symbol information. This
implies -s.

-s Summary format, print just summary information about listed symbols.

Symbols are always listed in lexicographic order. Note that some of the options (in partic-
ular, -a and -d) may produce excessive amounts of information. By setting the PURE_MORE
environment variable, you can specify a shell command to be used for paging, usually more
or less.

For instance, to list all temporary definitions made in an interactive session, simply say:

> show

You can also list a specific symbol, no matter whether it comes from the interactive command
line, the executing script or the prelude:

> show foldl
foldl f a x::matrix

foldl f a (list x);

foldl f a s::string = foldl f a (chars s);
foldl f a [] = a;
foldl f a (x:xs) = foldl f (f a x) xs;

Wildcards can be used with the -g option, which is useful if you want to print an entire
family of related functions, e.g.:

> show -g foldlx
foldl f a x::matrix = foldl f a (list x);

196 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

foldl f a s::string = foldl f a (chars s);
foldl f a [] = a;

foldl f a (x:xs) = foldl f (f a x) xs;
foldll f x::matrix = foldll f (list x);
foldll f s::string = foldll f (chars s);
foldll f (x:xs) = foldl f x xs;

Or you can just specify multiple symbols as follows (this also works with multiple glob
patterns when you add the -g option):

> show min max
max x y = if x>=y then x else y;
min x y = if x<=y then x else y;

You can also select symbols by category. E.g., the following command shows summary
information about all the variable symbols along with their current values (using the “long”
format):

> show -lvg *

argc var argc = 0;

argv var argv = [];

compiling var compiling = 0;

sysinfo var sysinfo = "x86_64-unknown-linux-gnu";
version var version = "0.59";

5 variables

Or you can list just private symbols of the namespace foo, as follows:

> show -pg foo::x

The following command will list each and every symbol that’s currently defined (instead of
-g * you can also use the -t0 option):

> show -g x

This usually produces a lot of output and is rarely needed, unless you'd like to browse
through an entire program including all library imports. (In that case you might consider
to use the dump command instead, which writes the definitions to a file which can then be
loaded into a text editor for easier viewing. This may occasionally be useful for debugging
purposes.)

The show command also has the following alternate forms which are used for special pur-
poses:

* show interface lists the actual type rules for an interface type. This is useful if you
want to verify which patterns will be matched by an interface type, see Interface Types
for details. For instance:

> interface stack with
> push xs::stack x;
> pop xs::stack;

> top xs::stack;

1.11.5 The show Command 197

Pure Language and Library Documentation, Release 0.59

> end;

> push xs@[1 x |

> push xs@(_:_) X = X:XS;
> pop (X:XS) = Xs;

> top (x:xs) = Xx;

> show interface stack

type stack xs@(_:_);

> pop [1 = throw "empty stack";
> top [] = throw "empty stack";
> show interface stack

type stack xs@[];

type stack xs@(_:_);

* show namespace lists the current and search namespaces, while show namespaces lists
all declared namespaces. These come in handy if you have forgotten what namespaces
are currently active and which other namespaces are available in your program. For
instance:

> show namespace

> show namespaces
namespace C;
namespace matrix;

> using namespace C;
> namespace my;

> show namespace
namespace my;

using namespace C;

1.11.6 Definition Levels

To help with incremental development, the interpreter offers some commands to manipu-
late the current set of definitions interactively. To these ends, definitions are organized into
different subsets called levels. As already mentioned, the prelude, as well as other source
programs specified when invoking the interpreter, are always at level 0, while the interactive
environment starts at level 1. Each save command introduces a new temporary level, and
each subsequent clear command (without any arguments) “pops” the definitions on the
current level and returns you to the previous one (if any). This gives you a “stack” of tem-
porary environments which enables you to “plug and play” in a (more or less) safe fashion,
without affecting the rest of your program.

For all practical purposes, this stack is unlimited, so that you can create as many levels as you
like. However, this facility also has its limitations. The interpreter doesn’t really keep a full
history of everything you entered interactively, it only records the level a variable, constant,
and function or macro rule belongs to so that the corresponding definitions can be removed
again when the level is popped. On the other hand, intermediate changes in variable values
are not recorded anywhere and cannot be undone. Moreover, global declarations (which
encompasses using clauses, extern declarations and special symbol declarations) always
apply to all levels, so they can’t be undone either.

198 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

That said, the temporary levels can still be pretty useful when you're playing around with
the interpreter. Here’s a little example which shows how to use clear to quickly get rid of a
definition that you entered interactively:

> foo (x:xs) = x+foo xs;

> foo []1 = 0;

> show

foo (x:xs) = x+foo xs;

foo [] = 0;

> foo (1..10);

55

> clear

This will clear all temporary definitions at level #1.
Continue (y/n)? vy

> show

> foo (1..10);

foo [1,2,3,4,5,6,7,8,9,10]

We've seen already that normally, if you enter a sequence of equations, they will be recorded
in the order in which they were written. However, it is also possible to override definitions
in lower levels with the override command:

> foo (x:xs) = x+foo xs;
> foo [] = 0;

> show

foo (x:xs) = x+foo xs;
foo [] = 0;

> foo (1..10);

55

> save

save: now at temporary definitions level #2
> override

> foo (x:xs) = xxfoo xs;

> show

foo (x:xs) = xxfoo xs;
foo (x:xs) = x+foo xs;
foo [] = 0;

> foo (1..10);
warning: rule never reduced: foo (x:xs) = x+foo xs;
0

Note that the equation foo (x:xs) = xxfoo xs was inserted before the previous rule foo
(x:xs) = x+foo xs, which is at level #1. (The latter equation is now “shadowed” by the
rule we just entered, hence the compiler warns us that this rule can’t be reduced any more.)

Even in override mode, new definitions will be added after other definitions at the current
level. This allows us to just continue adding more high-priority definitions overriding lower-
priority ones:

> foo [] = 1;

> show

foo (x:xs) = xxfoo Xs;
foo [] = 1;

1.11.6 Definition Levels 199

Pure Language and Library Documentation, Release 0.59

foo (x:xs) = x+foo Xxs;

foo [] = 0;

> foo (1..10);

warning: rule never reduced: foo (x:xs) = x+foo Xxs;
warning: rule never reduced: foo [] = 0;

3628800

Again, the new equation was inserted above the existing lower-priority rules, but below our
previous equation foo (x:xs) = x*foo xs entered at the same level. As you can see, we
have now effectively replaced our original definition of foo with a version that calculates
list products instead of sums, but of course we can easily go back one level to restore the
previous definition:

> clear

This will clear all temporary definitions at level #2.
Continue (y/n)? vy

clear: now at temporary definitions level #1

clear: override mode is on

> show

foo (x:xs) = x+foo xs;

foo [] = 0;

> foo (1..10);

55

Note that clear reminded us that override mode is still enabled (save will do the same if
override mode is on while pushing a new definitions level). To turn it off again, use the
underride command. This will revert to the normal behaviour of adding new equations
below existing ones:

> underride
It’s also possible to use clear to back out multiple levels at once, if you specify the target
level to be cleared with the -t option. For instance:

> save
save: now at temporary definitions level #2
> let bar = 99;

> show

let bar = 99;

foo (x:xs) = x+foo xs;
foo [] = 0;

> // this scraps all our scribblings!

> clear -t1

This will clear all temporary definitions at level #1 and above.
Continue (y/n)? vy

clear: now at temporary definitions level #1

> show

>

The facilities described above are also available to Pure programs, as the save and clear
commands can also be executed under program control using the evalcmd primitive. Con-
versely, the library provides its own functions for inspecting and manipulating the source

200 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

program, which may also be useful in custom command definitions; see the Pure Library
Manual for details.

1.11.7 Debugging

The interpreter provides a simple but reasonably convenient symbolic debugging facility
when running interactively. To make this work, you have to specify the -g option when
invoking the interpreter (pure -g). If you're already at the interpreter’s command line, you
can also use the run -g command to enable the debugger. The -g option disables tail call
optimization (see Stack Size and Tail Recursion) to make it easier to debug programs. It also
causes special debugging code to be generated which will make your program run much
slower. Therefore the - g option should only be used if you actually need the debugger.

One common use of the debugger is “post mortem” debugging after an evaluation ended
with an unhandled exception. In such a case, the bt command of the interpreter prints a
backtrace of the call sequence which caused the exception. Note that this only works if
debugging mode was enabled. For instance:

> [1,2]1!3;
<stdin>, line 2: unhandled exception ’'out_of_bounds’ while evaluating '[1,2]!3’
> bt
[1] (!): (x:xs)!'n::int = xs!(n-1) if n>0;
n=3; x=1; xs = [2]
[2] ('): (x:xs)!'n::int = xs!'(n-1) if n>0;
n=2; x=2; xs =11
[31 ("): [1'n::int = throw out_of_bounds;
n=1
>> [4] throw: extern void pure_throw(exprx) = throw;
x1 = out_of_bounds

The last call, which is also marked with the >> symbol, is the call that raised the exception.
The format is similar to the p command of the debugger, see below, but bt always prints a
full backtrace. (As with the show command of the interpreter, you can set the PURE_MORE en-
vironment variable to pipe the output through the corresponding command, or use evalcmd
to capture the output of bt in a string.)

The debugger can also be used interactively. To these ends, you can set breakpoints on
functions with the break command. The debugger then gets invoked as soon as a rule for
one of the given functions is executed. Example:

> fact n::int = if n>0 then nxfact (n-1) else 1;

> break fact

> fact 1;

xx [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1

(Type 'h’ for help.)

xx [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=2~0

1.11.7 Debugging 201

Pure Language and Library Documentation, Release 0.59

++ [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;

n=20
--> 1
wxk [2] (*x): x::intxy::int = xxy;
x=1, y=1
++ [2] (*): x::intxy::int = xxy;
x=1, y=1
--> 1
++ [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1
-->1

1

Lines beginning with ** indicate that the evaluation was interrupted to show the rule (or
external) which is currently being considered, along with the current depth of the call stack,
the invoked function and the values of parameters and other local variables in the current
lexical environment. In contrast, the prefix ++ denotes reductions which were actually per-
formed during the evaluation and the results that were returned by the function call (printed
as --> return value).

Sometimes you might also see funny symbols like #<closure>, #<case> or #<when> instead
of the function name. These indicate lambdas and the special variable-binding environ-
ments, which are all implemented as anonymous closures in Pure. Also note that the de-
bugger doesn’t know about the argument names of external functions (which are optional
in Pure and not recorded anywhere), so it will display the generic names x1, x2 etc. instead.

At the debugger prompt “:* you can enter various special debugger commands, or just keep
on hitting the carriage return key to walk through an evaluation step by step, as we did in
the example above. (Command line editing works as usual at the debugger prompt, if it
is enabled.) The usual commands are provided to walk through an evaluation, print and
navigate the call stack, step over the current call, or continue the evaluation unattended
until you hit another breakpoint. If you know other source level debuggers like gdb then
you should feel right at home. You can type h at the debugger prompt to print the following
list:

: h

Debugger commands:

a auto: step through the entire program, run unattended
c [f] continue until next breakpoint, or given function f
h help: print this list

n next step: step over reduction

p [n] print rule stack (n = number of frames)

r run: finish evaluation without debugger

s single step: step into reduction

t, b move to the top or bottom of the rule stack

u, d move up or down one level in the rule stack

X exit the interpreter (after confirmation)

. reprint current rule
I cmd execute interpreter command
? expr evaluate expression

202 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

<cr> single step (same as 's')
<eof> step through program, run unattended (same as 'a’)

Note: If you specified an - -escape prefix other than “!* (cf. Command Syntax), that prefix
will be used to execute interpreter commands instead, see below. The help message will tell
you which command prefix is in effect.

The command syntax is very simple. Besides the commands listed above you can also en-
ter comment lines (// comment text) which will just be ignored. Extra arguments on com-
mands which don’t expect any will generally be ignored as well. The single letter commands
all have to be separated from any additional parameters with whitespace, whereas the “!’,
‘?”and ‘. commands count as word delimiters and can thus be followed immediately by
an argument. For convenience, the “?* command can also be omitted if the expression to be
evaluated doesn’t start with a single letter or one of the special punctuation commands.

The debugger can be exited or suspended in the following ways:

* You can type c to continue the evaluation until the next breakpoint, or ¢ foo in order
to proceed until the debugger hits an invocation of the function foo.

* You can type r to run the rest of the evaluation without the debugger.

¢ The a (“auto”) command single-steps through the rest of the evaluation, running unat-
tended. This command can also be entered by just hitting the end-of-file key (Ctr1l-d
on Unix systems) at the debugger prompt.

* You can also type x to exit from the debugger and the interpreter immediately (after
confirmation).

In addition, you can use the ! command (or whatever command prefix has been set with the
- -escape option) to run any interpreter command while in the debugger. For instance:

Ils

This is particularly useful to invoke the break and del commands to change breakpoints.
Note that you can actually escape any valid input to the interpreter that way, not just the
special interactive commands. However, you shouldn’t try to modify the program while
you're debugging it. This may work in some cases, but will have nasty consequences if you
happen to change a function which is currently being executed.

The interpreter’s shell escape can also be used from the debugger. In default mode or when
using ! as the - -escape prefix, you'll have to escape shell commands with !'!, otherwise a
single ! suffices.

At the debugger prompt, you can use the u (“up”), d (“down”), t (“top”) and b (“bottom”)
commands to move around on the current call stack. The p command prints a range of the
call stack centered around the currently selected stack frame, which is indicated with the
>> tag, whereas ** denotes the current bottom of the stack (which is the rule to be executed
with the single step command). The p command can also be followed by a numeric argument
which indicates the number of stack frames to be printed (this will then become the default

1.11.7 Debugging 203

Pure Language and Library Documentation, Release 0.59

for subsequent invocations of p). The n command steps over the call selected with the stack
navigation commands. For instance:

> fact 3;
xx [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=3
ToC ok
wxk [4] (x): x::intxy::int = xxy;
x=1, y=1
p
[1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=3
[2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=2
[3] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1
xx [4] (x): x::intxy::int = xxy;
x=1, y=1
Tu
>> [3] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1
Tu
>> [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=2
p
[1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=3
>> [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=2
[3] fact: fact n::int = 1if n>0 then nxfact (n-1) else 1;
n=1
xx [4] (x): x::intxy::int = xxy;
x=1;, y=1
in
++ [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=2
--> 2
xx [2] (%): x::intxy::int = xxy;
X =3,y =2

If you ever get lost, you can reprint the current rule with the “.” command:

xx [2] (x): x::intxy::int = xxy;
X =3,y =2

Another useful feature is the ? command which lets you evaluate any Pure expression, with
the local variables of the current rule bound to their corresponding values. Like the n com-
mand, ? applies to the current stack frame as selected with the stack navigation commands.
The expression must be entered on a single line, and the trailing semicolon is optional. For
instance:

204 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

> fact 3;

xx [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=3

PoC o

¥+ [4] (x): x::intsy::int = xxy;
x=1;, y=1

TO?X+y

2

Tu

>> [3] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1

: n>0, fact n

1,1

A third use of the debugger is to trace function calls. For that the interpreter provides the
trace command which works similarly to break, but sets so-called “tracepoints” which only
print rule invocations and reductions instead of actually interrupting the evaluation. For
instance, assuming the same example as above, let’s first remove the breakpoint on fact
(using the del command) and then set it as a tracepoint instead:

> del fact

> trace fact

> fact 1;

xx [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1

xx [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=20

++ [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=20
-->1

xx [2] (*): x::intxy::int = xxy;
x=1;, y=1

++ [2] (*): x::intxy::int = xxy;
x=1, y=1
-->1

++ [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1
>]_

1

The break and trace commands can also be used in concert if you want to debug some
functions while only tracing others.

Note that the trace command can actually be run in two different modes: recursive mode
in which the trace is triggered by any of the active tracepoints and continues until the cor-
responding call is finished, or skip mode in which only calls by the active tracepoints are
reported. The former is the default and is often preferable, because it gives you a complete
transcript of the reductions performed during a function call.

If you don’t need that much detail, you can also switch to skip mode by invoking the trace
command with the -s option. This allows you to see a quick summary of the computation
which only shows reductions by rules directly involving the active tracepoints. For instance:

1.11.7 Debugging 205

Pure Language and Library Documentation, Release 0.59

> trace -s

> fact 1;

xx [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1

xx [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=20

++ [2] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=20
--> 1

++ [1] fact: fact n::int = if n>0 then nxfact (n-1) else 1;
n=1
-->1

1

Moreover, the trace command can also be invoked with the -a option to trace all function
calls, which is convenient to quickly obtain a full transcript of a reduction sequence. The
same options also work in an analogous fashion with macro calls, see the Macros section for
some examples.

The current sets of breakpoints and tracepoints can be changed with the break, trace and
del commands, as shown above, and just break or trace without any arguments lists the
currently defined breakpoints or tracepoints, respectively. Please see Interactive Commands
above for details. Also note that these are really interpreter commands, so to invoke them
in the debugger you have to escape them with the ! command (or whatever other - -escape
prefix you specified).

The debugger can also be triggered programmatically with the built-in parameter-less func-
tions __break _ and __trace__. This gives you much better control over the precise loca-
tion and the conditions under which the debugger should be invoked. Just place a call to
__break__ or __trace__ near the point where you’d like to start debugging or tracing; this
can be done either with the sequencing operator ‘$$’ or with a when clause. The debugger
will then be invoked at the next opportunity (usually when a function is called or a reduction
is completed). For instance:

> fact n::int = if n>0 then __break__ $$ nxfact (n-1) else 1;

> fact 10;

++ [2] __break__: extern void pure_break() = __break__;
--> ()

xx [2] fact: fact n::int = if n>0 then __break__$$nxfact (n-1) else 1;
n=29

Here the debugger is invoked right after the call to __break__, when the nxfact (n-1) ex-
pression in the then branch is about to be evaluated. The debugger thus stops at the re-
cursive invocation of fact 9. Tracing works in a similar fashion, using __trace__ in lieu
of __break__, and continues until the current stack frame is exited. One major advantage
of this method is that it is possible to invoke __break__ or __trace__ only under certain
conditions, so that you can focus on interesting “events” during evaluation, which can make
debugging much less tedious. In our example, in order to stop when n becomes 1, we might
invoke __break__ as follows:

206 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

> fact n::int = if n>0 then n>1||__break__ $$ nxfact (n-1) else 1;
> fact 3;
++ [4] __break__: extern void pure_break() = __break__;
--> ()
xx [4] fact: fact n::int = if n>0 then n>1||__break_ _$$nxfact (n-1) else 1;

n=20
- p
[1] fact: fact n::int = if n>0 then n>1||__break__$$nxfact (n-1) else 1;
n=3
[2] fact: fact n::int = if n>0 then n>1||__break _$$nxfact (n-1) else 1;
n=2
[3] fact: fact n::int = if n>0 then n>1||__break__$$n*xfact (n-1) else 1;
n=1
x*x [4] fact: fact n::int = if n>0 then n>1||__break__$$nxfact (n-1) else 1;
n=2~0

1.11.8 Last Result

Another convenience for interactive usage is the ans function, which retrieves the most re-
cent result printed in interactive mode. For instance:

> fact n = if n<=1 then 1 else nxfact (n-1);

> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]
> scanl (+) 0 ans;
[0,1,3,9,33,153,873,5913,46233,409113,4037913]

Note that ans is just an ordinary function, defined in the prelude, not a special command.
However, there is a special clear ans command which purges the ans value. This is useful,
e.g., if you got a huge result which you want to erase from memory before starting the next
computation.

> clear ans
> ans;
ans

1.11.9 Pretty-Printing

The interpreter provides the following “hook” to override the print representations of ex-
pressions. This works in a fashion similar to Haskell’s show function.

—show__ x
The programmer may define this function to supply custom print representations for
certain expressions.

__show__ is just an ordinary Pure function expected to return a string with the desired cus-
tom representation of a normal form value given as the function’s single argument. The
interpreter prints the strings returned by __show__ just as they are. It will not check whether

1.11.8 Last Result 207

Pure Language and Library Documentation, Release 0.59

they conform to Pure syntax and /or semantics, or modify them in any way. Also, the library
doesn’t define this function anywhere, so you are free to add any rules that you want.

Custom print representations are most useful for interactive purposes, if you're not happy
with the default print syntax of some kinds of objects. One particularly useful application of
__show__ is to change the format of numeric values. Here are some examples:

using systenm;

__show__ x::double = sprintf "%0.6f" Xx;
1/7;

.142857

__show__ x::int = sprintf "0Ox%0x" Xx;
1786;

Ox6fa

> using math;

> __show__ (x::double +: y::double) = sprintf "%0.6f+%0.6fi" (x,y);
> cis (-pi/2);

0.000000+-1.0000001

V VoV VYV

The prelude function str, which returns the print representation of any Pure expression,
calls __show__ as well:

> str (1/7);
"0.142857"

Conversely, you can call the str function from __show__, but in this case it always returns
the default representation of an expression. This prevents the expression printer from going
recursive, and allows you to define your custom representation in terms of the default one.
E.g., the following rule removes the L suffixes from bigint values:

> __show__ x::bigint = init (str x);
> fact n = foldl (x) 1L (1..n);

> fact 30;
265252859812191058636308480000000

Of course, your definition of __show__ can also call __show__ itself recursively to determine
the custom representation of an object.

One case which needs special consideration are thunks (futures). The printer will never use
__show__ for those, to prevent them from being forced inadvertently. In fact, you can use
__show__ to define custom representations for thunks, but only in the context of a rule for
other kinds of objects, such as lists. For instance:

> nonfix ...;

> __show__ (x:xs) = str (x:...) if thunkp xs;
> 1:2:(3..1inf);

1:2:3:...

Another case which needs special consideration are numeric matrices. For efficiency, the
expression printer will always use the default representation for these, unless you override
the representation of the matrix as a whole. E.g., the following rule for double matrices
mimics Octave’s default output format (for the sake of simplicity, this isn’t perfect, but you
get the idea):

208 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

__show__ x::matrix =
strcat [printd j (x!(i,j))|i=0..n-1; j=0..m-1] + "\n"
with printd 0@ = sprintf "\n%10.5f"; printd _ = sprintf "%10.5f" end
when n,m = dim x end if dmatrixp Xx;
{1.0,1/2;1/3,4.0};
1.00000 0.50000
0.33333 4.00000

V VV VYV

Finally, by just purging the definition of the __show__ function you can easily go back to the
standard print syntax:

> clear __show__

> 1/7; 1786; cis (-pi/2);
0.142857142857143

1786
6.12303176911189%e-17+:-1.0

Note that if you have a set of definitions for the __show__ function which should always
be loaded at startup, you can put them into the interpreter’s interactive startup files, see
Interactive Startup below.

1.11.10 User-Defined Commands

It is possible to extend the interpreter with your own interactive commands. To these ends,
all you have to do is provide some corresponding public function definitions in the special
__cmd__ namespace (cf. Namespaces). These definitions are typically placed in one of the
interpreter’s startup files (see Interactive Startup below) so that they are always available
when running the interpreter interactively.

A command function is invoked with one string argument which contains the rest of the
command line (with leading and trailing whitespace stripped off). It may return a string
result which is printed on standard output (appending a newline if needed). Thus a simple
command which just prints its arguments as is can be implemented as follows:

> namespace __cmd__;
> echo s = s;
> echo Hello, world!
Hello, world!

You can split arguments and do any required processing of the arguments with the usual
string processing functions. For instance, let’s change our echo command so that it prints
each whitespace-delimited token on a line of its own:

> clear __cmd__::echo

> echo s = join "\n" args when

> args = [a | a =split " " s; ~null al;
> end;

> echo Hello, world!

Hello,

world!

1.11.10 User-Defined Commands 209

Pure Language and Library Documentation, Release 0.59

A command function may in fact return any kind of value. However, only string results are
printed by the interpreter, other results are silently ignored. Thus we might implement the
echo command in a direct fashion, using the C puts function:

> clear __cmd__::echo

> private extern int puts(charx);
> echo s = puts s;

> echo Hello, world!

Hello, world!

Note that we declared puts as a private symbol here. In general, the interpreter only exposes
public functions in the __cmd__ namespace as commands, private symbols are hidden. On
the other hand, we might also just expose the external function puts itself under the (public)
alias echo, so here’s yet another possible implementation of the echo command:

> clear __cmd__::echo

> extern int puts(charx) = echo;

warning: external 'echo’ shadows previous undefined use of this symbol
> echo Hello, world!

Hello, world!

Instead of returning a result, a command function may also throw an exception. If the ex-
ception value is a string, it will be printed as an error message on standard error, using the
same format as the built-in commands:

> error s = throw s;
> error Hello, world!
error: Hello, world!

You can also override a built-in command in order to provide custom functionality. In this
case, the original builtin can still be executed by escaping the command name with a leading
‘2. The same syntax works with the evalcmd function, so that a custom command can be
defined in terms of the builtin that it replaces. E.g., if we always want to invoke the 1s
command with the -1 option, we can redefine the 1s command as follows:

> 1ls examples/x*.c

examples/poor.c examples/sort.c

> 1s s = evalemd $ ""1ls -1 "+s;

> 1s examples/x*.c

-rw-r--r-- 1 ag users 1883 2011-01-07 16:35 examples/poor.c
-rw-r--r-- 1 ag users 3885 2011-01-07 16:35 examples/sort.c

(Note that since we entered the definition of the 1s function interactively, we need to escape
the second input line above with leading whitespace, so that it’s not mistaken for an invoca-
tion of the built-in 1s command. This isn’t necessary if you're using the alternative “escape”
command syntax described in Command Syntax.)

To do more interesting things, you should take a look at the reflection capabilities discussed
in the Macros section, which open up endless possibilities for commands to inspect and ma-
nipulate the running program in an interactive fashion. For instance, let’s define a variation
of the built-in clear command which allows us to delete a specific rule rather than an entire
function definition:

210 1.11 Interactive Usage

Pure Language and Library Documentation, Release 0.59

namespace __cmd__;

clr s = case val $ "’(0 with "+s+" end)" of
"(0 __with__ [r]) = del_fundef r;
_ = throw "bad rule syntax";

end;

Note that we employ a little trick here to have val do all the hard work of parsing the rule
specified as argument to the command, in order to translate the Pure rule syntax to the
special meta representation used by del_fundef. The following example shows our clr
command in action:

> namespace;

> fact n = 1 if n<=0;

> = nxfact (n-1) otherwise;
> show fact

fact n = 1 if n<=0;

fact n = nxfact (n-1);

> clr fact n = 1 if n<=0;
> show fact

fact n = nxfact (n-1);

Here’s another useful command apropos which quickly summarizes the information avail-
able on a given symbol (as reported by the show and help_index commands):

namespace __cmd__;

apropos s = case catmap descr $ split "In" $ evalcmd $ "show -s "+s of
[1 = throw $ "undefined symbol ’'"+s+"’'";
info = s+" is a "+join " and a info+". |
Type ’‘show "+s+"’ for more information."+
(if null (evalcmd $ "help_index "+s) then "" else
"\nDocumentation for this symbol is available. Type ’help "+s+"’.");
end with
descr info = case [x | x = split " " info; ~null x] of
t:c:_ = [symtypes!c] if s==t when
symtypes = {"fun"=>"function","mac"=>"macro","var"=>"variable",
"cst"=>"constant"};

end;
- =11
end;
end;

This command can be used as follows:

> apropos foldl

foldl is a function. Type ’'show foldl’ for more information.
Documentation for this symbol is available. Type 'help foldl’.

> apropos $

$ is a macro and a function. Type ’'show $’ for more information.
Documentation for this symbol is available. Type 'help $’.

> let x = 11;

1.11.10 User-Defined Commands 211

Pure Language and Library Documentation, Release 0.59

> apropos X
X is a variable. Type ’'show x' for more information.
> apropos y

apropos: undefined symbol 'y’

More examples can be found in the sample.purerc file distributed with the Pure interpreter.

1.11.11 Interactive Startup

In interactive mode, the interpreter runs some additional scripts at startup, after loading the
prelude and the scripts specified on the command line. This lets you tailor the interactive
environment to your liking.

The interpreter first looks for a .purerc file in the user’s home directory (as given by the HOME
environment variable) and then for a .purerc file in the current working directory. These
are just ordinary Pure scripts which may contain any additional definitions (including com-
mand definitions, as described in the previous section) that you need. The .purerc file in
the home directory is for global definitions which should always be available when running
interactively, while the .purerc file in the current directory can be used for project-specific
definitions.

Finally, you can also have a .pure initialization file in the current directory, which is usually
created with the dump command (see above). This file is loaded after the .purerc files if it is
present.

The interpreter processes all these files in the same way as with the run command (see Inter-
active Commands above). When invoking the interpreter, you can specify the - -norc option
on the command line if you wish to skip these initializations.

1.12 Batch Compilation

The interpreter’s - c option provides a means to turn Pure scripts into standalone executa-
bles. This feature is still a bit experimental. In particular, note that the compiled executable is
essentially a static snapshot of your program which is executed on the “bare metal”, without a
hosting interpreter. Only a minimal runtime system is provided. This considerably reduces
startup times, but also implies some quirks and limitations as detailed below.

First and foremost, the batch compiler always reorders the code so that all toplevel expres-
sions and let bindings are evaluated after all functions have been defined. This is done to
reduce the size of the output executable, so that there’s only a single snapshot of each func-
tion which will be used by all toplevel expressions and global variable definitions invoking
the function. Therefore you should avoid code like the following;:

let x = foo 99;
foo x = x+1;
let y = foo 99;

212 1.12 Batch Compilation

Pure Language and Library Documentation, Release 0.59

Note that if you run this through the interpreter, x and y are bound to foo 99 and 100,
respectively, because expressions and variable definitions are executed immediately, as the
program is being processed. In contrast, if the same program is batch-compiled, both vari-
ables will be defined after the definition of foo and thus refer to the same value 100 instead.
This will rarely be a problem in practice (the above example is really rather pathological and
won'’t usually occur in real-world programs), but to avoid these semantic differences, you'll
have to make sure that expressions are evaluated after all functions used in the evaluation
have been defined completely. (However, the batch compiler currently doesn’t check this
condition and will happily generate code for programs which violate it.)

Plain toplevel expressions won’t be of much use in a batch-compiled program, unless, of
course, they are evaluated for their side-effects. Your program will have to include at least
one of these to play the role of the “main program” in your script. In most cases these
expressions are best placed after all the function and variable definitions, at the end of your
program.

Also note that during a batch compilation, the compiled program is actually executed as
usual, i.e., the script is also run at compile time. This might first seem to be a big annoyance,
but it actually opens the door for some powerful programming techniques like partial eval-
uation. It is also a necessity because of Pure’s highly dynamic nature. For instance, Pure
allows you to define constants by evaluating an arbitrary expression (cf. Constant Defini-
tions), and using eval a program can easily modify itself in even more unforeseeable ways.
Therefore pretty much anything in your program can actually depend on previous computa-
tions performed while the program is being executed. To make this work in batch-compiled
scripts, the batch compiler thus executes the script as usual. The compiling variable can be
used to check whether the script is being batch-compiled, so you can adjust to that by se-
lectively enabling or disabling parts of the code. For instance, you will usually want to skip
execution of the “main program” during batch compilation.

Last but not least, note that some parts of Pure’s metaprogramming capabilities and other
compile time features are disabled in batch-compiled programs:

* The eval function can only be used to evaluate plain toplevel expressions. You can
define local functions and variables in with and when clauses inside an expression, but
you can’t use eval to define new global variables and functions. In other words, any-
thing which changes the executing program is “verboten”. Moreover, the introspective
capabilities provided by evalcmd and similar operations (discussed under Reflection
in the Macros section) are all disabled. If you need any of these capabilities, you have
to run your program with the interpreter.

¢ Constant and macro definitions, being compile time features, aren’t available in the
compiled program. If you need to use these with eval at run time, you have to provide
them through variable and function definitions instead. Also, the compiler usually
strips unused functions from the output code, so that only functions which are actually
called somewhere in the static program text are available to eval. (The -u option and
the - -required pragma can be used to avoid this, see Options Affecting Code Size
below.)

¢ Code which gets executed to compute constant values at compile time will generally
not be executed in the compiled executable, so your program shouldn’t rely on side-

1.12 Batch Compilation 213

http://en.wikipedia.org/wiki/Partial_evaluation
http://en.wikipedia.org/wiki/Partial_evaluation

Pure Language and Library Documentation, Release 0.59

effects of such computations (this would be bad practice anyway). There is an excep-
tion to this rule, however, namely if a constant value contains run time data such as
pointers and local functions which requires an initialization at run time, then the batch
compiler will generate code for that. (The same happens if the --noconst option is
used to force computation of constant values at run time, see Options Affecting Code
Size.)

What this boils down to is that in the batch-compiled program you will have to avoid any-
thing which requires the compile time or interactive facilities of the interpreter. These re-
strictions only apply at run time, of course. At compile time the program is being executed
by the full version of the interpreter so you can use eval and evalcmd in any desired way.

For most kinds of scripts, the above restrictions aren’t really that much of an obstacle, or
can easily be worked around. For the few scripts which actually need the full dynamic
capabilities of Pure you'll just have to run the script with the interpreter. This isn’t a big
deal either, only the startup will be somewhat slower because the script is compiled on the
fly. Once the JIT has done its thing the “interpreted” script will run every bit as fast as the
“compiled” one, since in fact both are compiled (only at different times) to exactly the same
code!

1.12.1 Example

For the sake of a concrete example, consider the following little script:

using systenm;

fact n = if n>0 then nxfact (n-1) else 1;

main n do puts ["Hello, world!", str (map fact (1..n))];

if argc<=1 then () else main (sscanf (argv!1l) "%d");

When invoked from the command line, with the number n as the first parameter, this pro-
gram will print the string "Hello, world!" and the list of the first n factorials:

$ pure hello.pure 10
Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]

Note the condition on argc in the last line of the script. This prevents the program from
producing an exception if no command line parameters are specified, so that the program
can also be run interactively:

$ pure -i -q hello.pure

> main 10;

Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]
()

> quit

214 1.12 Batch Compilation

Pure Language and Library Documentation, Release 0.59

To turn the script into an executable, we just invoke the Pure interpreter with the - c option,
using the - o option to specify the desired output file name:

$ pure -c hello.pure -o hello

$./hello 10

Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]

Next suppose that we’d like to supply the value n at compile rather than run time. To these
ends we want to turn the value passed to the main function into a compile time constant,
which can be done as follows:

const n = if argc>1 then sscanf (argv!l) "%d" else 10;

(Note that we provide 10 as a default if n isn’t specified on the command line.)

Moreover, in such a case we usually want to skip the execution of the main function at com-
pile time. To these ends, the predefined compiling variable holds a truth value indicating
whether the program is actually running under the auspices of the batch compiler, so that it
can adjust accordingly. In our example, the evaluation of main becomes:

if compiling then () else main n;
Our program now looks as follows:
using system;

fact n if n>0 then nxfact (n-1) else 1;

main n do puts ["Hello, world!", str (map fact (1..n))];
const n = if argc>1 then sscanf (argv!l) "%d" else 10;
if compiling then () else main n;

This script “specializes” n to the first (compile time) parameter when being batch-compiled,
and it still works as before when we run it through the interpreter in both batch and interac-
tive mode, too:

$ pure -i -q hello.pure

Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]
> main 5;

Hello, world!

[1,2,6,24,120]

()

> quit

$ pure hello.pure 7
Hello, world!
[1,2,6,24,120,720,5040]

$ pure -o hello -c -x hello.pure 7

1.12.1 Example 215

Pure Language and Library Documentation, Release 0.59

$./hello
Hello, world!
[1,2,6,24,120,720,5040]

In addition, there’s also a compile time check analogous to the compiling variable, which
indicates whether the source script is being run normally or in a batch compilation; see
Conditional Compilation. We might employ this as follows, replacing the last line of the
script with this:

#! --if compiled

if compiling then () else main n;

#! --else

if argc>1 then main n else puts "Try ’‘main n’ where n is a number.";
#! --endif

The code in the --if compiled section, which is the same as before, is now only executed
during batch compilation and in the compiled executable. If we run the script normally,
in the interpreter, the code in the --else section, which just prints a welcome message if
no arguments are given on the command line, is executed instead. So we now actually
have four different code paths, depending on whether the script is run normally, with or
without arguments, or in a batch compilation, or as a native executable. This kind of setup
is useful if the script is to be run both interactively and non-interactively in the interpreter
while developing it, but once the script is finished it gets compiled and installed as a native
executable.

$ pure -i -q hello.pure

Try 'main n’ where n is a number.
> main 5;

Hello, world!

[1,2,6,24,120]

()

> quit

$ pure hello.pure 7

Hello, world!
[1,2,6,24,120,720,5040]

$ pure -0 hello -c hello.pure
$./hello

Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]

You'll rarely need an elaborate setup like this, most of the time something like our simple
first example will do the trick. But, as you've seen, Pure can easily do it.

1.12.2 Options Affecting Code Size

By default, the batch compiler strips unused functions from the output code, to keep the code
size small. You can disable this with the -u option, in which case the output code includes

216 1.12 Batch Compilation

Pure Language and Library Documentation, Release 0.59

all functions defined in the compiled program, the prelude and any other module imported
with a using clause, even if they don’t seem to be used anywhere. This considerably in-
creases compilation times and makes the compiled executable much larger. For instance, on
a 64 bit Linux systems with ELF binaries the executable of our hello.pure example is about
thrice as large:

$ pure -o hello -c -x hello.pure 7 & 1s -1 hello

-rwxr-xr-x 1 ag users 178484 2010-01-12 06:21 hello
$ pure -o hello -c -u -x hello.pure 7 & 1s -1 hello
-rwxr-xr-x 1 ag users 541941 2010-01-12 06:21 hello

(Note that even the stripped executable is fairly large when compared to compiled C code,
as it still contains the symbol table of the entire program, which is needed by the runtime
environment.)

Stripped executables should be fine for most purposes, but you have to be careful when
using eval in your compiled program. The compiler only does a static analysis of which
functions might be reached from the initialization code (i.e., toplevel expressions and let
bindings). It does not take into account code run via the eval routine. Thus, functions used
only in evaled code will be stripped from the executable, as if they were never defined at
all. If such a function is then being called using eval at runtime, it will evaluate to a plain
constructor symbol.

If this is a problem then you can either use the -u option to produce an unstripped exe-
cutable, or you can force specific functions to be included in the stripped executable with the
--required pragma (cf. Code Generation Options). For instance:

#! --required foo
foo x = bar (x-1);
eval "foo 99";

There is another code generation option which may have a substantial effect on code size,
namely the --noconst option. Normally, constant values defined in a const definition are
precomputed at compile time and then stored in the generated executable; this reduces
startup times but may increase the code size considerably if your program contains big con-
stant values such as lists. If you prefer smaller executables then you can use the - -noconst
option to force the value of the constant to be recomputed at run time (which effectively
turns the constant into a kind of read-only variable). For instance:

#! --noconst
const xs = 1L..100000L;
sum = foldl (+) 0O;

using systenm;
puts $ str $ sum xs;

On my 64 bit Linux system this produces a 187115 bytes executable. Without - -noconst the
code becomes almost an order of magnitude larger in this case (1788699 bytes). On the other
hand, the smaller executable also takes a little longer to run since it must first recompute the
value of the list constant at startup. So you have to consider the tradeoffs in a given situation.
Usually big executables aren’t much of a problem on modern operating systems, but if your

1.12.2 Options Affecting Code Size 217

Pure Language and Library Documentation, Release 0.59

program contains a lot of big constants then this may become an important consideration.
However, if a constant value takes a long time to compute then you'll be better off with the
default behaviour of precomputing the value at compile time.

1.12.3 Other Output Code Formats

Note that while the batch compiler generates native executables by default, it can just as well
create object files which can be linked into other C/C++ programs and libraries:

$ pure -o hello.o -c -x hello.pure 7

The .o extension tells the compiler that you want an object file. When linking the object
module, you also need to supply an initialization routine which calls the __pure_main__
function in hello.o to initialize the compiled module. This routine is declared in C/C++
code as follows:

extern "C" void __pure_main__(int argc, charxx argv);

As indicated, __pure_main__ is to be invoked with two parameters, the argument count
and NULL-terminated argument vector which become the argc and the argv of the Pure pro-
gram, respectively. (You can also just pass 0 for both arguments if you don’t need to supply
command line parameters.) The purpose of __pure_main__ is to initialize a shell instance
of the Pure interpreter which provides the minimal runtime support necessary to execute
the Pure program, and to invoke all “initialization code” (variable definitions and toplevel
expressions) of the program itself.

A minimal C main function which does the job of initializing the Pure module looks as fol-
lows:

extern void __pure_main__(int argc, charxx argv);

int main(int argc, charxx argv)
{
__pure_main__(argc, argv);
return 0;

}

If you link the main routine with the Pure module, don’t forget to also pull in the Pure
runtime library. Assuming that the above C code is in pure_main.c:

$ gcc -c pure_main.c -o pure_main.o

$ g++ -0 hello hello.o pure_main.o -lpure
$./hello

Hello, world!

[1,2,6,24,120,720,5040]

(The C++ compiler is used as the linker here so that the standard C++ library gets linked in,
too. This is necessary because Pure’s runtime library is actually written in C++.)

In fact, this is pretty much what pure -c actually does for you when creating an executable.

218 1.12 Batch Compilation

Pure Language and Library Documentation, Release 0.59

If your script loads dynamic libraries (using "lib:...";) then you'll also have to link with
those; all external references have to be resolved at compile time. This is taken care of au-
tomatically when creating executables. Otherwise it is a good idea to run pure -c with the
-v0100 verbosity option so that it prints the libraries to be linked (in addition to the com-
mands which are invoked in the compilation process):

$ pure -v0100 -c hello.pure -o hello.o

opt -f -std-compile-opts hello.o.bc | 1lc -f -o hello.o.s
gcc -c hello.o.s -0 hello.o

Link with: g++ hello.o -lpure

Well, we already knew that, so let’s consider a slightly more interesting example from Pure’s
ODBC module:

$ pure -v0100 -c pure-odbc/examples/menagerie.pure -o menagerie.o

opt -f -std-compile-opts menagerie.o.bc | llc -f -0 menagerie.o.s

gcc -c menagerie.o.s -0 menagerie.o

Link with: g++ menagerie.o /usr/local/lib/pure/odbc.so -lpure

$ g++ -shared -o menagerie.so menagerie.o /usr/local/lib/pure/odbc.so -lpure

Note that the listed link options are necessary but might not be sufficient; pure -cjust makes
a best guess based on the Pure source. On most systems this will be good enough, but if it
isn’t, you can just add options to the linker command as needed to pull in additional required
libraries.

As this last example shows, you can also create shared libraries from Pure modules. How-
ever, on some systems (most notably x86_64), this requires that you pass the - fPIC option
when batch-compiling the module, so that position-independent code is generated:

$ pure -c -fPIC pure-odbc/examples/menagerie.pure -o menagerie.o

Note that even when building a shared module, you’ll have to supply an initialization rou-
tine which calls __pure_main__ somewhere.

Also note that since Pure doesn’t support separate compilation in the present implementa-
tion, if you create different shared modules like this, each will contain their own copy all the
required Pure functions from the prelude and other imported Pure modules. This becomes
a problem when trying to link several separate batch-compiled modules into the same ex-
ecutable or library, because you'll get many name clashes for routines present in different
modules (including the __pure_main__ entry point). To prevent this, the batch compiler can
be invoked with the --main option to explicitly set a name for the main entry point. For
instance:

$ pure -c hello.pure -o hello.o --main __hello_main__

This has two effects. First, the main entry point will be called whatever you specified with
--main, so you have to call this function instead of __pure_main__ to initialize the module.
Second, if --main is specified, then all Pure functions in the module will be changed to
internal linkage (like static functions in C) to prevent any possible name clashes between
different modules. (Alas, this also makes it impossible to employ pure_funcall to call Pure

1.12.3 Other Output Code Formats 219

Pure Language and Library Documentation, Release 0.59

functions directly from C, as described in the following section, so you'll have to use other
runtime routines such as pure_eval or pure_appl to achieve this in an indirect way.)

Last but not least, pure -c can also generate just plain LLVM assembler code:

pure -c hello.pure -o hello.ll

Note the .1l extension; this tells the compiler that you want an LLVM assembler file. An
LLVM bitcode file can be created just as easily:

pure -c hello.pure -o hello.bc

In these cases you'll have to have to handle the rest of the compilation yourself. This gives
you the opportunity, e.g., to play with special optimization and code generation options
provided by the LLVM toolchain. Please refer to the LLVM documentation (in particular, the
description of the opt and llc programs) for details.

1.12.4 Calling Pure Functions From C

Another point worth mentioning here is that you can’t just call Pure functions in a batch-
compiled module directly. That’s because in order to call a Pure function, at least in the
current implementation, you have to set up a Pure stack frame for the function. However,
there’s a convenience function called pure_funcall in the runtime API to handle this. This
function takes a pointer to the Pure function, the argument count and the arguments them-
selves (as pure_expr* objects) as parameters. For instance, here is a pure_main.c module
which can be linked against the hello.pure program from above, which calls the fact func-
tion from the Pure program:

#include <stdio.h>
#include <pure/runtime.h>

extern void __pure_main__(int argc, charxx argv);
extern pure_expr xfact(pure_expr *x);

int main()
{
int n = 10, m;
__pure_main__(0, NULL);
if (pure_is_int(pure_funcall(fact, 1, pure_int(n)), &m))
printf("fact %d = %d\n", n, m);
return 0;

}

And here’s how you can compile, link and run this program:

$ pure -o hello.o -c -x hello.pure 7

$ gcc -o pure_main.o -c pure_main.c

$ g++ -o myhello hello.o pure_main.o -lpure
$./myhello

Hello, world!

220 1.12 Batch Compilation

http://llvm.org/docs/

Pure Language and Library Documentation, Release 0.59

[1,2,6,24,120,720,5040]
fact 10 = 3628800

Note that the first two lines are output from the Pure program; the last line is what gets
printed by the main routine in pure_main.c.

1.13 Caveats and Notes

This section is a grab bag of casual remarks, useful tips and tricks, and information on com-
mon pitfalls, quirks and limitations of the current implementation and how to deal with
them.

1.13.1 Etymology

People keep asking me what’s so “pure” about Pure. The long and apologetic answer is
that Pure tries to stay as close as possible to the spirit of term rewriting without sacrificing
practicality. Pure’s term rewriting core is in fact purely functional. It’s thus possible and in
fact quite easy to write purely functional programs in Pure, and you're encouraged to do so
whenever this is reasonable. On the other hand, Pure doesn’t get in your way if you want to
call external operations with side effects; after all, it does allow you to call any C function at
any point in a Pure program.

The short answer is that I simply liked the name, and there wasn’t any programming lan-
guage named “Pure” yet (quite a feat nowadays), so there’s one now. If you insist on a
(recursive) backronym, just take “Pure” to stand for the “Pure universal rewriting engine”.

1.13.2 Backward Compatibility

Pure is based on the author’s earlier Q language, but it offers many new and powerful
features and programs run much faster than their Q equivalents. The language also went
through a thorough facelift in order to modernize the syntax and make it more similar to
other modern-style functional languages, in particular Miranda and Haskell. Thus porting
Q scripts to Pure often involves a substantial amount of manual work, but it can (and has)
been done.

Since its modest beginnings in April 2008, Pure has gone through a lot of major and mi-
nor revisions which raise various backward compatibility issues. We document these in the
following, in order to facilitate the porting of older Pure scripts. (Note that this isn’t in-
tended to be a full history of Pure development, so you may want to consult the NEWS and
ChangeLog files included in the distribution for more details.)

Pure 0.7 introduced built-in matrix structures, which called for some minor changes in the
syntax of comprehensions and arithmetic sequences. Specifically, the template expression
and generator/filter clauses of a comprehension are now separated with | instead of ;.
Moreover, arithmetic sequences with arbitrary stepsize are now written x:y. .z instead of

1.13 Caveats and Notes 221

Pure Language and Library Documentation, Release 0.59

X,y..z,and the “..” operator now has a higher precedence than the *,” operator. This makes
writing matrix slices like x! ! (i..j,k..1) much more convenient.

In Pure 0.13 the naming of the logical and bitwise operations was changed, so that these are
now called ~, &&, | | and not/and/or, respectively. (Previously, ~ was used for bitwise, not
for logical negation, which was rather inconsistent, albeit compatible with the naming of the
not operation in Haskell and ML.) Also, to stay in line with this naming scheme, inequality
was renamed to ~= (previously !=).

Pure 0.14 introduced the namespaces feature. Consequently, the scope of private symbols
is now confined to a namespace rather than a source module; scripts making use of private
symbols need to be adapted accordingly. Also note that syntax like foo: :int may now also
denote a qualified symbol rather than a tagged variable, if foo has been declared as a name-
space. You can work around such ambiguities by renaming the variable, or by placing spaces
around the “::” delimiter (these aren’t permitted in a qualified symbol, so the construct foo

int is always interpreted as a tagged variable, no matter whether foo is also a valid
namespace).

Pure 0.26 extended the namespaces feature to add support for hierarchical namespaces. This
means that name lookup works in a slightly different fashion now (see Hierarchical Name-
spaces for details), but old code which doesn’t use the new feature should continue to work
unchanged.

Pure 0.26 also changed the nullary keyword to nonfix, which is more consistent with the
other kinds of fixity declarations. Moreover, the parser was enhanced so that it can cope
with a theoretically unbounded number of precedence levels, and the system of standard
operators in the prelude was modified so that it becomes possible to sneak in new operator
symbols with ease; details can be found in the Symbol Declarations section.

Pure 0.41 added support for optimization of indirect tail calls, so that any previous restric-
tions on the use of tail recursion in indirect function calls and mutually recursive globals
have been removed. Moreover, the logical operators & and || are now tail-recursive in
their second operand and can also be extended with user-defined equations, just like the
other builtins. Note that this implies that the values returned by && and || aren’t normal-
ized to the values 0 and 1 any more (this isn’t possible with tail call semantics). If you need
this then you’ll have to make sure that either the operands are already normalized, or you'll
have to normalize the result yourself.

Also, as of Pure 0.41 the batch compiler produces stripped executables by default. To create
unstripped executables you now have to use the -u option, see Options Affecting Code Size
for details. The -s option to produce stripped executables is still provided for backward
compatibility, but it won’t have any effect unless you use it to override a previous -u option.

Pure 0.43 changed the rules for looking up symbols in user-defined namespaces. Unquali-
fied symbols are now created in the current (rather than the global) namespace by default,
see Symbol Lookup and Creation for details. The -w option can be used to get warnings
about unqualified symbols which are resolved to a different namespace than previously. It
also provides a means to check your scripts for implicit declarations which might indicate
missing or mistyped function symbols.

Pure 0.45 added support for checking arbitrary pointer types in the C interface, so that you

222 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

don’t have to worry about passing the wrong kinds of pointers to system and library rou-
tines any more. Moreover, the interpretation of numeric pointer arguments (int* etc.) was
changed to bring them in line with the other new numeric matrix conversions (intxx etc.).
In particular, the matrix data can now be modified in-place and type checking is more strict
(int* requires an int matrix, etc.). Also, there’s now support for argv-style vector arguments
(char+* and void*x). Please see the C Types section for details.

Pure 0.47 added a bunch of new features which have been on the wishlist for the forthcoming
1.0 release:

* You can now define your own interactive commands by placing suitable function def-
initions in the special __cmd__ namespace; see User-Defined Commands for details.

* The syntax used to denote inline code sections was changed from %{. . .%} to %<...%>.
This resolves an ambiguity in the syntax (note that %{ is legal Pure syntax; it could
denote a % operator followed by a matrix value), and also makes it easier to properly
support this construct in Emacs Pure mode.

¢ Itisnow possible to declare variadic externs, so that functions like printf can be called
without much ado; see Variadic C Functions.

* Support for simple kinds of matrix patterns like {x,y}, {x::int,y}, {x,y;z,t},
{{x,y},z} was added.

¢ The meaning of quoted specials such as lambdas and local definitions was changed.
Previously these would be evaluated even in the middle of a quoted expression. Now
they will produce a special meta representation in terms of built-in macros, in order to
support the advanced metaprogramming capabilities discussed in Built-in Macros and
Special Expressions and Reflection.

* Last but not least, Pure 0.47 sports a new, more flexible type tag feature which defines
type tags as unary predicates implemented using normal rewriting rules; cf. section
Type Rules for details. To these ends, a new keyword type was added (if you used this
as an ordinary identifier, you will have to rename these). Note that the old-style type
tags, which were just a syntactic shortcut for “as” patterns involving unary constructor
symbols, aren’t supported any more, so you'll have to fix up your old scripts accord-
ingly. To assist with this, the Pure interpreter can be run with the -w option in order to
identify occurrences of undefined (presumably old-style) type tags. You should either
change these to the corresponding “as” pattern (i.e., x: : foo to x@(foo _)), or just add
a proper type definition for the tag (like type foo (foo _);).

Pure 0.48 moved pointer arithmetic and the regex functions into separate pointers and
regex modules, so you now have to import these modules if you need this functionality.
It also introduced the - -defined pragma which lets you have “defined” functions in Pure
which throw an exception if they can’t be applied, e.g., because they are invoked with the
wrong arguments.

Pure 0.49 introduced the conditional compilation pragmas, so that simple version and sys-
tem dependencies can now be handled in a more convenient way.

Pure 0.50 introduced the declaration of interface types, which make it possible to create the
definition of a type from a description of its operations. To these ends, a new keyword

1.13.2 Backward Compatibility 223

Pure Language and Library Documentation, Release 0.59

interface was added to the language.

Pure 0.55 changed the default compilers for inline C, C++ and Fortran code to clang, clang++
and gfortran (with the dragonegg plugin), respectively. This was done in order to support
LLVM 3.x which does not have llvm-gcc (the previous default) any more. If you're still
running an older LLVM version and would like to keep using llvm-gcc, you will have to set
some environment variables; please see the installation instructions for details.

Pure 0.56 fixed the meaning of patterns in comprehensions so that unmatched elements are
now filtered out automatically, like in Haskell. The previous behaviour of raising an ex-
ception in such cases offered no real benefits and was in fact very inconvenient in most
situations. Pure 0.56 also enables stack checks by default (see Stack Size and Tail Recursion
for details), and interactive commands can optionally be escaped by prefixing them with a
special character (see Command Syntax). The true and false constants are now declared as
nonfix symbols in the prelude so that they can be used in patterns.

Pure 0.58 made the -x option optional, so that a script can now be invoked with argu-
ments simply as pure script argl arg2 ..., which matches the default behaviour of most
other command language interpreters. This also has the advantage that shebangs like
#!/usr/bin/env pure can now be used without any caveats. If you do want to execute
multiple script files in batch mode then you now have to explicitly indicate this with the
new -b option; please see Invoking Pure for details. Pure 0.58 also adds two new code gen-
eration options - -symbolic and --nosymbolic to set the default evaluation mode of global
functions; these are discussed in Defined Functions below.

1.13.3 Error Recovery

The parser uses a fairly simplistic panic mode error recovery which tries to catch syntax
errors at the toplevel only. This seems to work reasonably well, but might catch some errors
much too late. Unfortunately, Pure’s terseness makes it rather difficult to design a better
scheme. As a remedy, the parser accepts an empty definition (just ; by itself) at the toplevel
only. Thus, in interactive usage, if the parser seems to eat away your input without doing
anything, entering an extra semicolon or two should break the spell, putting you back at the
toplevel where you can start typing the definition again.

1.13.4 Splicing Tuples and Matrices

The “splicing” of tuples and matrices is probably one of Pure’s most controversial features.
By this we mean that tuples and matrices get flattened out when they are combined. For
instance:

> (1,2,3),4,(5,6);
1,2,3,4,5,6

> {{1,2,3},4,{5,6}};
{1,2,3,4,5,6}

> {{a,b;c,d},{x;y}}
{a,b,x;c,d,y}

224 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

This kind of behaviour is also known from Perl and MATLAB/Octave. Users familiar with
these languages often find it convenient, but it certainly gets in the way if you want to nest
these structures. Fortunately, there are some remedies for the most common cases where
you’d want to do this. Specifically, for the case of vectors the prelude defines the non-splicing
vector brackets which make it easy to construct nested vectors; these are often used to repre-
sent multi-dimensional indexable collections in Pure. For instance:

> {|{1,2,3},4,{5,6}|};
{{1,2,3},4,{5,6}}

> {[{a,b;c,d}, {x;y}|};
{{a,b;c,d}, {x;y}}

> ans!0!(1,1);

d

Nothing like this is available for tuples, though, so you’ll have to use lists instead if you
need nestability. Note that the deeper reason behind the non-nestability of tuples is the
right-recursive nature of tuples combined with the fact that there aren’t any real 1-tuples in
Pure ((x) is just x). This implies that you can’t have a nested tuple in the last component
of a tuple, no matter how hard you try to prevent the splicing, e.g., by quoting. x, (y, z) is
always just the triple x, vy, z.

One might consider this a defect in Pure’s tuple data structure. But Pure already has a
nestable kind of tuples (lists), so it would be rather pointless to have yet another isomorphic
data structure with just slightly different syntax. Instead Pure gives you the choice between
two kinds of list-like data structures, one which nests, and one which doesn’t but has other
interesting properties.

1.13.5 With and when

Another common source of confusion is that Pure provides two different constructs to bind
local function and variable symbols, respectively. This distinction is necessary because Pure
does not segregate defined functions and constructors, and thus there is no magic to figure
out whether an equation like foo x = y by itself is meant as a definition of a function foo
with formal parameter x and return value y, or a pattern binding defining the local variable
x by matching the pattern foo x against the value of y. The with construct does the former,
when the latter.

Also note that the function definitions in a with clause are all done simultaneously (and can
thus be mutually recursive), while the individual variable definitions and expressions in a
when clause are executed in order. This works in exactly the same fashion as letrec and
let in Scheme. (As a mnemonic, consider that when conveys a sense of time, so its parts are
“executed in sequence”.)

The sequential execution aspect of when is rather important in Pure, because it enables you
to do a series of “actions” (variable bindings and expression evaluations) in sequence by
simply enclosing it in a when clause. This provides the Pure programmer with a useful and
familiar bit of imperative “look and feel” (even though the when clause itself works in a
purely functional way). For instance, suppose that we’d like to define a function which
opens a file, checks that the file was opened successfully and throws an exception otherwise,

1.13.5 With and when 225

Pure Language and Library Documentation, Release 0.59

outputs a message to indicate which file was opened, and finally returns the contents of the
file as a string. The easiest way to do this in Pure is as follows:

using system;

read_file name::string = s when

fp = fopen name "r";

pointerp fp || throw (sprintf "%s: %s" (name,strerror errno));
printf "opened file %s\n" name;
s = fget fp;

end;

Another bit of syntax that may take getting used to is that with and when clauses are tacked
on to the end of the expression they belong to. This mimics mathematical language and
supposedly makes it easier to read and understand a definition, because you're told right
up front what is to be computed, before going into the details of how the computation is
performed. Unfortunately, this style differs considerably from other block-structured pro-
gramming languages, which often place local definitions in front of the code they apply to.
Pure doesn’t offer any special syntax for this, but note that you can always write a when or
with clause in the following style which places the “body” at the bottom:

result when

y = foo (x+1);

z = bar y;

result = baz z;
end;

This can be read and written more or less like a let expression in Scheme or ML, except that
the name of the result is given explicitly at the beginning. However, this style doesn’t really
save you either if you need several sections with both local functions and variables. In this
case you'll just have to bite the bullet and arrange the with and when clauses the way that
Pure wants them. That is, first come the local variables used in the right-hand side, then
the local functions needed to compute those variables, then maybe another section with
local variables needed by those functions, etc. When looking at such a complicated series
of definitions, it sometimes helps to read the with and when blocks “in reverse”, i.e., from
bottom to top, which is the order in which they will actually be executed.

1.13.6 Non-Linear Patterns

As explained in section Patterns, Pure allows multiple occurrences of the same variable in a
pattern (so-called non-linearities):

foo x X = Xx;

This rule will only be matched if both occurrences of x are bound to the same value. More
precisely, the two instances of x will checked for syntactic equality during pattern matching,
using the same primitive provided by the prelude. This may need time proportional to the
sizes of both argument terms, and thus become quite costly for big terms. In fact, same might

226 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

not even terminate at all if the compared terms are both infinite lazy data structures, such as
in foo (1..inf) (1..inf). So you have to be careful to avoid such uses.

When using non-linearities in conjunction with “as” patterns, you also have to make sure
that the “as” variable does not occur inside the corresponding subpattern. Thus a definition
like the following is illegal:

> foo xs@(x:xs) = X;
<stdin>, line 1: error in pattern (recursive variable ’'xs’)

The explanation is that such a pattern couldn’t possibly be matched by a finite list anyway:.
Indeed, the only match for xs@(x: xs) would be an infinite list of x’s, and there’s no way that
this condition could be verified in a finite amount of time. Therefore the interpreter reports
a “recursive variable” error in such situations.

1.13.7 “As” Patterns

In the current implementation, “as” patterns cannot be placed on the “spine” of a function
definition. Thus rules like the following, which have the pattern somewhere in the head of
the left-hand side, will all provoke an error message from the compiler:

a@foo x y = a,x,y;
a@(foo x) y = a,x,y;
a@(foo x y) = a,x,y;

This is because the spine of a function application is not available when the function is called
at runtime. “As” patterns in pattern bindings (let, const, case, when) are not affected by this
restriction since the entire value to be matched is available at runtime. For instance:

> case bar 99 of y@(bar x) = y,x+1; end;
bar 99,100

1.13.8 “Head = Function” Pitfalls

The “head = function” rule stipulates that the head symbol f of an application f x1 ...
xn occurring on (or inside) the left-hand side of an equation, variable binding, or pattern-
matching lambda expression, is always interpreted as a literal function symbol (not a vari-
able). This implies that you cannot match the “function” component of an application
against a variable, at least not directly. An anonymous “as” pattern like f@_ does the trick,
however, since the anonymous variable is always recognized, even if it occurs as the head
symbol of a function application. Here’s a little example which demonstrates how you can
convert a function application to a list containing the function and all arguments:

> foo x = a [] x with a xs (x@_ y) = a (y:xs) X; a XS X = x:xs end;
> foo (a b c d);
[a,b,c,d]

1.13.7 “As” Patterns 227

Pure Language and Library Documentation, Release 0.59

This may seem a little awkward, but as a matter of fact the “head = function” rule is quite
convenient, since it covers the common cases without forcing the programmer to declare
variable or constructor symbols (other than nonfix symbols). On the other hand, generic
rules operating on arbitrary function applications are not all that common, so having to
“escape” a variable using the anonymous “as” pattern trick is a small price to pay for that
convenience.

Sometimes you may also run into the complementary problem, i.e., to match a function
argument against a given function. Consider this code fragment:

foo x = x+1;
foop f = case f of foo = 1; _ = 0 end;

You might expect foop to return true for foo, and false on all other values, but in reality foop
will always return true! In fact, the Pure compiler will warn you about the second rule of
the case expression not being used at all:

> foop 99;
warning: rule never reduced: _ = 0;
1

This is again due to the “head = function” rule; foo is neither the head symbol of a function
application nor a nonfix symbol here, so it is considered a variable, even though it is defined
as a global function elsewhere. (As a matter of fact, this is rather useful, since otherwise a
rule like f g = g+1 would suddenly change meaning if you happen to add a definition like
g x = x-1somewhere else in your program, which certainly isn’t desirable.)

A possible workaround is to “escape” the function symbol using an empty namespace qual-
ifier:

foop f = case f of ::foo =1; _ = 0 end;

This trick works in case expressions and function definitions, but fails in circumstances in
which qualified variable symbols are permitted (i.e., in variable and constant definitions).
A better solution is to employ the syntactic equality operator === defined in the prelude
to match the target value against the function symbol. This allows you to define the foop
predicate as follows:

> foop f = f===foo0;
> foop foo, foop 99;
1,0

Another way to deal with the situation would be to just declare foo as a nonfix symbol.
However, this makes the foo symbol “precious”, i.e., after such a declaration it cannot be
used as a local variable anymore. It’s usually a good idea to avoid that kind of thing, at least
for generic symbols, so the above solution is preferred in this case.

228 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

1.13.9 Defined Functions

As explained in Definitions and Expression Evaluation, Pure doesn’t really distinguish “con-
structors” from “defined functions” and thus allows any function symbol to become part of
a normal form expression yielded by an evaluation. This behaviour follows the usual se-
mantics of (typeless) term rewriting and is essential if you also want to evaluate expressions

symbolically.

However, this becomes a nuisance if you really expect the given function to reduce to some-
thing else, and just accidentally supplied the wrong arguments to the function. Especially
annoying in this respect are functions involving side effects:

> using system;
> puts 99;
puts 99

Here we accidentally specified a number (rather than a string) as the argument of the puts
function. This kind of error can easily be spotted if the function is invoked interactively, but
it may well go unnoticed if the call is buried deeply in a big program which runs unattended
(in batch mode).

As a remedy, Pure 0.48 introduces the - -defined pragma (cf. Code Generation Options)
which allows you to explicitly declare a function symbol as a “defined” function, so that
it will raise a proper exception when the defining equations (or, as it were, the external
definition) of the function are not applicable to the subject expression:

> #! --defined puts
> puts 99;
<stdin>, line 4: unhandled exception ’'failed_match’ while evaluating ’'puts 99’

This is the same kind of failed_match exception that you'll get, e.g., if the subject term fails
to match all patterns in a case construct, cf. Exception Handling.

Note that the - -defined pragma only has an effect on global functions; local functions in
a with expression will always be evaluated in Pure’s default symbolic mode. Thus, if you
need the above behaviour with a local function then you’ll either have to add the exception
handling yourself or turn the local function into a global one.

Also note that an exception will only be generated if the symbol actually has any defining
equations, so a “pure constructor” (i.e., a symbol without defining equations) will still return
a normal form even if it is also declared - - defined:

> #! --defined foo
> foo bar;
foo bar

Nevertheless, the - -defined pragma will be recorded and take effect as soon as you add an
equation for the function:

> foo x::int = x+1;
> foo bar;
<stdin>, line 4: unhandled exception ’'failed_match’ while evaluating ’'foo bar’

1.13.9 Defined Functions 229

Pure Language and Library Documentation, Release 0.59

There’s also a - -nodefined pragma which reverts the function to the default behaviour of
returning normal forms:

> #! --nodefined foo
> foo bar;
foo bar

As indicated, the - -defined and - -nodefined pragmas can be invoked freely at any time,
and the interpreter takes care that the affected function is recompiled automatically as
needed.

Pure 0.58 and later also provide a - -nosymbolic compilation option which lets you switch
the interpreter to the non-symbolic mode of operation, so that every global function with
equations becomes a defined function. This option is most commonly used as a pragma
to delineate code sections with defined functions, so that you don’t have to write out the
- -defined pragmas for each function. The - -symbolic pragma is then used to switch back
to the default symbolic mode. For instance:

run
#! --nosymbolic

extern int puts(charx);

foo x::int = x+1;

puts 99;

<stdin>, line 4: unhandled exception ’'failed_match’ while evaluating ’puts 99’
> foo bar;

<stdin>, line 5: unhandled exception ’'failed_match’ while evaluating ’'foo bar’
> #! --symbolic

> bar x::int = x-1;

> bar foo;

bar foo

V V.V VYV

Note that these pragmas only adjust the default behaviour of functions. It is still possible to
change the status of individual functions with the - -defined and - -nodefined pragmas:

> #! --nodefined foo

> foo bar;

foo bar

> #! --defined bar

> bar foo;

<stdin>, line 12: unhandled exception ’'failed_match’ while evaluating ’'bar foo’

You can even invoke the interpreter with the - -nosymbolic command line option so that
the non-symbolic mode becomes the global default. However, this affects all functions in a
program, including the library functions used by your program. It isn’t really advisable to
do this, because at the time of this writing many library modules still assume Pure’s default
mode of symbolic evaluation, and so a global switch to - -nosymbolic may well break some
of these functions.

At this time, the --defined and --nosymbolic pragmas are still considered experimental.
They interfere with Pure’s symbolic evaluation capabilities, so they aren’t currently used in
the standard library and we recommend that programmers shouldn’t use them in a careless
fashion either. However, while most error conditions stemming from unexpected normal

230 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

forms can also be caught with diligent unit testing, these pragmas can save you time and
trouble, especially when testing programs which are to be executed mostly in batch mode.
Future versions of the interpreter might also make good use of these pragmas for static
checks and optimization purposes.

1.13.10 Stack Size and Tail Recursion

Pure programs may need a considerable amount of stack space to handle recursive function
and macro calls, and the interpreter itself also takes its toll. So you should configure your
system accordingly (8 MB of stack space is recommended for 32 bit systems, systems with
64 bit pointers probably need more). The interpreter automatically performs advisory stack
checks on function entry and raises a Pure exception if the current stack size exceeds a given
limit. A reasonable default for the stack limit is defined by the implementation, please check
the description of the PURE_STACK environment variable for details.

You can also change this limit if needed, by setting the PURE_STACK environment variable
accordingly. The value of PURE_STACK should be the maximum stack size in kilobytes. Please
note that this is only an advisory limit which does not change the program’s physical stack
size, so you can set this to any value that seems appropriate. (You can also set PURE_STACK to
zero to completely disable the checks, but this isn’t recommended.) Your operating system
should supply you with a command such as ulimit(1) to set the real process stack size. (The
PURE_STACK limit should be a little less than that, to account for temporary stack usage by
the interpreter itself.)

Like Scheme, Pure does proper tail calls (if LLVM provides that feature on the platform at
hand), so tail-recursive definitions should work fine in limited stack space. For instance, the
following little program will loop forever if your platform supports the required optimiza-
tions:

loop with loop = loop end;

This also works if your definition involves function parameters, guards and multiple equa-
tions, of course. Moreover, conditional expressions (if-then-else) are tail-recursive in both
branches, and the logical operators && and | |, as well as the sequence operator $$, are tail-
recursive in their second operand.

In addition, the Pure compiler also does a specialized form of tail recursion optimization
for type definition rules. Due to the special way in which type tags are processed, however,
the amount of optimization performed in this case is somewhat limited; see Recursive Types
below.

Finally, note that tail call optimization is always disabled if the debugger is enabled (-g). This
makes it much easier to debug programs, but means that you may run into stack overflows
when debugging a program that does deep tail recursion.

1.13.10 Stack Size and Tail Recursion 231

Pure Language and Library Documentation, Release 0.59

1.13.11 Handling of Asynchronous Signals

As described in section Exception Handling, signals delivered to the process can be caught
and handled with Pure’s exception handling facilities. This has its limitations, however.
Since Pure code cannot be executed directly from a C signal handler, checks for pending
signals are only done on function entry. This means that in certain situations (such as the
execution of an external C routine), delivery of a signal may be delayed by an arbitrary
amount of time. Moreover, if more than one signal arrives between two successive signal
checks, only the last one will be reported in the current implementation.

When delivering a signal which has been remapped to a Pure exception, the corresponding
exception handler (if any) will be invoked as usual. Further signals are blocked while the
exception handler is being executed.

A fairly typical case is that you have to handle signals in a tail-recursive function. This can
be done with code like the following;:

using system;

// Remap some common POSIX signals.
do (trap SIG_TRAP) [SIGHUP, SIGINT, SIGTERM];

loop = catch handler process $$ loop
with handler (signal k) = printf "Hey, I got signal %d.\n" k end;
process = sleep 1; // do something

Running the above loop function enters an endless loop reporting all signals delivered to the
process. Note that to make this work, the tail-recursive invocation of loop must immediately
follow the signal-handling code, so that signals don’t escape the exception handler.

Of course, in a real application you'd probably want the loop function to carry around some
data to be processed by the process routine, which then returns an updated value for the
next iteration. This can be implemented as follows:

loop x = loop (catch handler (process x))
with handler (signal k) = printf "Hey, I got signal %d.\n" k $$ 0 end;
process x = printf "counting: %d\n" x $$ sleep 1 $$ x+1;

1.13.12 Recursive Types

Using the facilities described in Type Rules, type tags can easily be defined in a recursive
fashion. In simple cases, the compiler can optimize such definitions so that they are executed
in constant stack space, just like ordinary tail-recursive functions. The main difference here
is that the recursion already takes place during matching, i.e., on the left-hand side of a rule,
since this is where type predicates are normally invoked. This also limits the amount of tail
recursion optimization available on type rules, as detailed below.

For instance, the following rlist type from the prelude is defined in such a way that it only
matches “proper” lists which have list values in all their tails (and are thus terminated by
the empty list).

232 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

type rlist [] | rlist (x : xs::rlist);

Note that this type definition recurses in the last rlist tag of the last rule of the type. If tail
calls are supported by the host implementation (cf. Stack Size and Tail Recursion), the com-
piler makes sure that such definitions are safe to use even if the recursion may go arbitrarily
deep. For instance:

> typep rlist (1..10000000);
1

The precise rules for tail-recursive type definitions are as follows:

* The last rule of the type must have a trivial right-hand side (either just t rue or missing)
and must be directly recursive in the last type tag on the left-hand side of the rule.

¢ The rule may not contain any non-linearities. (That’s because these are always checked
after the type guards for efficiency.)

While these are rather strict requirements, they work reasonably well for simple recursive
types such as the recursive list type above. More general recursion in types will not be op-
timized by the compiler, however, and may thus be subject to stack overflows. For instance,
consider the following binary tree type:

nonfix nil;
type tree nil | tree (bin x l::tree r::tree);

This is a perfectly legal type definition, and the recursion in the last tree tag of the second
rule will indeed be optimized away. However, the second rule also recurses on the first tree
tag which will cause trouble if there are long chains of left branches in a tree. For instance:

> mktree xs = foldr (\x t->bin x t nil) nil xs;
> mktree [1;
nil
> mktree [1,2,3];
bin 1 (bin 2 (bin 3 nil nil) nil) nil
typep tree (mktree []);

>
1
> typep tree (mktree [1,2,31);
1
>

typep tree (mktree (1..10000));
<stdin>, line 6: unhandled exception ’'stack_fault’ while evaluating
"typep tree (mktree (1..10000))’

To avoid deep recursion in such cases it is necessary to implement the type using a general
predicate, which handles the recursion by transforming it into a tail-recursive form using a
technique like continuation passing.

There’s yet another important issue with recursive type definitions, namely the time it takes
to check the definition. In the above example, checking rlist takes O(n) time, where n is
the size of the list. This will have dire consequences if you do this check repeatedly while
traversing a list, as in the following sum function:

1.13.12 Recursive Types 233

http://en.wikipedia.org/wiki/Continuation-passing_style

Pure Language and Library Documentation, Release 0.59

sum xs::rlist = if null xs then 0 else head xs+sum (tail xs);

As this function repeatedly checks its entire argument, the total time it takes to compute
the sum of a list this way becomes O(n”2). To see how slow this function is, just try it on
successively larger lists 1..1000, 1..2000, etc. One way to work around this is to write
a “wrapper” function which simply checks the type of its argument in advance and then
invokes a “worker” function to do the actual computation:

sum Xs::rlist = sum xs with
sum xs = if null xs then 0 else head xs+sum (tail xs);
end;

This “wrapper-worker” design is quite common and useful in many situations, but it is a bit
cumbersome in this specific case. An easier way is to just do the type checking in a piecemeal
fashion, as the list is being traversed. To these ends, the prelude also provides a basic list
type which is defined as follows:

type list [] | list (x:xs);

Note that the recursion is missing here and thus this type can always be checked in O(1)
time, performing just a single pattern match, which is efficient. Hence, if we replace rlist
with the list type in our original definition then sum will now run in O(n) time, as desired.
On the other hand, this approach also has its drawbacks. For instance, consider:

> sum xs::list = if null xs then 0 else head xs+sum (tail xs);
> sum (1:2:3);
1+(2+sum 3)

In contrast, our wrapper-worker definition of sum from above returns a somewhat prettier
normal form instead:

> clear sum

> sum xs::rlist = sum xs with

> sum xs = if null xs then 0 else head xs+sum (tail xs);
> end;

> sum (1:2:3);

sum (1:2:3)

Thus the wrapper-worker approach also has its merits, and whether to use one or the other
depends on the situation. Similar techniques and tradeoffs also apply to other recursive
types such as trees.

1.13.13 Interfaces

Pure’s implementation of interface types has some notable differences to interfaces in a stat-
ically typed language like Go. These are mostly due to Pure’s dynamically typed nature.

* Nothing is known about the return type of an interface operation, but this is no real
impediment since Pure types are all about restricting the kind of arguments which can

234 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

be passed to a function, not their result types, so return types are irrelevant to Pure’s
interface types anyway.

¢ Pure interfaces aren’t based on the notion of “methods” and therefore don’t provide
any kind of “method dispatch”. Interface operations are just ordinary Pure functions
which rely on Pure’s usual pattern-matching mechanism to do the dynamic dispatch.

* Membership in interface types is decided by considering the left-hand sides of the
definitions of the interface functions only. Guards are not taken into account, and thus
there’s no real guarantee that a member of an interface type will always be valid input
to an interface function.

¢ Interface types work best if all interface operations are completely defined on the target
data domain. This may sometimes force you to add default or error rules raising ex-
ceptions, as shown in the Interface Types section, which may interfere with symbolic
evaluation (cf. Exception Handling and Defined Functions). If this is not desirable,
you can also just include the missing members manually. To these ends, Pure allows
an interface type to be augmented with ordinary type rules as described in Type Rules.
For instance, we might also have implemented the stack type discussed in the Interface
Types section as follows:

interface stack with
push s::stack x;
pop s::stack;
top s::stack;

end;

type stack [];

push xs@[] x | push xs@(_:_) X = X:Xs;
pop (x:Xxs) = Xs;
top (x:xs) = x;

Pure’s interface types are really a compromise between theoretical soundness and practical-
ity. From the theoretical point of view, we’d like an interface type to be the intersection of the
interface types for the individual interface functions. Unfortunately, the pattern set for such
an intersection type might well be exponential in size. Hence the approach taken in Pure
is to eliminate those candidate patterns which aren’t supported by all interface functions.
This can be done much more efficiently, but will in general only produce a subtype of the
intersection type. (On the other hand, this method also has the advantage that the compiler
can warn about potentially missing rules in some of the interface operations. We’ve seen in
the Interface Types section that this can be fairly useful at times.)

Another issue arises with interface operations which allow the interface type in multiple
arguments. A typical example are operators:

interface addable with x::addable + y::addable; end;

In the present implementation, the pattern set will be the union of the pattern sets for each
argument, so the above definition is in fact equivalent to:

1.13.13 Interfaces 235

Pure Language and Library Documentation, Release 0.59

interface addable with x::addable + y; x + y::addable; end;

This makes sense in many situations, but of course this depends on the particular operation.
In some cases, you might have to decide on which argument you want to place the interface
type tag, or even have different types for each possible argument position.

1.13.14 Numeric Calculations

If possible, you should decorate numeric variables on the left-hand sides of function defi-
nitions with the appropriate type tags, like int or double. This often helps the compiler to
generate better code and makes your programs run faster. The | syntax makes it easy to add
the necessary specializations of existing rules to your program. E.g., taking the polymorphic
implementation of the factorial as an example, you only have to add a left-hand side with
the appropriate type tag to make that definition go as fast as possible for the special case of
machine integers:

fact n::int |
fact n nxfact(n-1) if n>0;

1 otherwise;

(This obviously becomes unwieldy if you have to deal with several numeric arguments of
different types, however, so in this case it is usually better to just use a polymorphic rule.)

Also note that int (the machine integers), bigint (the GMP “big” integers) and double (float-
ing point numbers) are all different kinds of objects. While they can be used in mixed op-
erations (such as multiplying an int with a bigint which produces a bigint, or a bigint with
a double which produces a double), the int tag will only ever match a machine int, not a
bigint or a double. Likewise, bigint only matches bigints (never int or double values), and
double only doubles. Thus, if you want to define a function operating on different kinds of
numbers, you'll also have to provide equations for all the types that you need (or a polymor-
phic rule which catches them all). This also applies to equations matching against constant
values of these types. In particular, a small integer constant like 6 only matches machine
integers, not bigints; for the latter you'll have to use the “big L” notation 0L. Similarly, the
constant 0.0 only matches doubles, but not ints or bigints.

1.13.15 Constant Definitions

Constants differ from variables in that they cannot be redefined (that’s their main purpose
after all) so that their values, once defined, can be substituted into other definitions which
use them. For instance:

> const c = 2;
> foo X = c*x;
> show foo
foo x = 2xx;
> foo 99;

198

236 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

While a variable can be rebound to a new value at any time, you will get an error message if
you try to do this with a constant:

> const c = 3;
<stdin>, line 5: symbol ’'c’ is already defined as a constant

Note that in interactive mode you can work around this by purging the old definition with
the clear command. However, this won't affect any earlier uses of the symbol:

> clear c

> const c = 3;
> bar x = CcxX;
> show foo bar
bar x = 3xx;
foo x = 2x*Xx;

(You'll also have to purge any existing definition of a variable if you want to redefine it as a
constant, or vice versa, since Pure won't let you redefine an existing constant or variable as a
different kind of symbol. The same also holds if a symbol is currently defined as a function
or a macro.)

Constants can also be used in patterns (i.e., on the left-hand side of a rule in a definition or a
case expression), but only if they're also declared as nonfix. The prelude already does this
for the truth values true and false (which are in fact just 1 and 0), so that you can write,

e.g.

> check false = "no"; check true = "yes";
> show check

check 0 = "no";

check 1 = "yes";

> check (5>0);

"yes"

Note that if true and false weren’t nonfix, the above definition of check wouldn’t work
as intended, because the true and false symbols on the left-hand side of the two equations
would be interpreted as local variables. Also note that true and false are really an excep-
tional case; they aren’t likely to be used as variables, so the prelude can make them nonfix
by default. In most cases the standard library refrains from declaring constant symbols as
nonfix, so that they don’t accidentally clobber variables in user code. This is the case, in
particular, for constants in the math module such as e, pi and i which are much more likely
to be used as variable symbols.

As the value of a constant is known at compile time, the compiler can apply various opti-
mizations to uses of such values. In particular, the Pure compiler inlines constant scalars
(numbers, strings and pointers) by literally substituting their values into the output code. It
also precomputes simple constant expressions involving only (machine) integer and double
values. (The latter is called constant folding and can also be disabled, see the description of
the - - fold and - -nofold pragmas for details.) Example:

> extern double atan(double);
> const pi = 4xatan 1.0;

1.13.15 Constant Definitions 237

Pure Language and Library Documentation, Release 0.59

> show pi

const pi = 3.14159265358979;
> foo x = 2*xpixx;

> show foo

foo x = 6.28318530717959*Xx;

Constant folding also works with conditional expressions. E.g., consider:

const win = index sysinfo "mingw32" >= 0;
check boy = if win then bad boy else good boy;

On a Linux system, this gives:

> show check
check boy = good boy;

By these means, you can employ a constant to configure your code for different environ-
ments, without any runtime penalties. Note that this only works with conditional expres-
sions, not with guarded equations. However, in the latter case the LLVM backend still elim-
inates dead code automatically, so the check function from above could also be defined as
follows:

check boy = bad boy if win;
good boy otherwise;

In this case the code for one of the branches of check will be completely eliminated, depend-
ing on the outcome of the configuration check. (The interpreter will still print both equations
if you type show check, but only one of the branches will actually be present in the assembler
code of the function; you can verify this with show -d check.)

For efficiency, constant aggregates (lists, tuples, matrices and other kinds of non-scalar
terms) receive special treatment. Here, the constant is computed once and stored in a read-
only variable which then gets looked up at runtime, just like an ordinary global variable.
However, there’s an important difference: If a script is batch-compiled (cf. Batch Com-
pilation), the constant value is normally computed at compile time only; when running the
compiled executable, the constant value is simply reconstructed, which is often much more
efficient than recomputing its value. For instance, you might use this to precompute a large
table whose computation may be costly or involve functions with side effects:

const table = [foo x | x = 1..1000000];
process table;

Note that this only works with const values which are completely determined at compile
time. If a constant contains run time objects such as (non-null) pointers and (local) functions,
this is impossible, and the batch compiler will instead create code to recompute the value of
the constant at run time. For instance, consider:

const p = malloc 100;
foo p;

Here, the value of the pointer p of course critically depends on its computation (involving a

238 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

side effect which sets aside a corresponding chunk of memory). It would become unusable
without actually executing the initialization, so the compiler generates the appropriate run
time initialization code in this case. For all practical purposes, this turns the constant into a
read-only variable. (There’s also a code generation option to force this behaviour even for
“normal” constants for which it’s not strictly necessary, in order to create smaller executa-
bles; see Options Affecting Code Size for details.)

1.13.16 External C Functions

The interpreter always takes your extern declarations of C routines at face value. It will
not go and read any C header files to determine whether you actually declared the function
correctly! So you have to be careful to give the proper declarations, otherwise your program
might well give a segfault when calling the function. This problem can to some extent be
alleviated by using the bitcode interface, see Importing LLVM Bitcode and Inline Code in
the C Interface section. However, you always have to be careful when calling variadic C
functions, as the compiler has no way of checking which combinations of extra parameters a
function like printf is to be invoked with. (As a remedy, the standard library provides safe
implementations of printf and other commonly used variadic functions from the C library,
see the Pure Library Manual for details.)

Another limitation of the C interface is that it does not offer any special support for C structs
and C function parameters. However, an optional addon module is available which inter-
faces to the libffi library to provide that kind of functionality, please see pure-ffi for details.

Last but not least, to make it easier to create Pure interfaces to large C libraries, there’s a
separate pure-gen program available at the Pure website. This program takes a C header
(.h) file and creates a corresponding Pure module with definitions and extern declarations
for the constants and functions declared in the header. Please refer to pure-gen: Pure interface
generator for details.

1.13.17 Calling Special Forms

Special forms are recognized at compile time only. Thus the catch function, as well as quote
and the operators &&, | |, $$ and &, are only treated as special forms in direct (saturated) calls.
They can still be used if you pass them around as function values or in partial applications,
but in this case they lose all their special call-by-name argument processing.

1.13.18 Laziness

Pure does lazy evaluation in the same way as Alice ML, providing an explicit operation
(&) to defer evaluation and create a “future” which is called by need. However, note that
like any language with a basically eager evaluation strategy, Pure cannot really support lazy
evaluation in a fully automatic way. That is, coding an operation so that it works with
infinite data structures usually requires additional thought, and sometimes special code will
be needed to recognize futures in the input and handle them accordingly. This can be hard,

1.13.16 External C Functions 239

http://sourceware.org/libffi/

Pure Language and Library Documentation, Release 0.59

but of course in the case of the prelude operations this work has already been done for you,
so as long as you stick to these, you'll never have to think about these issues. (It should
be noted here that lazy evaluation has its pitfalls even in fully lazy FPLs, such as hidden
memory leaks and other kinds of subtle inefficiencies or non-termination issues resulting
from definitions being too lazy or not lazy enough. You can read about that in any good
textbook on Haskell.)

The prelude goes to great lengths to implement all standard list operations in a way that
properly deals with streams (a.k.a. lazy lists). What this all boils down to is that all list
operations which can reasonably be expected to operate in a lazy way on streams, will do
so. (Exceptions are inherently eager operations such as #, reverse and foldl.) Only those
portions of an input stream will be traversed which are strictly required to produce the result.
For most purposes, this works just like in fully lazy FPLs such as Haskell. However, there
are some notable differences:

¢ Since Pure uses dynamic typing, some of the list functions may have to peek ahead
one element in input streams to check their arguments for validity, meaning that these
functions will be slightly more eager than their Haskell counterparts.

¢ Pure’s list functions never produce truly cyclic list structures such as the ones you get,
e.g., with Haskell’s cycle operation. (This is actually a good thing, because the current
implementation of the interpreter cannot garbage-collect cyclic expression data; please
see the corresponding remarks in Expression References for details.) Cyclic streams such
as cycle [1] or fix (1:) will of course work as expected, but, depending on the
algorithm, memory usage may increase linearly as they are traversed.

* Pattern matching is always refutable (and therefore eager) in Pure. If you need some-
thing like Haskell’s irrefutable matches, you'll have to code them explicitly using fu-
tures. See the definition of the unzip function in the prelude for an example showing
how to do this.

There are two other pitfalls with lazy data structures that you should be aware of:

* Laziness and side effects don’t go well together, as most of the time you can’t be sure
when a given thunk will be executed. So as a general guideline you should avoid
side effects in thunked data structures. If you can’t avoid them, then at least make
sure that all accesses to the affected resources are done through a single instance of
the thunked data structure. E.g., the following definition lets you create a stream of
random numbers:

> using math;
> let xs = [random | _ = 1..inf];

This works as expected if only a single stream created with random exists in your pro-
gram. However, as the random function in the math module modifies an internal data
structure to produce a sequence of pseudorandom numbers, using two or more such
streams in your program will in fact modify the same underlying data structure and
thus produce two disjoint subsequences of the same underlying pseudorandom se-
quence which might not be distributed uniformly any more.

* You should avoid keeping references to potentially big (or even infinite) thunked data

240 1.13 Caveats and Notes

Pure Language and Library Documentation, Release 0.59

structures when traversing them (unless you specifically need to memoize the entire
data structure). In particular, if you assign such a data structure to a local variable, the
traversal of the data structure should then be invoked as a tail call. If you fail to do this,
it forces the entire memoized part of the data structure to stay in main memory while
it is being traversed, leading to rather nasty memory leaks. Please see the all_primes
function in Lazy Evaluation and Streams for an example.

1.13.19 Name Capture

As explained in the Macro Hygiene section, Pure macros are lexically scoped and thus “hy-
gienic”. So in principle Pure macros are not susceptible to name capture. However, this
principle only applies to “real” block constructs, not their quoted “placeholder” representa-
tions described in Built-in Macros and Special Expressions. One (rather obscure) case which
deserves special attention is the case of macros involving free variables which are being
called inside quoted block constructs. Note that this corresponds to the “mild” first form of
name capture described in the Macro Hygiene section. For instance, consider the following
example:

> def G x = x+y;

> '(G 10 when y = 99 end);
G 10 __when__ [y-->99]

> eval ans;

109

Here the free y variable of the macro G got captured by the quoted when clause when the
quoted expression is evaluated. This happens because, using call by value, the call G 10 gets
evaluated before the __when__ macro. So the behaviour of the macro evaluator in this case
is in fact correct; the only remedy here is to avoid macros involving free variables inside a
quoted block construct. The same applies to “quoteargs” macros which quote their argu-
ments automatically, as described in Built-in Macros and Special Expressions. On the other
hand, the described behaviour might even be useful at times, to forcibly rebind a free macro
variable. The following little helper macro illustrates this trick:

> #! --quoteargs invoke

> def invoke x = x;

> foo = invoke (G 10 when y = 99 end);
>

show foo
foo = 10+y when y = 99 end;
> foo;
109

Besides the above form of real name capture in quoted specials, there’s also a case of appar-
ent name capture in the expression printer which isn’t actually real name capture, but just
looks like it was. The reason for this is that the expression printer currently doesn’t check for
different bindings of the same variable identifier when it prints a (compile time) expression.
For instance, consider:

> def F x = x+y when y = x+1 end;
> fooy =Fy;

1.13.19 Name Capture 241

Pure Language and Library Documentation, Release 0.59

> show foo
foo y = y+y when y = y+1 end;

This looks as if y got captured, but in fact it’s not, it’s just the show command which displays
the definition in an incorrect way. You can add the -e option to show which prints the de-
Bruijn indices of locally bound symbols, then you see that the actual bindings are all right
anyway:

> show -e foo
foo y/*0:1x/ = y/*1:1x/+y/*0:+/ when y/*x0:x/ = y/*0:1x/+1 end;

Note that the number before the colon is the actual deBruijn index, the sequence of bits
behind it is the subterm path. Thus the first instance of y in y+y (which has a deBruijn index
of 1, indicating “one environment up”) actually refers to the y in the left-hand side foo vy,
while the second instance refers to the local binding y = y+1 in the when clause.

Alas, this means that if you use dump to write such a definition to a text file and read it back
with run later, then the apparent name capture becomes a real one and you'll get the wrong
definition. This is an outright bug in the expression printer which will hopefully be fixed
some time. But for the time being you will have to correct such glitches manually.

1.14 Author

Albert Graf <aggraef@gmail.com>, Dept. of Computer Music, Johannes Gutenberg Univer-
sity of Mainz, Germany.

1.15 Acknowledgements

Pure wouldn’t be what it is without its users and other people interested in the language.
In particular, I'd like to thank Scott E. Dillard, Rooslan S. Khayrov, Jim Pryor, Eddie Rucker,
Libor Spacek, Jiri Spitz, Peter Summerland and Sergei Winitzki for their significant contri-
butions of code, patches and documentation. Thanks are also due to Bjorn Lindig, Michel
Salim, Ryan Schmidt and Zhihao Yuan who maintain the Arch Linux, Fedora, OSX and
FreeBSD packages and ports, as well as to Vili Aapro, Jason E. Aten, Alvaro Castro Castilla,
John Cowan, Chris Double, Tim Haynes, Wm Leler, John Lunney, Roman Neuhauser and
Max Wolf for suggesting improvements and pointing out shortcomings, misfeatures and
outright bugs. If it wasn’t for all these people and others who contribute to the lively discus-
sions on the mailing list, this project probably wouldn’t have got anywhere.

Last but not least, a big thank you goes to Chris Lattner and the entire LLVM team. LLVM
really changed the game for us compiler writers, as we can now stop worrying about all the
nitty-gritty details of code generation and concentrate on the design and implementation of
the programming language at hand.

242 1.15 Acknowledgements

mailto:aggraef@gmail.com

Pure Language and Library Documentation, Release 0.59

1.16 Copying

(The following explanations are not legal advice. Please read the full text of the licenses and
consult qualified professional counsel for an interpretation of the license terms as they apply
to you.)

Pure comes with a fairly liberal license which lets you distribute your own Pure programs
and extensions under a license of your choice and permits linking of commercial applications
against the Pure runtime and the Pure standard library without requiring special permission.
The Pure interpreter (the pure main program), the Pure runtime library (libpure) and the
Pure standard library (the Pure scripts in the 1ib folder distributed with the software) are
distributed as free software, and you are welcome to modify and redistribute them under
the appropriate license terms, as detailed below.

The Pure interpreter is free software: you can redistribute it and /or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

The Pure runtime library and the Pure standard library are also free software: you can redis-
tribute them and/or modify them under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

Pure is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

One thing to note here is that the interpreter program is distributed under the GNU General
Public License and is thus subject to stricter license terms than the runtime library and the
standard library which are licensed under the GNU Lesser General Public License. The main
reason for these conditions is that the interpreter program includes support for the readline
library which is GPL-licensed software. If this is a problem for your application then you're
welcome to use pure_norl.cc instead. This is a readline-free replacement for the interpreter
main program included in the distribution, which is licensed under a 3-clause BSD-style
license.

Please see the GNU General Public License and the GNU Lesser General Public License for
the precise license terms. You can also find the license conditions in the COPYING and
COPYING.LESSER files accompanying the software. Also, please see the source code for
the copyright and license notes pertaining to individual source files which are part of this
software.

Third party software licensing notes:

Pure uses LLVM as its compiler backend. LLVM is under Copyright (c) 2003-2012 by the Uni-
versity of Illinois at Urbana-Champaign, and is licensed under a 3-clause BSD-style license,
please read COPYING.LLVM included in the distribution for the exact licensing terms. You
can also find the LLVM license at the LLVM website.

1.16 Copying 243

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/lgpl.html

Pure Language and Library Documentation, Release 0.59

1.17 References and Links

Aardappel Wouter van Oortmerssen’s functional programming language based on term
rewriting, http:/ /wouter.fov120.com/aardappel.

Alice ML A version of ML (see below) from which Pure borrows its model of lazy evalua-
tion, http:/ /www.ps.uni-sb.de/alice.

Franz Baader and Tobias Nipkow Term Rewriting and All That. Cambridge University Press,
Cambridge, 1998.

Bertrand Wm Leler’s constraint programming language based on term rewriting,
http://groups.google.com/group/bertrand-constraint. See Wm Leler: Constraint Pro-
gramming Languages: Their Specification and Generation. Addison-Wesley, 1988.

Clang The new C/C++/Objective C compiler designed specifically to work on top of LLVM,
http://clang.llvm.org. Clang provides a comparatively light-weight alternative to gcc
which is faster and has better and more friendly diagnostics.

DragonEgg An LLVM backend for gcc 4.5 and later, http:/ /dragonegg.llvm.org. In contrast
to llvm-gcc, DragonEgg is implemented as a plugin which hooks into your system
compiler.

Faust Grame’s functional DSP programming language, http://faust.grame.fr.

GNU Multiprecision Library Free library for arbitrary precision arithmetic,
http:/ /gmplib.org.

GNU Octave A popular high-level language for numeric applications and free MATLAB
replacement, http:/ /www.gnu.org/software/octave.

GNU Scientific Library A free software library for numeric applications, can be used with
Pure’s numeric matrices, http:/ /www.gnu.org/software/gsl.

Go Google’s Go programming language, http:/ /golang.org,.
Haskell A popular non-strict FPL, http:/ /www.haskell.org.
LLVM The LLVM code generator framework, http:/ /llvm.org.

LLVM-GCC An LLVM-capable compiler based on gcc, see http://llvm.org. This is based
on a fairly old gcc version (4.2) and has been replaced by the DragonEgg plugin in the
LLVM 3.x series.

Miranda David Turner’s non-strict FPL, http://miranda.org.uk. Miranda was fairly suc-
cessful in its time and one of the forerunners of Haskell.

ML A popular strict FPL. See Robin Milner, Mads Tofte, Robert Harper, D. MacQueen: The
Definition of Standard ML (Revised). MIT Press, 1997.

Michael O'Donnell Equational Logic as a Programming Language. Series in the Foundations
of Computing. MIT Press, Cambridge, Mass., 1985.

Q Another term rewriting language by yours truly, http://g-lang.sf.net.

244 1.17 References and Links

http://wouter.fov120.com/aardappel
http://www.ps.uni-sb.de/alice
http://groups.google.com/group/bertrand-constraint
http://clang.llvm.org
http://dragonegg.llvm.org
http://faust.grame.fr
http://gmplib.org
http://www.gnu.org/software/octave
http://www.gnu.org/software/gsl
http://golang.org
http://www.haskell.org
http://llvm.org
http://llvm.org
http://miranda.org.uk
http://q-lang.sf.net

Pure Language and Library Documentation, Release 0.59

TeXmacs A powerful editor for scientific documents. With the appropriate plugin (in-
luded in the Pure distribution as of Pure 0.56) it can also run Pure sessions. See
http:/ /www.texmacs.org.

1.17 References and Links 245

http://www.texmacs.org

Pure Language and Library Documentation, Release 0.59

246 1.17 References and Links

Chapter

Pure Library Manual

Version 0.59, February 26, 2014
Albert Grif <aggraef@gmail.com>

Copyright (c) 2009-2014 by Albert Gréf. This document is available under the GNU Free
Documentation License.

This manual describes the operations in the standard Pure library, including the prelude and
the other library modules which come bundled with the interpreter.

There is a companion to this manual, The Pure Manual which describes the Pure language
and the operation of the Pure interpreter.

2.1 Prelude

The prelude defines the basic operations of the Pure language. This includes the basic
arithmetic and logical operations, string, list and matrix functions, as well as the support
operations required to implement list and matrix comprehensions. The string, matrix and
record operations are in separate modules strings.pure, matrices.pure and records.pure, the
primitive arithmetic and logical operations can be found in primitives.pure. Note that since
the prelude module gets imported automatically (unless the interpreter is invoked with the
--no-prelude option), all operations discussed in this section are normally available in Pure
programs without requiring any explicit import declarations, unless explicitly noted other-
wise.

2.1.1 Constants and Operators

The prelude also declares a signature of commonly used constant and operator symbols.
This includes the truth values true and false.

constant true =1

247

mailto:aggraef@gmail.com
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html

Pure Language and Library Documentation, Release 0.59

constant false =0
These are actually just integers in Pure, but sometimes it’s convenient to refer to them
using these symbolic constants.

In addition, the following special exception symbols are provided:

constructor failed_cond

constructor failed_match

constructor stack_fault

constructor malloc_error
These are the built-in exception values. failed_cond denotes a failed conditional in
guard or if-then-else; failed_match signals a failed pattern match in lambda, case
expression, etc.; stack_fault means not enough stack space (PURE_STACK limit ex-
ceeded); and malloc_error indicates a memory allocation error.

constructor bad_list_value x

constructor bad_tuple_value x

constructor bad_string_value x

constructor bad_matrix_value x
These denote value mismatches a.k.a. dynamic typing errors. They are thrown by
some operations when they fail to find an expected value of the corresponding type.

constructor out_of_bounds
This exception is thrown by the index operator ! if a list, tuple or matrix index is out
of bounds.

Here’s the list of predefined operator symbols. Note that the parser will automagically give
unary minus the same precedence level as the corresponding binary operator.

infixl 1000 $$; // sequence operator

infixr 1100 $; // right-associative application
infixr 1200 , // pair (tuple)

infix 1300 => ; // key=>value pairs ("hash rocket")
infix 1400 e // arithmetic sequences

infixr 1500 | s // logical or (short-circuit)
infixr 1600 && ; // logical and (short-circuit)
prefix 1700 ~ ; // logical negation

infix 1800 < > <= >= == ~= ; // relations

infix 1800 === ~== ; // syntactic equality

infixr 1900 I // list cons

infix 2000 +: <: ; // complex numbers (cf. math.pure)
infixl 2100 << >> ; // bit shifts

infixl 2200 + - or ; // addition, bitwise or

infixl 2300 x* / div mod and ; // multiplication, bitwise and
infixl 2300 % ; // exact division (cf. math.pure)
prefix 2400 not ; // bitwise not

infixr 2500 ~ // exponentiation

prefix 2600 # ; // size operator

infixl 2700 b // indexing, slicing

infixr 2800 . // function composition

prefix 2900 " // quote

postfix 3000 & ; // thunk

248 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

2.1.2 Prelude Types

Some additional type symbols are provided which can be used as type tags on the left-hand
side of equations, see Type Tags in the Pure Manual.

type number
type complex
type real
type rational
type integer
type bool
Additional number types.

These types are defined in a purely syntactic way, by checking the builtin-type or the con-
structor symbol of a number. Some semantic number types can be found in the math module,
see Semantic Number Predicates and Types.

integer is the union of Pure’s built-in integer types, i.e., it comprises all int and bigint
values. bool is a subtype of int which denotes just the normalized truth values 6 and 1
(a.k.a. false and true).

rational and complex are the rational and complex types, while real is the union of the
double, integer and rational types (i.e., anything that can represent a real number and be
used for the real and imaginary parts of a complex number). Finally, number is the union of
all numeric types, i.e., this type can be used to match any kind of number.

Note that the operations of the rational and complex types are actually defined in the math
module which isn’t part of the prelude, so you have to import this module in order to do
computations with these types of values. However, the type tags and constructors for these
types are defined in the prelude so that these kinds of values can be parsed and recognized
without having the math module loaded.

The prelude also provides a subtype of the built-in string type which represents single-
character strings:

type char
A single character string. This matches any string value of length 1.

Lists and tuples can be matched with the following types:

type list

type rlist
The list and “proper” (or “recursive”) list types. Note that the former comprises both
the empty list [] and all list nodes of the form x: xs (no matter whether the tail xs is a
proper list value or not), whereas the latter only matches proper list values of the form

is defined recursively and requires linear time (with respect to the size of the list) to be
checked. This should be considered when deciding whether to use one or the other in
a given situation; see Type Rules for further explanation.

type tuple

2.1.2 Prelude Types 249

Pure Language and Library Documentation, Release 0.59

The type of all tuples, comprises the empty tuple () and all tuples (x, xs) with at least
two members. This is analogous to the list type above, but no “proper” tuple type is
needed here since any tuple of this form is always a proper tuple.

There are some other, more specialized types representing various kinds of applications,
function objects and other named entities. These are useful, in particular, for the definition
of higher-order functions and for performing symbolic manipulations on unevaluated sym-
bolic terms.

type appl
This type represents all unevaluated function or constructor applications of the form x
y. This comprises constructor terms and quoted or partial function applications.

type function
This type represents any term which may be called as a function. This may be a closure
(global or local function, or a lambda function) which takes at least one argument, or
a partial application of a closure to some arguments which is still “unsaturated”, i.e.,
expects some further arguments to be “ready to go”.

type fun
A named function object (global or local function, but not a partial application).

type lambda
An anonymous (lambda) function.

type closure
Any kind of function object (named function or lambda). This is the union of the fun
and lambda types.

type thunk
This is a special kind of unevaluated parameterless function object used in lazy evalu-
ation. See Lazy Evaluation and Streams in the Pure Manual.

type var
A free variable. This can be any kind of symbol that could in principle be bound to a
value (excluding operator and nonfix symbols).

type symbol
Any kind of symbol (this also includes operator and nonfix symbols).

Corresponding type predicates are provided for all of the above, see Predicates. Some fur-
ther types and predicates for matrices and records can be found under Matrix Inspection
and Manipulation and Record Functions.

2.1.3 Basic Combinators

The prelude implements the following important function combinators.

f$g

f.g
Like in Haskell, these denote right-associative application and function composition.

250 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

They are also defined as macros so that saturated calls of them are eliminated automat-
ically. Examples:

> foo $ bar 99;
foo (bar 99)
> (foo.bar) 99;
foo (bar 99)

id x

cstxy
These are the customary identity and constant combinators from the combinatorial
calculus:

> map id (1..5);
[1,2,3,4,5]

> map (cst 0) (1..5);
[0,0,0,0,0]

void x
This combinator is basically equivalent to cst (), but with the special twist that it is
also defined as a macro optimizing the case of “throwaway” list and matrix compre-
hensions. This is useful if a comprehension is evaluated solely for its side effects. E.g.:

> using system;

> extern int rand();

> foo = void [printf "%d\n" rand | _ = 1..3];
> show foo

foo = do (_ -> printf "%d\n" rand) (1..3);

> foo;

1714636915

1957747793

424238335

()

Note that the above list comprehension is actually implemented using do (instead of
map, which would normally be the case), so that the intermediate list value of the com-
prehension is never constructed. This is described in more detail in section Optimiza-
tion Rules of the Pure Manual.

In addition, the prelude also provides the following combinators adopted from Haskell:
flip f

Swaps arguments of a binary function f, e.g.:

> map (flip (/) 2) (1..3);
[0.5,1.0,1.5]

This combinator is also used by the compiler to implement right operator sections,
which allows you to write the above simply as:

> map (/2) (1..3);
[0.5,1.0,1.5]

2.1.3 Basic Combinators 251

Pure Language and Library Documentation, Release 0.59

curry f
Turns a function f expecting a pair of values into a curried function of two arguments:

> using system;

> dowith (curry (printf "S%d: %g\n")) (0..2) [0.0,2.718,3.14];
0: 0

1: 2.718

2: 3.14

()

uncurry f
The inverse of curry. Turns a curried function f expecting two arguments into a func-
tion processing a single pair argument:

> map (uncurry (*)) [(2,3),(4,5),(6,7)]1;
[6,20,42]

curry3 f

uncurry3 f
These work analogously, but are used to convert between ternary curried functions
and functions operating on triples.

fix f
This is the (normal order) fixed point combinator which allows you to create recursive

anonymous functions. It takes another function f as its argument and applies f to fix
f itself:

> let fact = fix (\f n -> if n<=0 then 1 else nxf (n-1));
> map fact (1..5);
[1,2,6,24,120]

See Fixed point combinator at Wikipedia for an explanation of how this magic works.
Just like in Haskell, fix can be used to produce least fixed points of arbitrary functions.
For instance:

> fix (cst bar);

bar

> let xs = fix (1:);

> XS;

1:#<thunk 0x7fe537fe2f90>
> xs!!1(0..10);
[1,1,1,1,1,1,1,1,1,1,1]

2.1.4 Lists and Tuples

The prelude defines the list and tuple constructors, as well as equality and inequality on
these structures. It also provides a number of other useful basic operations on lists and
tuples. These are all described below.

constructor []

252 2.1 Prelude

http://en.wikipedia.org/wiki/Fixed_point_combinator

Pure Language and Library Documentation, Release 0.59

constructor ()
Empty list and tuple.

constructor x : y
constructorx , y
List and tuple constructors. These are right-associative in Pure.

Lists are the usual right-recursive aggregates of the form x:xs, where x denotes the head
and xs the tail of the list, pretty much the same as in Lisp or Prolog except that they use a
Haskell-like syntax. In contrast to Haskell, list concatenation is denoted ‘+* (see below), and
lists may contain an arbitrary mixture of arguments, i.e., they are fully polymorphic:

> 1:2:3:[1;

[1,2,3]

> [1,2,3]1+[u,v,w]+[3.14];
[1,2,3,u,v,w,3.14]

Lists are eager in Pure by default, but they can also be made lazy (in the latter case they
are also called streams). This is accomplished by turning the tail of a list into a “thunk”
(a.k.a. “future”) which defers evaluation until the list tail is actually needed, see section Lazy
Evaluation and Streams in the Pure Manual. For instance, an infinite arithmetic sequence (see
below) will always produce a list with a thunked tail:

> 1:3..inf;
1:#<thunk 0x7f696cd2dbd8>

Pure also distinguishes proper and improper lists. The former are always terminated by an
empty list in the final tail and can thus be written using the conventional [x1,x2,...,xn]

syntax:

> 1:2:3:[1;
[1,2,3]

In contrast, improper lists are terminated with a non-list value and can only be represented
using the “:” operator:

> 1:2:3;
1:2:3

These aren’t of much use as ordinary list values, but are frequently encountered as patterns
on the left-hand side of an equation, where the final tail is usually a variable. Also note that
technically, a lazy list is also an improper list (although it may expand to a proper list value
as it is traversed).

Tuples work in a similar fashion, but with the special twist that the pairing constructor *,
is associative (it always produces right-recursive pairs) and “()‘ acts as a neutral element
on these constructs, so that ,” and “()‘ define a complete monoid structure. Note that this
means that *,” is actually a “constructor with equations” since it obeys the laws (x,y),z ==
x,(y,z)and (),x == x, () == x. Also note that there isn’t a separate operation for concate-
nating tuples, since the pairing operator already does this:

2.1.4 Lists and Tuples 253

Pure

Language and Library Documentation, Release 0.59

> (1,2,3),(10,9,8);

1,2,3
> (),
a,b,c

,10,9,8
(a,b,c);

> (a,b,c),();

a,b,c

This also implies that tuples are always flat in Pure and can’t be nested; if you need this, you
should use lists instead. Also, tuples are always eager in Pure.

Some important basic operations on lists and tuples are listed below.

X+y

List concatenation. This non-destructively appends the elements of y to x.

> [1,2,3]+[u,v,w];
[1,2,3,u,v,w]

Note that this operation in fact just recurses into x and replaces the empty list marking
the “end” of x with y, as if defined by the following equations (however, the prelude
actually defines this operation in a tail-recursive fashion):

[l +ys =ys;
(X:Xs) + ys = X : XS+ys;

To make this work, both operands should be proper lists, otherwise you may get some-
what surprising (but correct) improper list results like the following;:

[1,2,3]1+99;
12:3:99

(1:2:3)+33;
:2:36

This happens because Pure is dynamically typed and places no limits on ad hoc poly-
morphism. Note that the latter result is due to the fact that “+" also denotes the addition
of numbers, and the improper tail of the first operand is a number in this case, as is
the second operand. Otherwise you might have got an unreduced instance of the ‘+*
operator instead.

Equality and inequality of lists and tuples. These compare two lists or tuples by recur-
sively comparing their members, so ‘==" must be defined on the list or tuple members if
you want to use these operations. Also note that these operations are inherently eager,
so applying them to two infinite lists may take an infinite amount of time.

> reverse [a,b,c] == [c,b,a];

(a,b,c) == ();

SV =

254

2.1 Prelude

Pure Language and Library Documentation, Release 0.59

List and tuple size. This operation counts the number of elements in a list or tuple:

> #[a,b,c];
3
> #(a,b,c);
3

Please note that for obvious reasons this operation is inherently eager, so trying to
compute the size of an infinite list will take forever.

Indexing of lists and tuples is always zero-based (i.e., indices run from 0 to #x-1), and
an exception will be raised if the index is out of bounds:

> [1,2,3]1!2;

3

> [1,2,3]'4;

<stdin>, line 34: unhandled exception ’'out_of_bounds’ while evaluating
'[1,2,3]'4’

x1lis
The slicing operation takes a list or tuple and a list of indices and returns the list or
tuple of the corresponding elements, respectively. Indices which are out of the valid
range are silently ignored:

> (1..5)!1(3..10);
[4,5]

> (1,2,3,4,5)!1(3..10);
4,5

The case of contiguous index ranges, as shown above, is optimized so that it always
works in linear time, see Slicing below for details. But indices can actually be speci-
fied in any order, so that you can retrieve any permutation of the members, also with
duplicates. E.g.:

> (1..5)!![2,4,4,11;
[3,5,5,2]

This is less efficient than the case of contiguous index ranges, because it requires re-
peated traversals of the list for each index. For larger lists you should hence use vectors
or matrices instead, to avoid the quadratic complexity.

X ..y
Arithmetic sequences. Note that the Pure syntax differs from Haskell in that there are

no brackets around the construct and a step width is indicated by specifying the first
two elements as x:y instead of x, y.

> 1..5;
[1,2,3,4,5]

> 1:3..11;
[1,3,5,7,9,11]

2.1.4 Lists and Tuples 255

Pure Language and Library Documentation, Release 0.59

To prevent unwanted artifacts due to rounding errors, the upper bound in a floating
point sequence is always rounded to the nearest grid point:

> 0.0:0.1..0.29;
[0.0,0.1,0.2,0.3]
> 0.0:0.1..0.31;
[0.0,0.1,0.2,0.3]

Last but not least, you can specify infinite sequences with an infinite upper bound (inf
or -inf):

> 1:3..inf;

1:#<thunk 0x7f696cd2dbd8>
> -1:-3..-inf;

-1:#<thunk 0x7f696cd2fde8>

The lower bounds of an arithmetic sequence must always be finite.

null x

Test for the empty list and tuple.

> null [];

1

> null (a,b,c);
0

reverse x

Reverse a list or tuple.

> reverse (1..5);

[514I3I211]
> reverse (a,b,c);
(c,b,a)

In addition, the prelude provides the following conversion operations.

list x
tuple x

Convert between (finite) lists and tuples.

> tuple (1..5);
1,2,3,4,5

> list (a,b,c);
[a,b,c]

The list function can be used to turn a finite lazy list into an eager one:
> list $ take 10 (-1:-3..-inf);
[-1,-3,-5,-7,-9,-11,-13,-15,-17,-19]

You can also achieve the same effect somewhat more conveniently by slicing a finite
part from a stream:

256

2.1 Prelude

Pure Language and Library Documentation, Release 0.59

> (-1:-3..-inf)!11(0..9);
[-1,-3,-5,-7,-9,-11,-13,-15,-17,-19]

Conversely, it is also possible to convert an (eager) list to a lazy one (a stream).

stream x
Convert a list to a stream.

> stream (1..10);
1:#<thunk 0x7fe537fe2h58>

This might appear a bit useless at first sight, since all elements of the stream are in fact
already known. However, this operation then allows you to apply other functions to the list
and have them evaluated in a lazy fashion.

2.1.5 Slicing

Indexing and slicing are actually fairly general operations in Pure which are used not only
in the context of lists and tuples, but for any type of container data structure which can
be “indexed” in some way. Other examples in the standard library are the array and dict
containers.

The prelude therefore implements slicing in a generic way, so that it works with any kind of
container data structure which defines “!“ in such a manner that it throws an exception when
the index is out of bounds. It also works with any kind of index container that implements
the catmap operation.

The prelude also optimizes the case of contiguous integer ranges so that slices like
xs!!(i..j) are computed in linear time if possible. This works, in particular, with lists,
strings and matrices.

Moreover, the prelude includes some optimization rules and corresponding helper functions
to optimize the most common cases at compile time, so that the index range is never actually
constructed. To these ends, the slicing expression xs!!(i..j) is translated to a call subseq
xs i j of the special subseq function:

subseq x1ij
If x is a list, matrix or string, and i and j are int values, compute the slice xs!! (i..j)
in the most efficient manner possible. This generally avoids constructing the index list
i..j. Otherwise i..j is computed and subseq falls back to the slice function below
to compute the slice in the usual way.

slicexys
Compute the slice x ! !ys using the standard slicing operation, without any special com-
pile time tricks. (Runtime optimizations are still applied if possible.)

You can readily see the effects of this optimization by running the slicing operator against
slice:

2.1.5 Slicing 257

Pure Language and Library Documentation, Release 0.59

> let xs = 1..1000000;

> stats -m
> #slice xs (100000..299990);
199991

0.34s, 999957 cells

> #xs!11(100000..299990);
199991

0.14s, 399984 cells

Even more drastic improvements in both running time and memory usage can be seen in
the case of matrix slices:

> let x = rowvector xs;

> #slice x (100000..299990);
199991

0.19s, 599990 cells

> #x11(100000..299990);
199991

0s, 10 cells

2.1.6 Hash Pairs

The prelude provides another special kind of pairs called “hash pairs”, which take the form
key=>value. These are used in various contexts to denote key-value associations. The only
operations on hash pairs provided by the prelude are equality testing (which recursively
compares the components) and the functions key and val:

constructor x =>y
The hash pair constructor, also known as the “hash rocket”.

X::y

X~=y
Equality and inequality of hash pairs.

> ("f00"=>99) == ("bar"=>99);
0

key (x=>y)
val (x=>y)
Extract the components of a hash pair.

> key ("foo"=>99), val ("fo0"=>99);
"foo",99

{11

Note that in difference to the tuple operator *,’, the hash rocket ‘=>’ is non-associative,
so nested applications must be parenthesized, and (x=>y)=>z is generally not the same as
x=>(y=>z). Also note that “,” has lower precedence than ‘=>’, so to include a tuple as
key or value in a hash pair, the tuple must be parenthesized, as in "foo"=>(1,2) (whereas
"foo"=>1,2 denotes a tuple whose first element happens to be a hash pair).

258 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

2.1.7 List Functions

This mostly comes straight from the Q prelude which in turn was based on the first edition
of the Bird/Wadler book, and is very similar to what you can find in the Haskell prelude.
Some functions have slightly different names, though, and of course everything is typed
dynamically.

Common List Functions

any p xs
test whether the predicate p holds for any of the members of xs

allpxs
test whether the predicate p holds for all of the members of xs

cat xs
concatenate a list of lists

catmap f xs
convenience function which combines cat and map; this is also used to implement list
comprehensions

do f xs
apply f to all members of xs, like map, but throw away all intermediate results and
return ()

drop n xs
remove n elements from the front of xs

dropwhile p xs
remove elements from the front of xs while the predicate p is satisfied

filter p xs
return the list of all members of xs satisfying the predicate p

foldlfaxs
accumulate the binary function f over all members of xs, starting from the initial value
a and working from the front of the list towards its end

foldll f xs
accumulate the binary function f over all members of xs, starting from the value head
xs and working from the front of the list towards its end; xs must be nonempty

foldr faxs
accumulate the binary function f over all members of xs, starting from the initial value
a and working from the end of the list towards its front

foldrl f xs
accumulate the binary function f over all members of xs, starting from the value last
xs and working from the end of the list towards its front; xs must be nonempty

2.1.7 List Functions 259

Pure Language and Library Documentation, Release 0.59

head xs
return the first element of xs; xs must be nonempty

index xs x
search for an occurrence of x in xs and return the index of the first occurrence, if any,
-1 otherwise

Note: This uses equality == to decide whether a member of xs is an occurrence of x, so
== must have an appropriate definition on the list members.

init xs
return all but the last element of xs; xs must be nonempty

last xs
return the last element of xs; xs must be nonempty

listmap f xs
convenience function which works like map, but also deals with matrix and string argu-
ments while ensuring that the result is always a list; this is primarily used to implement
list comprehensions

map f xs
apply f to each member of xs

scanl fa xs
accumulate the binary function f over all members of xs, as with foldl, but return all
intermediate results as a list

scanllf xs
accumulate the binary function f over all members of xs, as with foldl1, but return all
intermediate results as a list

scanr f a xs
accumulate the binary function f over all members of xs, as with foldr, but return all
intermediate results as a list

scanrl f xs
accumulate the binary function f over all members of xs, as with foldrl, but return all
intermediate results as a list

sort p xs
Sorts the elements of the list xs in ascending order according to the given predicate
p, using the C gsort function. The predicate p is invoked with two arguments and
should return a truth value indicating whether the first argument is “less than” the
second. (An exception is raised if the result of a comparison is not a machine integer.)

> sort (>) (1..10);
[10,9,8,7,6,5,4,3,2,1]
> sort (<) ans;
[1,2,3,4,5,6,7,8,9,10]

tail xs
return all but the first element of xs; xs must be nonempty

260 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

take n xs
take n elements from the front of xs

takewhile p xs
take elements from the front of xs while the predicate p is satisfied

List Generators

Some useful (infinite) list generators, as well as some finite (and eager) variations of these.
The latter work like a combination of take or takewhile and the former, but are implemented
directly for better efficiency.

cycle xs
cycles through the elements of the nonempty list xs, ad infinitum

cyclenn xs
eager version of cycle, returns the first n elements of cycle xs

iteratefx
returns the stream containing x, f x, f (f x), etc,, ad infinitum

iteratennfx
eager version of iterate, returns the first n elements of iterate f x

iterwhile p fx
another eager version of iterate, returns the list of all elements from the front of
iterate f x for which the predicate p holds

repeat x
returns an infinite stream of xs

repeatn n x
eager version of repeat, returns a list with n xs

Zip and Friends

unzip xys
takes a list of pairs to a pair of lists of corresponding elements
unzip3 xyzs
unzip with triples
zip xsys
return the list of corresponding pairs (x,y) where x runs through the elements of xs
and y runs through the elements of ys

zip3 xs ys zs
zip with three lists, returns a list of triples

zipwith f xs ys
apply the binary function f to corresponding elements of xs and ys

2.1.7 List Functions 261

Pure Language and Library Documentation, Release 0.59

zipwith3 f xs ys zs
apply the ternary function f to corresponding elements of xs, ys and zs

Pure also has the following variations of zipwith and zipwith3 which throw away all inter-
mediate results and return the empty tuple (). That is, these work like do but pull arguments
from two or three lists, respectively:

dowith f xs ys
apply the binary function f to corresponding elements of xs and ys, return ()

dowith3 f xs ys zs
apply the ternary function f to corresponding elements of xs, ys and zs, return ()

2.1.8 String Functions

Pure strings are null-terminated character strings encoded in UTF-8, see the Pure Manual
for details. The prelude provides various operations on strings, including a complete set of
list-like operations, so that strings can be used mostly as if they were lists, although they
are really implemented as C character arrays for reasons of efficiency. Pure also has some
powerful operations to convert between Pure expressions and their string representation,
see Eval and Friends for those.

Basic String Functions

s+t
s!i
s!!is

String concatenation, indexing and slicing works just like with lists:

> IlabCII+IIXszI;

"abcxyz"

> let s = "The quick brown fox jumps over the lazy dog.";
> sl!5;

u
> s!11(20..24);
Iljumpsll

null s
#s
Checking for empty strings and determining the size of a string also works as expected:

nu.l.l n ||;

null s;

V ©V =V

#s;
44

S ==

262 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

S ~=

s<=t

s>=t

s<t

s>t
String equality and comparisons. This employs the usual lexicographic order based on
the (UTF-8) character codes.

> "awe">"awesome" ;
0

> "foo">="bar";

1

> "foo"=="bar";

0

You can search for the location of a substring in a string, and extract a substring of a given
length:

indexsu
Returns the (zero-based) index of the first occurrence of the substring uin s, or -1 if u
is not found in s.

substrsin
Extracts a substring of (at most) n characters at position i in s. This takes care of all
corner cases, adjusting index and number of characters so that the index range stays
confined to the source string.

Example:

> index s "jumps";
20

> substr s 20 10;
"jumps over"

Note that Pure doesn’t have a separate type for individual characters. Instead, these are
represented as strings ¢ containing exactly one (UTF-8) character (i.e., #c==1). It is possible
to convert such single character strings to the corresponding integer character codes, and
vice versa:

ordc
Ordinal number of a single character string c. This is the character’s code point in the
Unicode character set.

chrn
Converts an integer back to the character with the corresponding code point.

In addition, the usual character arithmetic works, including arithmetic sequences of charac-
ters, so that you can write stuff like the following:

> "a"'"A";
32
> ||u||_32;

2.1.8 String Functions 263

Pure Language and Library Documentation, Release 0.59

||U||
> ||a||. ."k";
[“a","b","C","d","e","f","g","h","i","j","k"]

For convenience, the prelude provides the following functions to convert between strings
and lists (or other aggregates) of characters.

chars s
lists
Convert a string s to a list of characters.

tuples
matrix s
Convert a string s to a tuple or (symbolic) matrix of characters, respectively.

strcat xs
Concatenate a list xs of strings (in particular, this converts a list of characters back to a
string).

string xs
Convert a list, tuple or (symbolic) matrix of strings to a string. In the case of a list, this
is synonymous with strcat, but it also works with the other types of aggregates.

For instance:

> list "abc";

[Ilall , Ilbll , IICII]

> string ("a".."z");
"abcdefghijklmnopqrstuvwxyz"

The following functions are provided to deal with strings of “tokens” separated by a given
delimiter string.

split delim s
Splits s into a list of substrings delimited by delim.

join delim xs
Joins the list of strings xs to a single string, interpolating the given delim string.

Example:

> let xs = split " " s; xs;
[::Theu’uquicku’ubrownu'ufoxu'ujumpsu'uoveru’utheu’ulazyu’udog.u]
> join ":" xs;

"The:quick:brown: fox:jumps:over:the:lazy:dog."

We mention in passing here that more elaborate string matching, splitting and replacement
operations based on regular expressions are provided by the system module, see Regex
Matching.

If that isn’t enough already, most generic list operations carry over to strings in the obvious
way, treating the string like a list of characters. (Polymorphic operations such as map, which
aren’t guaranteed to yield string results under all circumstances, will actually return lists in

264 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

that case, so you might have to apply string explicitly to convert these back to a string.) For
instance:

> filter (>="k") s;
"qukrownoxumpsovrtlzyo"

> string $ map pred "ibm";
"hal"

List comprehensions can draw values from strings, too:

> string [x+1 | x="HAL"];
IIIBMII

Low-Level Operations

The following routines are provided by the runtime to turn raw C charx* pointers (also called
byte strings in Pure parlance, to distinguish them from Pure’s “cooked” UTF-8 string values)
into corresponding Pure strings. Normally you don’t have to worry about this, because the
C interface already takes care of the necessary marshalling, but in some low-level code these
operations are useful. Also note that here and in the following, the cstring routines also
convert the string between the system encoding and Pure’s internal UTF-8 representation.

strings

cstrings
Convert a pointer s to a Pure string. s must point to a null-terminated C string. These
routines take ownership of the original string value, assuming it to be malloced, so you
should only use these for C strings which are specifically intended to be freed by the
user.

string_dups

cstring_dups
Convert a pointer s to a Pure string. Like above, but these functions take a copy of the
string, leaving the original C string untouched.

The reverse transformations are also provided. These take a Pure string to a byte string (raw
charx).

byte_strings

byte_cstrings
Construct a byte string from a Pure string s. The result is a raw pointer object pointing
to the converted string. The original Pure string is always copied (and, in the case
of byte_cstring, converted to the system encoding). The resulting byte string is a
malloced pointer which can be used like a C charx, and has to be freed explicitly by
the caller when no longer needed.

It is also possible to convert Pure string lists or symbolic vectors of strings to byte string
vectors and vice versa. These are useful if you need to pass an argv-like string vector (i.e.,
a charxx or charx[]) to C routines. The computed C vectors are malloced pointers which
have an extra NULL pointer as the last entry, and should thus be usable for almost any pur-
pose which requires such a string vector in C. They also take care of garbage-collecting

2.1.8 String Functions 265

Pure Language and Library Documentation, Release 0.59

themselves. The original string data is always copied. As usual, the cstring variants do
automatic conversions to the system encoding.

byte_string_pointer xs
byte_cstring_pointer xs
Convert a list or vector of Pure strings to a C charxx.

string_listnp
cstring_listnp
Convert a C charsx to a list of Pure strings.

string_vectornp
cstring_vectornp
Convert a C char*x to a symbolic vector of Pure strings.

Note that the back conversions take an additional first argument which denotes the number
of strings to retrieve. If you know that the vector is NULL-terminated then this can also be an
infinite value (inf) in which case the number of elements will be figured out automatically.
Processing always stops at the first NULL pointer encountered.

Also note that, as of version 0.45, Pure has built-in support for passing argv-style vectors
as arguments by means of the charxx and void** pointer types. However, the operations
provided here are more general in that they allow you to both encode and decode such
values in an explicit fashion. This is useful, e.g., for operations like getopt which may mutate
the given charxx vector.

If you have getopt in your C library, you can try the following example. First enter these
definitions:

extern int getopt(int argc, char xxargv, char xoptstring);
optind = get_int $ addr "optind";
optarg = cstring_dup $ get_pointer $ addr "optarg";

Now let’s run getopt on a byte string vector constructed from an argument vector (which
includes the “program name” in the first element):

> let args = byte_cstring_pointer {"progname","boo","-n","-tfoo","bar"};
> getopt 5 args "nt:", optarg;

110, #<pointer 0x0>

> getopt 5 args "nt:", optarg;

116, "foo"

> getopt 5 args "nt:", optarg;

-1,#<pointer 0x0>

Note that 110 and 116 are the character codes of the option characters n and t, where the
latter option takes an argument, as returned by optarg. Finally, getopt returns -1 to indicate
that there are no more options, and we can retrieve the current optindex value and the
mutated argument vector to see which non-option arguments remain to be processed, as
follows:

> optind, cstring_vector 5 args;
3,{"prOgname","-n","-thO","bOO","bar"}

266 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

It is now an easy exercise to design your own high-level wrapper around getopt to process
command line arguments in Pure. However, this isn’t really necessary since the Pure library
already offers such an operation which doesn’t rely on any special system functions, see
Option Parsing in the System Interface section.

2.1.9 Matrix Functions

Matrices are provided as an alternative to the list and tuple aggregates which provide con-
tant time access to their members and are tailored for use in numeric computations.

#Xx
dim x
Determine the size of a matrix (number of elements) and its dimensions (number of
rows and columns).
> let x = {1,2,3;4,5,6}; #x;
6
> dim x;
2,3
null
Check for empty matrices. Note that there are various kinds of these, as a matrix may
have zero rows or columns, or both.
X == y
X~=y
Matrix equality and inequality. These check the dimensions and the matrix elements
for equality:
> x == transpose X;
0
x i
x s

Indexing and slicing.

llll

Indexing and slicing employ the standard Pure operators “!” and “!!’. They work pretty
much like in MATLAB and Octave, but note that Pure matrices are in row-major order and
the indices are zero-based. It is possible to access elements with a one-dimensional index (in
row-major oder):

> x!3;

4

Or you can specify a pair of row and column index:
> x!(1,0);

4

Slicing works accordingly. You can either specify a list of (one- or two-dimensional) indices,
in which case the result is always a row vector:

2.1.9 Matrix Functions 267

Pure Language and Library Documentation, Release 0.59

> x!1(2..5);
{3,4,5,6}

Or you can specify a pair of row and column index lists:

> x!1(0..1,1..2);
{2,3;5,6}

The following abbreviations are provided to grab a slice from a row or column:

> x!1(1,1..2);
{5,6}
> x!1(0..1,1);
{2;5}

As in the case of lists, matrix slices are optimized to handle cases with contiguous index
ranges in an efficient manner, see Slicing for details. To these ends, the helper functions
subseq and subseq2 are defined to handle the necessary compile time optimizations.

Most of the generic list operations are implemented on matrices as well, see Common List
Functions. Hence operations like map and zipwith work as expected:

> map succ {1,2,3;4,5,6};

{2,3,4;5,6,7}

> zipwith (+) {1,2,3;4,5,6} {1,0,1;0,2,0};
{2,2,4;4,7,6}

The matrix module also provides a bunch of other specialized matrix operations, including
all the necessary operations for matrix comprehensions. We briefly summarize the most
important operations below; please refer to matrices.pure for all the gory details. Also make
sure you check Matrices and Vectors in the Pure Manual for some more examples, and the
Record Functions section for an implementation of records using symbolic vectors.

Matrix Construction and Conversions

matrix xs
This function converts a list or tuple to a corresponding matrix. matrix also turns a list
of lists or matrices specifying the rows of the matrix to the corresponding rectangular
matrix; otherwise, the result is a row vector. (In the former case, matrix may throw a
bad_matrix_value exception in case of dimension mismatch, with the offending sub-
matrix as argument.)

> matrix [1,2,3];

{1,2,3}

> matrix [[1,2,3],[4,5,6]1;
{1,2,3;4,5,6}

rowvector xs
colvector xs

268 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

vector xs
The rowvector and colvector functions work in a similar fashion, but expect a list,
tuple or matrix of elements and always return a row or column vector, respectively
(i.e.,al x n or n x 1 matrix, where n is the size of the converted aggregate). Also, the
vector function is a synonym for rowvector. These functions can also be used to create
recursive (symbolic) matrix structures of arbitrary depth, which provide a nested array
data structure with efficient (constant time) element access.

> rowvector [1,2,3];

{1,2,3}

> colvector [1,2,3];

{1;2;3}

> vector [rowvector [1,2,3],colvector [4,5,6]1;
{{1,2,3},{4;5;6}}

Note that for convenience, there’s also an alternative syntax for entering nested vectors
more easily, see the description of the non-splicing vector brackets below for details.

rowvectorseq x y step

colvectorseq x y step

vectorseq x y step
With these functions you can create a row or column vector from an arithmetic se-
quence. Again, vectorseq is provided as a synonym for rowvectorseq. These opera-
tions are optimized for the case of int and double ranges.

> rowvectorseq 0 10 1;
{0,1,2,3,4,5,6,7,8,9,10}

> colvectorseq 0 10 1;
{0;1;2;3;4;5;6;7;8;9;10}

> vectorseq 0.0 0.9 0.1;
{6.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

The prelude also contains some optimization rules which translate calls to vector et al
on arithmetic sequences to the corresponding calls to vectorseq et al, such as:

def vector (nl:n2..m) = vectorseq nl m (n2-nl);
def vector (n..m) = vectorseq nm 1;

Example:

> foo = vector (1..10);

> bar = vector (0.0:0.1..0.9);
> show foo bar

bar = vectorseq 0.0 0.9 0.1;

foo = vectorseq 1 10 1;

> foo; bar;

{1,2,3,4,5,6,7,8,9,10}
{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

Please note that these optimization rules assume that basic arithmetic works with the
involved elements, which may give you trouble if you try to use vector et al with

2.1.9 Matrix Functions 269

Pure Language and Library Documentation, Release 0.59

exotic kinds of user-defined arithmetic sequences. To disable them, simply run the
interpreter with the option - -disable vectorseq-opt.

dmatrix xs

cmatrix xs

imatrix xs

smatrix xs
These functions convert a list or matrix to a matrix of the corresponding type (integer,
double, complex or symbolic). If the input is a list, the result is always a row vector; this
is usually faster than the matrix and vector operations, but requires that the elements
already are of the appropriate type.

> imatrix [1,2,3];
{1,2,3}

> dmatrix {1,2,3;4,5,6};

{1.0,2.0,3.0;4.0,5.0,6.0}

In addition, these functions can also be invoked with either an int n or a pair (n,m)
of ints as argument, in which case they construct a zero rowvector or matrix with the

corresponding dimensions.

> imatrix 3;

{0,0,0}
> imatrix (2,3);
{0,0,0;0,0,0}
list x
list2 x
tuple x

These convert a matrix back to a flat list or tuple. The 1ist2 function converts a matrix
to a list of lists (one sublist for each row of the matrix).

> tuple {1,2,3;4,5,6};
1,2,3,4,5,6

> list {1,2,3;4,5,6};
[1,2,3,4,5,6]

> list2 {1,2,3;4,5,6};
[[1,2,3],[4,5,6]]

> list2 {1,2,3};
[r1,2,311

In addition, the following special syntax is provided as a shorthand notation for nested vec-
tor structures:

macro {| x,y,z,... |}
Non-splicing vector brackets. These work like {x,y, z, ...}, but unlike these they will
not splice submatrices in the arguments x,y,z,... So they work a bit like quoted
vectors '{x,y,z, ...}, but the arguments x,y, z, ... will be evaluated as usual.

The non-splicing vector brackets provide a convenient shorthand to enter symbolic vector
values which may contain other vectors or matrices as components. For instance, note how
the ordinary matrix brackets combine the column subvectors in the first example below to

270 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

a 3x2 matrix, while the non-splicing brackets in the second example create a 1x2 row vector
with the column vectors as members instead:

> {{1;2;3},{4;5;6}};
{1,4;2,5;3,6}

> {|{1;2;3},{4;5;6}|};
{{1;2;3},{4;5;6}}

The second example works like a quoted matrix expression such as '{{1;2;3},{4;5;6}},
but the non-splicing brackets also evaluate their arguments:

> "{vector (1..3),vector (4..6)};
{vector (1..3),vector (4..6)}

> {|vector (1..3),vector (4..6)]|};
{{1,2,3},{4,5,6}}

The {| |} brackets can be nested. Examples:

> {|1,{|vector (1..5),2«3|},{}|};
{1,{{1,2,3,4,5},6},{}}

> {[{{1,2} 1}, {1{3.,4}|}};
{{{1,2}},{{3,4}}}

Also note that the {| |} brackets only produce row vectors, but you can just transpose the
result if you need a column vector instead:

> transpose {|{1;2;3},{4;5;6}|};
{{1;2;3};{4;5;6}}

Finally, note that the notation {| |} without any arguments is not supported, simply write
{} for the empty vector instead.

Matrix Inspection and Manipulation

type dmatrix

type cmatrix

type imatrix

type smatrix

type nmatrix
Convenience types for the different subtypes of matrices (double, complex, int, sym-
bolic and numeric, i.e., non-symbolic). These can be used as type tags on the left-hand
side of equations to match specific types of matrices.

dmatrixp x
cmatrixp x
imatrixp x
smatrixp x
nmatrixp x
Corresponding predicates to check for different kinds of matrices.

vectorp x

2.1.9 Matrix Functions 271

Pure Language and Library Documentation, Release 0.59

rowvectorp x
colvectorp x
Check for different kinds of vectors (these are just matrices with one row or column).

stride x
The stride of a matrix denotes the real row size of the underlying C array, see the
description of the pack function below for further details. There’s little use for this
value in Pure, but it may be needed when interfacing to C.

subseq x1ij

subseq2 xijkl
Helper functions to optimize matrix slices, see Slicing for details. subseq2 is a special
version of subseq which is used to optimize the case of 2-dimensional matrix slices
xs!!(i..,k..1).

row x i
col x1
Extract the ith row or column of a matrix.

rows X
cols x
Return the list of all rows or columns of a matrix.

diag x

subdiag x k

supdiag x k
Extract (sub-,super-) diagonals from a matrix. Sub- and super-diagonals for k=0 return
the main diagonal. Indices for sub- and super-diagonals can also be negative, in which
case the corresponding super- or sub-diagonal is returned instead. In each case the
result is a row vector.

submat x (i,j) (n,m)
Extract a submatrix of a given size at a given offset. The result shares the underlying
storage with the input matrix (i.e., matrix elements are not copied) and so this is a
comparatively cheap operation.

rowcat xs

colcat xs
Construct matrices from lists of rows and columns. These take either scalars or subma-
trices as inputs; corresponding dimensions must match. rowcat combines submatrices
vertically, like {x;y}; colcat combines them horizontally, like {x,y}. Note: Like the
built-in matrix constructs, these operations may throw a bad_matrix_value exception
in case of dimension mismatch.

matcat xs
Construct a matrix from a (symbolic) matrix of other matrices and/or scalars. This
works like a combination of rowcat and colcat, but draws its input from a matrix
instead of a list of matrices, and preserves the overall layout of the “host” matrix. The
net effect is that the host matrix is flattened out. If all elements of the input matrix are
scalars already, the input matrix is returned unchanged.

272 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

rowcatmap f xs

colcatmap f xs

rowmap f xs

colmap f xs
Various combinations of rowcat, colcat and map. These are used, in particular, for
implementing matrix comprehensions.

diagmat x

subdiagmat x k

supdiagmat x k
Create a (sub-,super-) diagonal matrix from a row vector x of size n. The result is
always a square matrix with dimension (n+k, n+k), which is of the same matrix type
(double, complex, int, symbolic) as the input and has the elements of the vector on its
kth sub- or super-diagonal, with all other elements zero. A negative value for k turns
a sub- into a super-diagonal matrix and vice versa.

re x
im x
conj x
Extract the real and imaginary parts and compute the conjugate of a numeric matrix.

pack x

packed x
Pack a matrix. This creates a copy of the matrix which has the data in contiguous
storage. It also frees up extra memory if the matrix was created as a slice from a bigger
matrix (see submat above) which has since gone the way of the dodo. The packed
predicate can be used to verify whether a matrix is already packed. Note that even if a
matrix is already packed, pack will make a copy of it anyway, so pack also provides a
quick way to copy a matrix, e.g., if you want to pass it as an input/output parameter
to a GSL routine.

redim (n,m) x

redimn x
Change the dimensions of a matrix without changing its size. The total number of
elements must match that of the input matrix. Reuses the underlying storage of the
input matrix if possible (i.e., if the matrix is packed). You can also redim a matrix to a
given row size n. In this case the row size must divide the total size of the matrix.

sort p x
Sorts the elements of a matrix (non-destructively, i.e., without changing the original
matrix) according to the given predicate, using the C gsort function. This works ex-
actly the same as with lists (see Common List Functions), except that it takes and re-
turns a matrix instead of a list. Note that the function sorts all elements of the matrix
in one go (regardless of the dimensions), as if the matrix was a single big vector. The
result matrix has the same dimensions as the input matrix. Example:

> sort (<) {10,9;8,7;6,5};
{5,6;7,8;9,10}

If you'd like to sort the individual rows instead, you can do that as follows:

2.1.9 Matrix Functions 273

Pure Language and Library Documentation, Release 0.59

> sort_rows p = rowcat . map (sort p) . rows;
> sort_rows (<) {10,9;8,7;6,5};
{9,10,;7,8;5,6}

Likewise, to sort the columns of a matrix:

> sort_cols p = colcat . map (sort p) . cols;
> sort_cols (<) {10,9;8,7;6,5};
{6,5;8,7;10,9}

Also note that the pure-gsl module provides an interface to the GSL routines for sorting
numeric (int and double) vectors using the standard order. These will usually be much
faster than sort, whereas sort is more flexible in that it also allows you to sort symbolic
matrices and to choose the order predicate.

transpose x
Transpose a matrix. Example:

> transpose {1,2,3;4,5,6};
{1,4;2,5;3,6}

rowrev X

colrev x

reverse x
Reverse a matrix. rowrev reverses the rows, colrev the columns, reverse both dimen-
sions.

Pointers and Matrices

Last but not least, the matrix module also offers a bunch of low-level operations for con-
verting between matrices and raw pointers. These are typically used to shovel around mas-
sive amounts of numeric data between Pure and external C routines, when performance and
throughput is an important consideration (e.g., graphics, video and audio applications). The
usual caveats concerning direct pointer manipulations apply.

pointer x
Get a pointer to the underlying C array of a matrix. The data is not copied. Hence
you have to be careful when passing such a pointer to C functions if the underlying
data is non-contiguous; when in doubt, first use the pack function to place the data in
contiguous storage, or use one of the matrix-pointer conversion routines below.

double_pointer p x
float_pointer p x
complex_pointer p x
complex_float_pointer p x
int64_pointer p x
int_pointer p x
short_pointer p x

274 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

byte_pointer p x

These operations copy the contents of a matrix to a given pointer and return that
pointer, converting to the target data type on the fly if necessary. The given pointer
may also be NULL, in which case suitable memory is malloced and returned; otherwise
the caller must ensure that the memory pointed to by p is big enough for the contents
of the given matrix. The source matrix x may be an arbitrary numeric matrix. In the
case of int64_pointer, x may also be a symbolic matrix holding bigint values which
are converted to 64 bit machine integers.

double_matrix (n,m) p

float_matrix (n,m) p

complex_matrix (n,m) p

complex_float_matrix (n,m) p

int64_matrix (nm) p

int_matrix (n,m)p

short_matrix (n,m) p

byte_matrix (nm) p
These functions allow you to create a matrix from a pointer, copying the data and
converting it from the source type on the fly if necessary. The result will be a numeric
matrix of the appropriate type, except in the case of int64_matrix where the result
is a symbolic matrix consisting of bigint values. The source pointer p may also be
NULL, in which case the new matrix is filled with zeros instead. Otherwise the caller
must ensure that the pointer points to properly initialized memory big enough for the
requested dimensions. The given dimension may also be just an integer n if a row
vector is to be created.

double_matrix_view (n,m) p

complex_matrix_view (n,m) p

int_matrix_view (n,m) p
These operations can be used to create a numeric matrix view of existing data, without
copying the data. The data must be double, complex or int, the pointer must not be
NULL and the caller must also ensure that the memory persists for the entire lifetime of
the matrix object. The given dimension may also be just an integer n if a row vector
view is to be created.

2.1.10 Record Functions

As of Pure 0.41, the prelude also provides a basic record data structure, implemented as
symbolic vectors of key=>value pairs which support a few dictionary-like operations such
as member, insert and indexing. Records may be represented as row, column or empty
vectors (i.e., the number of rows or columns must be zero or one). They must be symbolic
matrices consisting only of “hash pairs” key=>value, where the keys can be either symbols
or strings. The values can be any kind of Pure data; in particular, they may themselves be
records, so records can be nested.

The following operations are provided. Please note that all updates of record members are
non-destructive and thus involve copying, which takes linear time (and space) and thus

2.1.10 Record Functions 275

Pure Language and Library Documentation, Release 0.59

might be slow for large record values; if this is a problem then you should use dictionaries
instead (cf. Dictionaries). Or you can create mutable records by using expression references
(cf. Expression References) as values, which allow you to modify the data in-place. Element
lookup (indexing) uses binary search on an internal index data structure and thus takes
logarithmic time once the index has been constructed (which is done automatically when
needed, or when calling recordp on a fresh record value).

Also note that records with duplicate keys are permitted; in such a case the following oper-
ations will always operate on the last entry for a given key.

type record
The record type. This is functionally equivalent to recordp, but can be used as a type
tag on the left-hand side of equations.

recordp x
Check for record values.

record x
Normalizes a record. This removes duplicate keys and orders the record by keys (using
an apparently random but well-defined order of the key values), so that normalized
records are syntactically equal (===) if and only if they contain the same hash pairs.
For convenience, this function can also be used directly on lists and tuples of hash
pairs to convert them to a normalized record value.

#x
The size of a record (number of entries it contains). Duplicate entries are counted. (This
is in fact just the standard matrix size operation.)

member x y
Check whether x contains the key y.

x!ly
Retrieves the (last) value associated with the key y in x, if any, otherwise throws an
out_of_bound exception.

x!lys

Slicing also works as expected, by virtue of the generic definition of slicing provided
by the matrix data structure.

insert x (y=>z)

update xy z
Associate the key y with the value z in x. If x already contains the key y then the corre-
sponding value is updated (the last such value if x contains more than one association
for y), otherwise a new member is inserted at the end of the record.

deletexy
Delete the key y (and its associated value) from x. If x contains more than one entry for
y then the last such entry is removed.

keys x
vals x
List the keys and associated values of x. If the record contains duplicate keys, they are

276 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

all listed in the order in which they are stored in the record.
Here are a few basic examples:

> let r = {x=>5, y=>12};

> rly; rllly,x]; // indexing and slicing

12

{12,5}

> keys r; vals r; // keys and values of a record
{x,y}

{5,12}

> insert r (x=>99); // update an existing entry
{x=>99,y=>12}

> insert ans (z=>77); // add a new entry
{x=>99,y=>12,z=>77}

> delete ans z; // delete an existing entry

{x=>99,y=>12}
> let r = {r,x=>7,z=>3}; r; // duplicate key x
{x=>5,y=>12,x=>7,z=>3}

> rix, rlz; // indexing returns the last value of x
7,3

> delete r x; // delete removes the last entry for x
{x=>5,y=>12,z=>3}

> record r; // normalize (remove dups and sort)

{x=>7,y=>12,z=>3}

> record [x=>5, x=>7, y=>12]; // construct a normalized record from a list
{x=>7,y=>12}

> record (x=>5, x=>7, y=>12); // ... or a tuple

{x=>7,y=>12}

More examples can be found in the Record Data section in the Pure Manual.

2.1.11 Primitives

This prelude module is a collection of various lowlevel operations, which are implemented
either directly by machine instructions or by C functions provided in the runtime. In par-
ticular, this module defines the basic arithmetic and logic operations on machine integers,
bigints and floating point numbers, as well as various type checking predicates and conver-
sions between different types. Some basic pointer operations are also provided, as well as
“sentries” (Pure’s flavour of object finalizers) and “references” (mutable expression point-
ers).

Special Constants

constant inf

constant nan
IEEE floating point infinities and NaNs. You can test for these using the infp and nanp
predicates, see Predicates below.

2.1.11 Primitives 277

Pure Language and Library Documentation, Release 0.59

constant NULL = pointer 0

Generic null pointer. (This is actually a built-in constant.) You can also check for null

pointers with the null predicate, see Predicates.

Arithmetic

The basic arithmetic and logic operations provided by this module are summarized in the

following table:
Kind Operator | Meaning
Arithmetic + - addition, subtraction (also unary minus)
* / multiplication, division (inexact)
div mod exact int/bigint division/modulus
~ exponentiation (inexact)
Comparisons | == ~= equality, inequality
<> less than, greater than
<=>= less than or equal, greater than or equal
Logic ~ logical not
&& | | and, or (short-circuit)
Bitwise not bitwise not
and or and, or
<< >> bit shifts

Precedence and and associativity of the operators can be found in the operators table at the
beginning of this section.

The names of some operations are at odds with C. Note, in particular, that logical negation
is denoted ~ instead of ! (and, consequently, ~= denotes inequality, rather than !=), and the
bitwise operations are named differently. This is necessary because Pure uses !, & and |
for other purposes. Also, / always denotes inexact (double) division in Pure, whereas the
integer division operators are called div and mod. (%, which is not defined by this module,
also has a different meaning in Pure; it’s the exact division operator, see Rational Numbers.)

The above operations are implemented for int, bigint and, where appropriate, double
operands. (Pointer arithmetic and comparisons are provided in a separate module, see
Pointer Arithmetic.) The math module (see Mathematical Functions) also provides imple-
mentations of the arithmetic and comparison operators for rational, complex and complex
rational numbers.

Note that the logical operations are actually implemented as special forms in order to pro-
vide for short-circuit evaluation. This needs special support from the compiler to work.
The primitives module still provides definitions for these, as well as other special forms like
quote and the thunking operator & so that they may be used as function values and in partial
applications, but when used in this manner they lose all their special call-by-name proper-
ties; see Special Forms in the Pure Manual for details. The rules for the logical connectives
are actually slightly more general than the built-in rules so that an expression of the form
x&&y or x| |y will always be simplified in a sensible way if at least one of the operands is a
machine int; e.g., both x&&1 and 1&&x will reduce to just x if x is not a machine int.

278 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

A detailed listing of the basic arithmetic and logical operations follows below.

X +y
xX-y
X *y
x/y
X"y
Addition, subtraction, multiplication, division and exponentiation. The latter two are
inexact and will yield double results.

Unary minus. This has the same precedence as binary “-* above.

xdivy
x mod y
Exact int and bigint division and modulus.

X == y
X~=y
Equality and inequality.

X <=y
X >= y
X>y
X<y
Comparisons.

~X

X &&y

x[ly
Logical negation, conjunction and disjunction. These work with machine ints only and
are evaluated in short-circuit mode, unless they are invoked as higher-order functions
or with operands which aren’t machine ints. See the explanations above.

not x

xandy

xory
Bitwise negation, conjunction and disjunction. These work with both machine ints and
bigints.

x <<k

x >>k
Arithmetic bit shifts. The left operand x may be a machine int or a bigint. The right
operand k must be a machine int and denotes the (nonnegative) number of bits to shift.

Note: This operation may expand to a single machine instruction in the right circum-
stances, thus the condition that k be nonnegative isn’t always checked. This may lead
to surprising results if you do specify a negative value for k. However, in the current
implementation bigint shifts do check the sign of k and handle it in the appropriate
way, by turning a left shift into a corresponding right shift and vice versa.

2.1.11 Primitives 279

Pure Language and Library Documentation, Release 0.59

In addition, the following arithmetic and numeric functions are provided:

abs x
sgn x
Absolute value and sign of a number.

min x y

max X y
Minimum and maximum of two values. This works with any kind of values which
have the ordering relations defined on them.

succ X
pred x
Successor (+1) and predecessor (- 1) functions.

gcdxy

ledxy
The greatest common divisor and least common multiple functions from the GMP li-
brary. These return a bigint if at least one of the arguments is a bigint, a machine int
otherwise.

pow X y
Computes exact powers of ints and bigints. The result is always a bigint. Note that y
must always be nonnegative here, but see the math module (Mathematical Functions)
which deals with the case y<0 using rational numbers.

Conversions

These operations convert between various types of Pure values.

hash x
Compute a 32 bit hash code of a Pure expression.

bool x
Convert a machine integer to a normalized truth value (6 or 1).

int x
bigint x
double x
Conversions between the different numeric types.

pointer x
Convert a string, int or bigint to a pointer value. Converting a string returns a pointer
to the underlying UTF8-encoded C string so that it can be passed to the appropriate C
functions. Converting an integer gives a pointer with the given numeric address. This
may be used to construct special pointer values such as the null pointer (pointer 0).

ubyte x
ushort x

280 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

uint x

uint64 x

ulong x
Convert signed (8/16/32/64) bit integers to the corresponding unsigned quantities.
These functions behave as if the value was “cast” to the corresponding unsigned C
type, and are most useful for dealing with unsigned integers returned by external C
routines. The routines always use the smallest Pure int type capable of holding the
result: int for ubyte and ushort, bigint for uint, uint64 and ulong. All routines take
int parameters. In the case of uint64, a bigint parameter is also permitted (which is
what the C interface returns for 64 bit values). Also note that ulong reduces to either
uint or uint64, depending on the size of long for the host architecture.

The following rounding functions work with all kinds of numbers:

floor x
ceil x
Floor and ceil.

round x
trunc x
Round or truncate to an integer.

frac x
Fractional part (x-trunc x).

Note that all these functions return double values for double arguments, so if you need an
integer result then you’ll have to apply a suitable conversion, as in int (floor x).

Predicates

A syntactic equality test is provided, as well as various type checking predicates. Note that
type definitions are provided for most of the type checking predicates which don’t denote
built-in types; see Prelude Types for details.

same Xy
X ===y
X ~== y

Syntactic equality. In contrast to == and ~=, this is defined on all Pure expressions.
Basically, two expressions are syntactically equal if they print out the same in the inter-
preter. In the special case of pointer objects and closures, which do not always have a
syntactic representation in Pure, x and y must be the same object (same pointer value
or function).

typep ty x
Generic type checking predicate. This checks whether x is of type ty, where ty is a
symbol denoting any of the built-in types (int, bigint etc.) or any type defined in a
type definition. (Note that you may have to quote ty if it happens to be defined as a
variable or parameterless function.)

intp x

2.1.11 Primitives 281

Pure Language and Library Documentation, Release 0.59

bigintp x
doublep x
stringp x
pointerp x
matrixp x
Predicates to check for the built-in types.

boolp x
Predicate to check for normalized truth values (0 and 1).

charp x
Predicate to check for single character strings.

numberp x

complexp x

realp x

rationalp x

integerp x
Additional number predicates. Note some further “semantic” number predicates are
defined in the math module, see Semantic Number Predicates and Types.

exactp x
inexactp x
Check whether a number is exact (i.e., doesn’t contain any double components).

infp x
nanp X
Check for inf and nan values.

nullp
Check for null pointers.

applp x

listp x

rlistp x

tuplep x
Predicates to check for function applications, lists, proper lists and tuples. Note that
listp only checks for a toplevel list constructor, whereas rlistp also recursively
checks the tails of the list; the latter may need time proportional to the list size. The
applp and tuplep predicates look for an application or tuple constructor at the toplevel
only, which can always be done in constant time.

funp x

lambdap x

thunkp x

closurep x
Predicates to check for various kinds of function objects (named, anonymous or thunk).
closurep checks for any kind of “normal” closure (i.e., named functions and lambdas,
but not thunks).

functionp x

282 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

Convenience function to check for “callable” functions. This includes any kind of clo-
sure with a nonzero argument count as well as partial (unsaturated) applications of
these.

symbolp x

varp x
Predicates to check for any kind of symbol (this also includes operator and nonfix
symbols) and for free variable symbols, respectively. Note that varp returns true for
any symbol which is not an operator or nonfix symbol (i.e., for any symbol that could
in principle be bound to a value, either globally or locally). This holds even if the
symbol is currently bound to a function, macro or constant.

Inspection

The following operations let you peek at various internal information that the interpreter
provides to Pure programs either for convenience or for metaprogramming purposes. They
are complemented by the evaluation primitives discussed below, see Eval and Friends.

ans
Retrieve the most recently printed result of a toplevel expression evaluated in the read-
eval-print loop. This is just a convenience for interactive usage. Note that the ans value
will stick around until a new expression is computed. (It is possible to clear the ans
value with the interactive command clear ans, however.) Example:

> 1/3;
0.333333333333333
> ans/2;
0.166666666666667

—func__
Returns the (lexically) innermost function at the point of the call. This can be either a
global function, a local (named) function introduced in a with clause or an anonymous
function (a lambda). Fails (returning just the literal symbol __func__ by default) if
there is no such function (i.e., if the call is at the toplevel). Note that in contrast to the
C99 variable of the same name, this really returns the function value itself in Pure; the
str function can be used if you need the print name of the function. Examples:

> foo x = if x>0 then x else throw __func__;

> foo (-99);
<stdin>, line 2: unhandled exception ’'foo’ while evaluating ’'foo (-99)’
> (\x->x+": "+str __func__) "test";

"test: #<closure 0x7f4a2411db30>"

If you want, you can add a default rule for __func__ which specifies the behaviour
when __func__ gets called at the global level. E.g.:

> __func__ = throw "__func__ called at global level";

> __func__;

<stdin>, line 5: unhandled exception '"__func__ called at global level"’ while
evaluating '__func__’

2.1.11 Primitives 283

Pure Language and Library Documentation, Release 0.59

macro ——namespace_——

Returns the current namespace at the point of the call. This is implemented as a built-in
macro which expands to a string. The empty string is returned in the default name-
space. Example:

> namespace foo0;

> foo = __namespace__;
> namespace;

> show foo::foo
foo::foo = "foo";

> foo::foo;

"foo"

macro —dir_
macro __file__

Returns the directory and absolute filename of the current script, using the canonical-
ized pathname of the script, as explained in Modules and Imports. The directory name
is always terminated with a trailing slash. These macros are useful, e.g., for debug-
ging purposes or if a script needs to locate other files relative to the script file. Like
__namespace__, these are built-in macros which expand to string values.

The script name is resolved at compile time, so these macros are most useful if a script
is run through the interpreter. Also note that both macros return the empty string if the
code containing the call is not in a script (i.e., if it is executed directly at the interactive
command line or through eval). For instance, assume that the following code is stored
in the file /home/user/test.pure:

foo = __file__,__dir__;
bar = eval "__file__,__dir__";

Then running this script interactively you'll get the following;:

> foo;
"/home/user/test.pure","/home/user/"
> bar;

[T TNT]
’

macro —_list__

This expands a (literal) tuple to a list, preserving embedded tuples in the same way that
list values are parsed in the Pure language, cf. Primary Expressions. This is provided for
the benefit of custom aggregate notations (usually implemented as outfix operators)
which are supposed to be parsed like the built-in list and matrix brackets. Example:

> outfix (: :);

> def (:x:) = __list__ x;
> (:(1,2),(3,4):);
[(1,2),(3,4)]

Note that this macro uses internal information from the parser not available to Pure
programs. Thus there’s no way to actually define this macro in Pure, which is why it
is provided as a builtin instead.

284

2.1 Prelude

Pure Language and Library Documentation, Release 0.59

Another rather obscure point that deserves mentioning here is that the special process-
ing of parenthesized expressions happens also if the macro is applied in prefix form.
This should rarely be a problem in practice, but if it is then you can use $ to pass
arguments without adding an (undesired) extra level of parentheses:

> ((::)) ((1,2),(3,4));
[(1,2,3,4)]

> ((::)) $ (1,2),(3,4);
[(1,2),(3,4)]

Note that the first expression is really equivalent to (:((1,2),(3,4)):), not
(:(1,2),(3,4):) which can be specified in prefix form using $ as shown in the sec-
ond expression. (Remember that $ is also implemented as a macro and so is substituted
away at macro expansion time in the example above.) The same trick works if for some
reason you want to apply __list__ in a direct fashion:

> __list__ ((1,2),(3,4));
[(1,2,3,4)]

> __list__ $ (1,2),(3,4);
[(1,2),(3,4)]

macro —locals__

Built-in macro which expands to a list with the local function bindings (with clauses)
visible at this point in the program. The return value is a list of hash pairs x=>f where
x is the global symbol denoting the function (the symbol is always quoted) and f is the
function value itself. Example:

> __locals__ with foo x = x+1; x = a+b end;
[x=>a+b, foo=>foo0]

> f 99 when _=>f = ans!1l end;

100

The __locals__ macro is useful for debugging purposes, as well as to implement dynamic
environments. It is also used internally to implement the reduce macro, see Eval and
Friends. Here are some things that you should keep in mind when working with this macro:

__locals__ always evaluates parameterless functions and returns the resulting value
instead of a closure (as can be seen in the binding x=>a+b in the example above). Nor-
mally this is what you want, but it can be a problem with parameterless functions
involving side effects. In such a case, if you want to evaluate the function at a later
time, you'll either have to use a thunk or massage the local function so that it takes a
dummy argument such as ().

If the call to __locals__ is inside a local function then that local function will itself be
excluded from the constructed environment. This is done in order to prevent infinite
recursion if the calling function does not have any parameters (which is a common
idiom, especially in applications of the reduce macro). If you really want the calling
function to be in the environment, you'll have to add it to the result of __locals__
yourself. Using the __func__ primitive from above, we can implement this as a macro:

2.1.11 Primitives 285

Pure Language and Library Documentation, Release 0.59

def __mylocals__ = [val (str __func__)=>__func__]+__locals__;

You can then use __mylocals__ instead of __locals__ whenever you want the calling
function to be included in the computed environment.

* __locals__ will use as keys in the resulting list whatever global symbols are in scope
at the point of the call. By default, i.e., if no global symbol with the same print name
as the local is visible at the point of the call, a symbol in the default namespace is used,
as we’ve seen above. Otherwise the result may be also be a qualified symbol if such a
symbol has already been declared or defined at the point of the call. For instance:

> namespace foo;

> public foo;

> __locals__ with foo x = x+1 end;
[foo::foo=>foo0]

This behaviour may be a bit surprising at first sight, but is consistent with the way the
interpreter performs its symbol lookup, see Symbol Lookup and Creation for details.

The following functions allow you to inspect or modify the function, type, macro, constant
and variable definitions of the running program. This uses a special meta representation for
rewriting rules and definitions. Please see the Macros section in the Pure manual for details.
Also note that these operations are subject to some limitations, please check the remarks
concerning eval and evalcmd in the following subsection for details.

get_fundef sym

get_typedef sym

get_macdef sym
If the given symbol is defined as a function, type or macro, return the corresponding
list of rewriting rules. Otherwise return the empty list.

get_interface sym

get_interface_typedef sym
If the given symbol is defined as an interface type, return its definition; otherwise re-
turn the empty list. get_interface returns the list of patterns used to declare the type,
while get_interface_typedef returns the actual list of type rules, in the same format
as with get_typedef. Note that the latter may be empty even if the type is defined,
meaning that the type hasn’t been instantiated yet, see Interface Types for details. Also
note that Pure allows you to have both an interface and a regular (concrete) definition
of a type, in which case get_typedef and get_interface_typedef may both return
nonempty (and usually different) results.

get_vardef sym

get_constdef sym
If the given symbol is defined as a variable or constant, return the corresponding def-
inition as a singleton list of the form [sym --> value]. Otherwise return the empty
list.

The following functions may fail in case of error, in which case lasterr is set accordingly
(see Eval and Friends below).

286 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

add_fundef rules

add_typedef rules

add_macdef rules
Add the given rewriting rules (given in the same format as returned by the get_fundef,
get_typedef and get_macdef functions above) to the running program.

add_fundef_at r rules

add_typedef_at r rules

add_macdef_at r rules
Same as above, but add the given rewriting rules at (i.e., before) the given rule r (which
must already exist, otherwise the call fails). Note that all added rules must have the
same head symbol on the left-hand side, which matches the head symbol on the left-
hand side of r.

add_interface sym patterns
Add the given patterns to the interface type sym (given as a symbol). If the interface
type doesn’t exist yet, it will be created.

add_interface_at sym p patterns
Same as above, but add the given patterns at (i.e., before) the given pattern p (the given
interface type must already exist and contain the given pattern, otherwise the call fails).

add_vardef rules

add_constdef rules
Define variables and constants. Each rule must take the form sym --> value with a
symbol on the left-hand side (no pattern matching is performed by these functions).

The following functions may be used to delete individual rewriting rules, interface type
patterns or variable and constant symbols.

del_fundef rule

del_typedef rule

del_macdef rule
Delete the given rewriting rule (given in the same format as returned by the
get_fundef, get_typedef and get_macdef functions) from the running program. Re-
turns () if successful, fails otherwise.

del_interface sym pattern
Delete the given pattern from the given interface type. Returns () if successful, fails
otherwise.

del_vardef sym

del_constdef sym
Delete variables and constants, given by their (quoted) symbols. Returns () if success-
ful, or fails if the symbol isn’t defined (or defined as a different kind of symbol).

The prelude also provides some functions to retrieve various attributes of a function symbol
which determine how the operation is applied to its operands or arguments. These functions
all take a single argument, the symbol or function object to be inspected, and return an
integer value.

2.1.11 Primitives 287

Pure Language and Library Documentation, Release 0.59

nargs x
Get the argument count of a function object, i.e., the number of arguments it expects.
Returns 0 for thunks and saturated applications, -1 for over-saturated applications and
non-functions.

arity x
Determine the arity of an operator symbol. The returned value is 0, 1 or 2 for nullary,
unary and binary symbols, respectively, -1 for symbols without a fixity declaration or
other kinds of objects.

fixity f

Determine the fixity of an operator symbol. The fixity is encoded as an integer 10*n+m
where n is the precedence level (ranging from 0 to PREC_MAX, where PREC_MAX denotes
the precedence of primary expressions, 16777216 in the current implementation) and m
indicates the actual fixity at each level, in the order of increasing precedence (0 = infix, 1
= infixl, 2 = infixr, 3 = prefix, 4 = postfix). The fixity value of nonfix and outfix symbols,
as well as symbols without a fixity declaration, is always given as 10xPREC_MAX, and the
same value is also reported for non-symbol objects. Infix, prefix and postfix symbols
always have a fixity value less than 10*PREC_MAX. (PREC_MAX isn’t actually defined
as a constant anywhere, but you can easily do that yourself by setting PREC_MAX to
the fixity value of any nonfix symbol or non-symbol value, e.g.: const PREC_MAX =
fixity [1;)

Note that only closures (i.e., named and anonymous functions and thunks) have a defined
argument count in Pure, otherwise nargs returns -1 indicating an unknown argument count.
Partial applications of closures return the number of remaining arguments, which may be
zero to indicate a saturated (but unevaluated) application, or -1 for over-saturated and con-
structor applications. (Note that in Pure a saturated application may also remain uneval-
uated because there is no definition for the given combination of arguments and thus the
expression is in normal form, or because the application was quoted. If such a normal form
application is then applied to some “extra” arguments it becomes over-saturated.)

The value returned by nargs always denotes the actual argument count of the given func-
tion, regardless of the declared arity if the function also happens to be an operator symbol.
Often these will coincide (as, e.g., in the case of + which is a binary operator and also expects
two arguments). But this is not necessarily the case, as shown in the following example of a
binary operator which actually takes three arguments:

infix 0 oops;
(oops) x y z = x*xz+y;
arity (oops);

nargs (5 oops 8);

map (5 oops 8) (1..5);

>
>
>
2
> nargs (oops);
3
>
1
>
[13,18,23,28,33]

288 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

Eval and Friends

Pure provides some rather powerful operations to convert between Pure expressions and
their string representation, and to evaluate quoted expressions (’x). The string conversions
str,val and eval also provide a convenient means to serialize Pure expressions, e.g., when
terms are to be transferred to/from persistent storage. (Note, however, that this has its lim-
itations. Specifically, some objects like pointers and anonymous functions do not have a
parsable string representation. Also see the Expression Serialization section for some ded-
icated serialization operations which provide a more compact binary serialization format.)

strx
Yields the print representation of an expression in Pure syntax, as a string.

vals
Parses a single simple expression, specified as a string in Pure syntax, and returns
the result as is, without evaluating it. Note that this is much more limited than the
eval operation below, as the expression must not contain any of the special constructs
(conditional expressions, when, with, etc.), unless they are quoted.

eval x
Parses any expression, specified as a string in Pure syntax, and returns its value. In
fact, eval can also parse and execute arbitrary Pure code. In that case it will return
the last computed expression, if any. Alternatively, eval can also be invoked on a
(quoted) Pure expression, which is recompiled and then evaluated. Exceptions during
evaluation are reported back to the caller.

Note: The use of eval and evalcmd (as well as add_fundef, add_typedef etc. from the
preceding subsection) to modify a running program breaks referential transparency
and hence these functions should be used with care. Also, none of the inspection and
mutation capabilities provided by these operations will work in batch-compiled pro-
grams, please check the Batch Compilation section in the Pure manual for details. More-
over, using these operations to modify or delete a function which is currently being
executed results in undefined behaviour.

evalcmd x
Like eval, but allows execution of interactive commands and returns their captured
output as a string. No other results are returned, so this operation is most useful for
executing Pure definitions and interactive commands for their side-effects. (At this
time, only the regular output of a few commands can be captured, most notably bt,
clear, mem, save and show; otherwise the result string will be empty.)

lasterr
Reports errors in val, eval and evalcmd (as well as in add_fundef et al, described
in the previous subsection). This string value will be nonempty iff a compilation or
execution error was encountered during the most recent invocation of these functions.
In that case each reported error message is terminated with a newline character.

2.1.11 Primitives 289

Pure Language and Library Documentation, Release 0.59

lasterrpos

Gives more detailed error information. This returns a list of the individual error mes-
sages in lasterr, along with the position of each error (if available). Each list item
is either just a string (the error message, with any trailing newline stripped off) if no
error position is available, or a tuple of the form msg, file,11,c1,12,c2 where msg is
the error message, file the name of the file containing the error (which will usually be
"<stdin>" indicating that the error is in the source string, but may also be a proper file-
name of a module imported in the evaluated code), 11, c1 denotes the beginning of the
range with the errorneous construct (given as line and column indices) and 12, c2 its
end (or rather the character position following it). For convenience, both line and col-
umn indices are zero-based, in order to facilitate extraction of the text from the actual
source string.

Note: The indicated error positions are only approximate, and may in many cases
span an entire syntactic construct (such as a subexpression or even an entire function
definition) containing the error. Also, the end of the range may sometimes point one
token past the actual end of the construct. (These limitations are due to technical re-
strictions in the parser; don’t expect them to go away anytime soon.)

Examples:

> str (1/3);
"0.333333333333333"
> val "1/3";

1/3

V ©V oyv

eval "1/3";
.333333333333333

eval ('(1/3));
.333333333333333
evalcmd "show evalcmd";

"extern exprx evalcmd(exprx);\n"

> eval "1/3)";

eval "1/3)"

> lasterr;

"<stdin>, line 1: syntax error, unexpected ’')’, expecting ’'=’ or ’'|’\n"
> lasterrpos;

[("<stdin>, line 1: syntax error, unexpected ')’, expecting ’'=" or "|'",
"<stdin>",0,3,0,4)]

r_

In addition to str, the prelude also provides the following function for pretty-printing the
internal representation used to denote quoted specials. This is commonly used in conjunc-
tion with the __show__ function, please see the Macros section in the Pure manual for details.

—str__x

Pretty-prints special expressions.

Example:

290

2.1 Prelude

Pure Language and Library Documentation, Release 0.59

> __str__ ('__lambda__ [x __type__ int] (x+1));
"\\x::int -> x+1"

The evalcmd function is commonly used to invoke the show and clear commands for
metaprogramming purposes. The prelude provides the following two convenience func-
tions to make this easy:

globsym pat level
This uses evalcmd with the show command to list all defined symbols matching the
given glob pattern. A definition level may be specified to restrict the context in which
the symbol is defined; a level of 0 indicates that all symbols are eligible (see the de-
scription of the show command in the Pure manual for details). The result is the list of
all matching (quoted) symbols.

clearsym sym level
This uses evalcmd with the clear command to delete the definition of the given symbol
at the given definition level. No glob patterns are permitted here. The sym argument
may either be a string or a literal (quoted) symbol.

Example:

> let x,y = 77,99;

> let syms = globsym "[a-z]" 0O; syms;
[x,y]

> map eval syms;

[77,99]

> do (flip clearsym 0) syms;

()

> globsym "[a-z]" 0;

[]

> X,Y;
X,y

The following functions are useful for doing symbolic expression simplification.

macro reduce x
Reevaluates an expression in a local environment. This dynamically rebinds function
symbols in the given expression to whatever local function definitions are in effect at
the point of the reduce call. Note that reduce is actually implemented as a macro
which expands to the reduce_with primitive (see below), using the __locals__ builtin
to enumerate the bindings which are in effect at the call site.

reduce_with env x
Like reduce above, but takes a list of replacements (given as hash pairs u=>v) as the
first argument. The reduce macro expands to reduce_with __locals__.

The reduce macro provides a restricted form of dynamic binding which is useful to imple-
ment local rewriting rules. It is invoked without parameters and expands to the curried
call reduce_with __locals__ of the reduce_with primitive, which takes one additional ar-
gument, the expression to be rewritten. The following example shows how to expand or
factorize an expression using local rules for the laws of distributivity:

2.1.11 Primitives 291

Pure Language and Library Documentation, Release 0.59

expand = reduce with
(a+b)*xc = axc+bxc;
ax(b+c) = axb+axc;
end;

factor = reduce with

axc+bxc = (a+b)x*c;
axb+axc = ax(b+c);
end;

expand ((a+b)x*2); // yields ax2+bx2
factor (ax2+bx2); // yields (a+b)x2

Note that instances of locally bound functions are substituted back in the computed result,
thus the instances of * and + in the results a*2+bx2 and (a+b)*2 shown above denote the
corresponding globals, not the local incarnations of * and + defined in expand and factor,
respectively.

reduce also adjusts to quoted arguments. In this case, the local rules are applied as usual,
but back-substituted globals are not evaluated in the result:

> expand ((a+l)x*2);
ax2+2

> expand (' ((a+l)x*2));
ax2+1x2

Note that reduce only takes into account local function bindings from with clauses, local
variable bindings do not affect its operation in any way:

> let y = [x,x"2,x"3];
> reduce y when x = u+v end;
[x,x"2,x"3]

However, in such cases you can perform the desired substitution by turning the when into a
with clause:

> reduce y with x = u+v end;
[utv, (u+v)”"2, (u+v) 3]

Or you can just invoke the underlying reduce_with builtin directly, with the desired substi-
tutions given as hash pairs in the first argument:

> reduce_with [x=>u+v] vy;
[u+v, (u+v)"2, (u+v)"3]

It is always a good idea to confine calls to reduce to global functions if possible, since this
gives you better control over which local functions are in scope at the point of the call. Oth-
erwise it might be necessary to call __locals__ manually and filter the resulting list before
submitting it to the reduce_with function.

292 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

Expression Serialization

Like str and eval, the following blob and val operations can be used to safely transfer ex-
pression data to/from persistent storage and between different processes (using, e.g., POSIX
shared memory, pipes or sockets). However, blob and val use a binary format which is
usually much more compact and gets processed much faster than the string representations
used by str and eval. Also, val offers some additional protection against transmission er-
rors through a crc check. (The advantage of the string representation, however, is that it’s
readable plain text in Pure syntax.)

blob x
Stores the contents of the given expression as a binary object. The return value is a
cooked pointer which frees itself when garbage-collected.

val p
Reconstructs a serialized expression from the result of a previous invocation of the
blob function.

blobp p
Checks for a valid blob object. (Note that val may fail even if blobp returns true,
because for performance reasons blobp only does a quick plausibility check on the
header information of the blob, whereas val also performs a crc check and verifies

data integrity.)

#p

blob_size p

blob_crcp
Determines the size (in bytes) and crc checksum of a blob, respectively. blob_size
always returns a bigint, blob_crc a machine int (use uint on the latter to get a proper
unsigned 32 bit value). For convenience, #p is defined as an alias for blob_size p on
blob pointers.

Example:

> let b = blob {"Hello, world!", 1/3, 4711, NULL};

> b; #b; uint $ blob_crc b;

#<pointer 0x141dca0>

148L

3249898239L

> val b;

{"Hello, world!",0.333333333333333,4711,#<pointer 0x0>}

Please note that the current implementation has some limitations:

* Justas with strand eval, runtime data (local closures and pointers other than the NULL
pointer) can’t be serialized, causing blob to fail. However, it is possible to transfer a
global function, provided that the function exists (and is the same) in both the sending
and the receiving process. (This condition can’t be verified by val and thus is at the
programmer’s responsibilty.)

* Sharing of subexpressions will in general be preserved, but sharing of list and tuple

2.1.11 Primitives 293

Pure Language and Library Documentation, Release 0.59

tails will be lost (unless the entire list or tuple is shared).

* The val function may fail to reconstruct the serialized expression even for valid blobs,
if there is a conflict in symbol fixities between the symbol tables of the sending and
the receiving process. To avoid this, make sure that symbol declarations in the sending
and the receiving script match up.

Other Special Primitives

exit status
Terminate the program with the given status code.

throw x
Throw an exception, cf. Exception Handling.

—break__

—trace__
Trigger the debugger from a Pure program, cf. Debugging. Note that these routines
only have an effect if the interpreter is run in debugging mode, otherwise they are no-
ops. The debugger will be invoked at the next opportunity (usually when a function is
called or a reduction is completed).

force x
Force a thunk (x&), cf. Special Forms. This usually happens automagically when the
value of a thunk is needed.

Pointer Operations

The prelude provides a few basic operations on pointers which make it easy to interface to
external C functions. For more advanced uses, the library also includes the pointers module
which can be imported explicitly if needed, see Pointer Arithmetic below.

addr symbol
Get the address of a C symbol (given as a string) at runtime. The library containing
the symbol must already be loaded. Note that this can in fact be any kind of externally
visible C symbol, so it’s also possible to get the addresses of global variables. The result
is returned as a pointer. The function fails if the symbol was not found.

calloc nmembers size

malloc size

realloc ptr size

free ptr
Interface to malloc, free and friends. These let you allocate dynamic buffers (repre-
sented as Pure pointer values) for various purposes.

The following functions perform direct memory accesses through pointers. Their primary
use is to interface to certain C library functions which take or return data through pointers. It
goes without saying that these operations should be used with utmost care. No checking is

294 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

done on the pointer types, so it is the programmer’s responsibility to ensure that the pointers
actually refer to the corresponding type of data.

get_byte ptr
get_short ptr
get_int ptr
get_int64 ptr
get_long ptr
get_float ptr
get_double ptr
get_string ptr
get_pointer ptr
Return the integer, floating point, string or generic pointer value at the memory loca-
tion indicated by ptr.

put_byte ptr x

put_short ptr x

put_int ptr x

put_int64 ptr x

put_long ptr x

put_float ptr x

put_double ptr x

put_string ptr x

put_pointer ptr x
Change the integer, floating point, string or generic pointer value at the memory loca-
tion indicated by ptr to the given value x.

Sentries

Sentries are Pure’s flavour of object finalizers. A sentry is simply an object (usually a func-
tion) which gets applied to the target expression when it is garbage-collected. This is useful
to perform automatic cleanup actions on objects with internal state, such as files. Pure’s
sentries are much more useful than finalizers in other garbage-collected languages, since it
is guaranteed that they are called as soon as an object “goes out of scope”, i.e., becomes
inaccessible.

sentry f x
Places a sentry f at an expression x and returns the modified expression.

clear_sentry x
Removes the sentry from an expression x.

get_sentry x
Returns the sentry of an expression x (if any, fails otherwise).

As of Pure 0.45, sentries can be placed on any Pure expression. The sentry itself can also be
any type of object (but usually it’s a function). Example:

2.1.11 Primitives 295

Pure Language and Library Documentation, Release 0.59

> using systenm;

> sentry (_->puts "I’m done for!") (1..3);
[1,2,3]

> clear ans

I'm done for!

Note that setting a finalizer on a global symbol won’t usually be of much use since such
values are cached by the interpreter. (However, the sentry will be invoked if the symbol gets
recompiled because its definition has changed. This may be useful for some purposes.)

In Pure parlance, we call an expression cooked if a sentry has been attached to it. The follow-
ing predicate can be used to check for this condition. Also, there is a convenience function
to create cooked pointers which take care of freeing themselves when they are no longer
needed.

cookedp x
Check whether a given object has a sentry set on it.

cooked ptr
Create a pointer which disposes itself after use. This is just a shorthand for sentry
free. The given pointer ptr must be malloced to make this work.

Example:

> using system;

> let p = cooked (malloc 1024);
> cookedp p;
1

> get_sentry p;
free
> clear p

Besides their use as finalizers, sentries can also be handy in other circumstances, when you
need to associate an expression with another, “invisible” value. In this case the sentry is
usually some kind of data structure instead of a function to be executed at finalization time.
For instance, here’s how we can employ sentries to implement hashing of function values:

using dict;
hashed f x = case get_sentry f of
h::hdict = h!x if member h x;
_ =y when y = f x; sentry (update h x y) f
when h = case get_sentry f of
h::hdict = h; _ = emptyhdict
end;
end;
end;
end;

E.g., consider the naive recursive definition of the Fibonacci function:

fib n::int = if n<=1 then 1 else fib (n-1)+fib (n-2);

A hashed version of the Fibonacci function can be defined as follows:

296 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

let hfib = hashed f with
f n::int = if n<=1 then 1 else hfib (n-1)+hfib (n-2)
end;

This turns the naive definition of the Fibonacci function (which has exponential time com-
plexity) into a linear time operation:

> stats

> fib 35;
14930352
4.53s

> hfib 35;
14930352
0.25s

Finally, note that there can be only one sentry per expression but, building on the operations
provided here, it’s easy to design a scheme where sentries are chained. For instance:

chain_sentry f x = sentry (h (get_sentry x)) x with
hgx=gx$%$$fx;
end;

This invokes the original sentry before the chained one:

> using system;

> f _ = puts "sentry#1"; g _ = puts "sentry#2";
> let p = chain_sentry g $ sentry f $ malloc 10;
> clear p

sentry#l

sentry#2

You can chain any number of sentries that way. This scheme should work in most cases in
which sentries are used just as finalizers. However, there are other uses, like the “hashed
function” example above, where you’d like the original sentry to stay intact. This can be
achieved by placing the new sentry as a sentry on the original sentry rather than the expres-
sion itself:

attach_sentry f x = sentry (sentry f (get_sentry x)) Xx;

This requires that the sentry will actually be garbage-collected when its hosting expression
gets freed, so it will not work if the original sentry is a global:

> let p = attach_sentry g $ sentry f $ malloc 10;
> clear p
sentry#l

However, the attached sentry will work ok if you can ensure that the original sentry is a
(partial or constructor) application. E.g.:

> let p = attach_sentry g $ sentry (f$) $ malloc 10;
> clear p

2.1.11 Primitives 297

Pure Language and Library Documentation, Release 0.59

sentry#l
sentry#2

Tagged Pointers

As of Pure 0.45, the C interface now fully checks pointer parameter types at runtime (see the
C Types section in the Pure Manual for details). To these ends, pointer values are internally
tagged to keep track of the pointer types. The operations described in this section give you
access to these tags in Pure programs. At the lowest level, a pointer tag is simply a machine
int associated with a pointer value. The default tag is 0, which denotes a generic pointer
value, i.e., void* in C. The following operations are provided to create such tags, and set, get
or verify the tag of a pointer value.

ptrtagtx
Places an integer tag t at an expression x and returns the modified expression. x must
be a pointer value.

get_ptrtag x
Retrieves the tag associated with x.

check_ptrtagt x
Compares the tag associated with x against t and returns true iff the tags match. If x
is a pointer value, this is equivalent to get_ptrtag x==t || null x && get_ptrtag
x==0.

make_ptrtag
Returns a new, unique tag each time it is invoked.

Examples:

> let p = malloc 10;
> get_ptrtag p; // zero by default

0

> let t = make_ptrtag; t;
12

> ptrtag t p;

#<pointer 0xc42da0>
> get_ptrtag p;

12

> check_ptrtag t p;
1

> check_ptrtag 0 p;
0

Note that in the case of a non-NULL pointer, check_ptrtag just tests the tags for equality. On
the other hand, a generic NULL pointer, like in C, is considered compatible with all pointer

types:

> let t1 = make_ptrtag; t1;
13

298 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

> check_ptrtag tl p;

0

> check_ptrtag t1 NULL;
1

> get_ptrtag NULL;

0

The operations above are provided so that you can design your own, more elaborate type
systems for pointer values if the need arises. However, you'll rarely have to deal with pointer
tags at this level yourself. For most applications, it’s enough to inspect the type of a Pure
pointer and maybe modify it by “casting” it to a new target type. The following high-level
operations provide these capabilities.

pointer_tag ty

pointer_tag x
Returns the pointer tag for the given type ty, denoted as a string, or the given pointer
value x. In the former case, the type should be specified in the C-like syntax used in
extern declarations; a new tag will be created using make_ptrtag if needed. In the
latter case, pointer_tag simply acts as a frontend for get_ptrtag above.

pointer_type tag

pointer_type x
Returns the type name associated with the given int value tag or pointer value x.
Please note that this may be NULL in the case of an “anonymous” tag, which may have
been created with make_ptrtag above, or if the tag is simply unknown because it hasn’t
been created yet.

pointer_cast tag x

pointer_cast ty x
Casts x (which must be a pointer value) to the given pointer type, which may be spec-
ified either as a tag or a string denoting the type name. This returns a new pointer
value with the appropriate type tag on it (the tag on the original pointer value x isn’t
affected by this operation).

Example:

> let p = malloc 10;

> let q = pointer_cast "charx" p;

> map pointer_type [p,ql;

["void*","charx"]

> map pointer_tag [p,ql;

[0,1]

> map pointer_type (0..make_ptrtag-1);

["voidx",6 "charx",6"voidxx",6"charxx",6"shortx","short*x",6 "intx",6 "intxx",
"floatx","float*xx", "doublex", "doublexx"]

(The last command shows a quick and dirty way to retrieve the currently defined type tags
in the interpreter. This won’t work in batch-compiled scripts, however, since in this case the
range of type tags is in general non-contiguous.)

2.1.11 Primitives 299

Pure Language and Library Documentation, Release 0.59

If you have to do many casts to a given type, you can avoid the overhead of repeatedly
looking up the type name by assigning the tag to a variable, which can then be passed to
pointer_cast instead:

> let ty = pointer_tag "longx*";
> pointer_cast ty p, pointer_cast ty q;

Note that you have to be careful when casting a cooked pointer, because pointer_cast may
have to create a copy of the original pointer value in order not to clobber the original type
tag. The sentry will then still be with the original cooked pointer value, thus you have to
ensure that this value survives its type-cast duplicate. It’s usually best to apply the cast right
at the spot where the pointer gets passed to an external function, e.g.:

> extern char xgets(charx);
> let p = cooked $ malloc 1000;
> gets (pointer_cast "charx" p);

Such usage is always safe. If this approach isn’t possible, you might want to use the lowlevel
ptrtag operation instead. (This will clobber the type tag of the pointer, but you can always
change it back afterwards.)

Expression References

Expression references provide a kind of mutable data cells which can hold any Pure expres-
sion. If you need these, then you're doomed. ;-) However, they can be useful as a last resort
when you need to keep track of some local state or interface to the messy imperative world.
Pure’s references are actually implemented as expression pointers so that you can readily
pass them as pointers to a C function which expects a pure_expr** parameter. This may
even be useful at times.

type ref
The type of expression references. This is a subtype of the pointer type.

ref x
Create a reference pointing to x initially.

put r x
Set a new value x, and return that value.

getr
Retrieve the current value r points to.

unrefr
Purge the referenced object and turn the reference into a dangling pointer. (This is used
as a sentry on reference objects and shouldn’t normally be called directly.)

refp x
Predicate to check for reference values.

Note that manually changing or removing the unref sentry of a reference turns the reference
into just a normal pointer object and renders it unusable as a reference. Doing this will also

300 2.1 Prelude

Pure Language and Library Documentation, Release 0.59

leak memory, so don’t!

There is another pitfall with expression references, namely that they can be used to create
cyclic chains which currently can’t be reclaimed by Pure’s reference-counting garbage col-
lector. For instance:

> using system;

> done r = printf "done %s\n" (str r);
> let x = ref ();

> let y = ref (sentry done 2,Xx);

> put x (sentry done 1,y);

1,#<pointer 0x3036400>

At this point x points to y and vice versa. If you now purge the x and y variables then Pure
won'’t be able to reclaim the cycle, resulting in a memory leak (you can verify this by noting
that the sentries are not being called). To prevent this, you'll have to break the cycle first:

> put y 3;
done 2

3

> clear x y
done 1

Note that, in a way, sentries work similar to expression references and thus the same caveats
apply there. Having a limited amount of cyclic references won’t do any harm. But if they
can grow indefinitely then they may cause problems with long-running programs due to
memory leakage, so it’s a good idea to avoid such cycles if possible.

Pointer Arithmetic

The pointers.pure module provides the usual C-style pointer arithmetic and comparisons
of pointer values. This module normally is not included in the prelude, so to use these
operations, you have to add the following import declaration to your program:

using pointers;

The module overloads the comparison and some of the arithmetic operators (cf. Arithmetic)
so that they can be used to compare pointers and to perform C-style pointer arithmetic. To
these ends, some conversions between pointers and numeric types are also provided.

intp

bigint p
Convert a pointer to an int or bigint, giving its numeric address value, which usually
denotes a byte offset relative to the beginning of the memory of the executing process.
This value can then be used in arithmetic operations and converted back to a pointer
using the pointer function from the prelude. (Note that to make this work on 64 bit
systems, you'll have to convert the pointer values to bigints.)

p+n
p-n

2.1.11 Primitives 301

Pure Language and Library Documentation, Release 0.59

P-q
Pointer arithmetic. p+n and p-n offsets a pointer p by the given integer n denoting the
amount of bytes. In addition, p-q returns the byte offset between two pointers p and
. Note that, in contrast to C pointer arithmetic which also takes into account the base
type of the pointer, the Pure operations always use byte offsets, no matter what type of
pointer (as given by the pointer tag) is passed to these operations.

p ==

P~=4g
Pointer equality and inequality. This is exactly the same as syntactic equality on point-
ers.

P<=9q

p>=q

P>q

P<q
Pointer comparisons. One pointer p is considered to be “less” than another pointer q if
it represents a “lower” address in memory;, i.e., if the byte offset p-q is negative.

2.2 Mathematical Functions

The math.pure module provides Pure’s basic math routines. It also defines complex and
rational numbers.

2.2.1 Imports

To use the operations of this module, add the following import declaration to your program:

using math;

2.2.2 Basic Math Functions

The module defines the following real-valued constants:

constant e = 2.71828...
Euler’s number.

constant pi = 3.1415...
Ludolph’s number.

It also provides a reasonably comprehensive (pseudo) random number generator which uses
the Mersenne twister to avoid bad generators present in some C libraries.

Please note that as of Pure 0.41, the runtime library includes a newer release of the Mersenne
twister which fixes issues with some kinds of seed values, and will yield different values for
given seeds. Also, the random31 and random53 functions have been added as a convenience

302 2.2 Mathematical Functions

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Pure Language and Library Documentation, Release 0.59

to compute unsigned 31 bit integers and 53 bit double values, and the srandom function now
also accepts an int matrix as seed value.

random
Return 32 bit pseudo random ints in the range -0x80000000. .0x7fffffff.

random31
Return 31 bit pseudo random ints in the range 0. .0x7fffffff.

random53
Return pseudo random doubles in the range [0, 1) with 53 bits resolution.

srandom seed
Sets the seed of the generator to the given 32 bit integer. You can also specify longer
seeds using a nonempty row vector, e.g.: srandom {0x123, 0x234, 0x345, 0x456}.

The following functions work with both double and int/bigint arguments. The result is
always a double. For further explanations please see the descriptions of the corresponding
functions from the C math library.

sqrt x
The square root function.

exp x
ln x
log x

Exponential function, natural and decadic logarithms.

sinx
cos X
tan x
Trigonometric functions.

asin x
acos x
atan x
Inverse trigonometric functions.

atan2 y x
Computes the arcus tangent of y/x, using the signs of the two arguments to determine
the quadrant of the result.

sinh x
cosh x
tanh x
Hyperbolic trigonometric functions.

asinh x
acosh x
atanh x
Inverse hyperbolic trigonometric functions.

2.2.2 Basic Math Functions 303

Pure Language and Library Documentation, Release 0.59

2.2.3 Complex Numbers

+1y
r<:t
Complex number constructors.

constant i = 0+:1
Imaginary unit.

We provide both rectangular (x+:y) and polar (r<:a) representations, where (x,y) are the
Cartesian coordinates and (r, t) the radius (absolute value) and angle (in radians) of a com-
plex number, respectively. The +: and <: constructors (declared in the prelude) bind weaker
than all other arithmetic operators and are non-associative.

The polar representation r<:t is normalized so that r is always nonnegative and t falls in
the range -pi<t<=pi.

The constant i is provided to denote the imaginary unit 0+: 1.

The arithmetic operations +, * etc. and the equality relations == and ~= work as expected,
and the square root, exponential, logarithms, trigonometric and hyperbolic trigonometric
functions (see Basic Math Functions) are extended to complex numbers accordingly. These
do not rely on complex number support in the C library, but should still conform to IEEE 754
and POSIX, provided that the C library provides a standards-compliant implementation of
the basic math functions.

The following operations all work with both the rectangular and the polar representation,
promoting real (double, int/bigint) inputs to complex where appropriate. When the result
of an operation is again a complex number, it generally uses the same representation as the
input (except for explicit conversions). Mixed rect/polar and polar/rect arithmetic always
returns a rect result, and mixed complex/real and real/complex arithmetic yields a rect or
polar result, depending on what the complex input was.

complex x
Convert any kind of number to a complex value.

polar z
rectz
Convert between polar and rectangular representations.

cist
Create complex values on the unit circle. Note: To quickly compute exp (x+:y) in
polar form, use exp x <: .

abs z

argz
Modulus (absolute value) and argument (angle, a.k.a. phase). Note that you can also
tind both of these in one go by converting to polar form.

rez
imz
Real and imaginary part.

304 2.2 Mathematical Functions

Pure Language and Library Documentation, Release 0.59

conj z
Complex conjugate.

Examples:

using math;

let z = 27(1/1); z;
.769238901363972+:-0.638961276313635
let z = 1ln z/1ln 2; z;

L0+:-1.0

abs z, arg z;

.0,-1.5707963267949

polar z;

.0<:-1.5707963267949

V=V oV oVvyV

Please note that, as the +: and <: constructors bind weaker than the other arithmetic opera-
tors, complex numbers must be parenthesized accordingly, e.g.:

> (1+:2)%(3+:4);
-5+:10

2.2.4 Rational Numbers

X %
oy
Exact division operator and rational number constructor.

Pure’s rational numbers are constructed with the exact division operator % (declared in the
prelude) which has the same precedence and fixity as the other division operators.

The % operator returns a rational or complex rational for any combination of integer, rational
and complex integer/rational arguments, provided that the denominator is nonzero (oth-
erwise it behaves like x div 0, which will raise an exception). Machine int operands are
always promoted to bigints, thus normalized rationals always take the form x%y where both
the numerator x and the denominator y are bigints. For other numeric operands % works
just like /. Rational results are normalized so that the sign is always in the numerator and
numerator and denominator are relatively prime. In particular, a rational zero is always
represented as OL%1L.

The usual arithmetic operations and equality /order relations are extended accordingly, as
well as the basic math functions and the rounding functions, and will return exact (rational
or complex rational) results where appropriate. Rational operations are implemented using
the GMP bigint functions where possible, and thus are reasonably fast.

In addition, the module also provides following operations:

rational x
Converts a real or complex value x to a rational or complex rational. Note that the
conversion from double values doesn’t do any rounding, so it is guaranteed that con-
verting the resulting rational back to a double reconstructs the original value.

2.2.4 Rational Numbers 305

Pure Language and Library Documentation, Release 0.59

Conversely, the int, bigint, double, complex, rect, polar and cis conversion func-
tions are overloaded so that they convert a rational to one of the other number types.

num x
den x
Numerator and denominator of a rational x.

Examples:

> using math;
> 5%7 + 2%3;

29L%21L

> 3%8 - 1%3;
1L%24L

> pow (11%10) 3;
1331L%1000L

> let x = pow 3 (-3); x;
1L%27L

> num x, den Xx;
1L,27L

> rational (3/4);
3L%4L

Note that doubles can’t represent most rationals exactly, so conversion from double to ratio-
nal will yield funny results in many cases (which are still accurate up to rounding errors).
For instance:

> let x = rational (1/17); x;
4238682002231055L%72057594037927936L
> num x/den Xx;

0.0588235294117647

> double (1%17);

0.0588235294117647

2.2.5 Semantic Number Predicates and Types

In difference to the syntactic predicates in Primitives, these check whether the given value
can be represented as an object of the given target type (up to rounding errors). Note that if x
is of syntactic type X, then it is also of semantic type X. Moreover, intvalp x => bigintvalp
x => ratvalp x => realvalp x => compvalp x <=> numberp X.

compvalp x
Check for complex values (this is the same as numberp).

realvalp x
Check for real values (im x==0).

ratvalp x
Check for rational values (same as realvalp, except that IEEE 754 infinities and NaNs
are excluded).

306 2.2 Mathematical Functions

Pure Language and Library Documentation, Release 0.59

bigintvalp x
Check for “big” integer values which can be represented as a bigint.

intvalp x
Check for “small” integer values which can be represented as a machine int.

type compval

type realval

type ratval

type bigintval

type intval
Convenience types for the above predicates. These can be used as type tags on the
left-hand side of an equation to match numeric values for which the corresponding
predicate yields true.

2.3 Enumerated Types

Enumerated types, or enumerations for short, are algebraic types consisting only of nullary
constructor symbols. The operations of this module equip such types with the necessary
function definitions so that the members of the type can be employed in arithmetic opera-
tions, comparisons, etc. in the same way as the predefined enumerated types such as integers
and characters. This also includes support for arithmetic sequences.

Please note that this module is not included in the prelude by default, so you have to use the
following import declaration to get access to its operations:

using enum;

The following operations are provided:

enum sym
The given symbol must denote an algebraic type consisting only of nonfix symbols.
enum adds the necessary rules for making members of the type work with enumerated
type operations such as ord, succ, pred, comparisons, basic arithmetic and arithmetic
sequences. It also defines sym as an ordinary function, called the enumeration function
of the type, which maps ordinal numbers to the corresponding members of the type
(sym 0 yields the first member of the type, sym 1 the second, etc.). The members of the
type are in the same order as given in the definition of the type.

defenum sym [symbols,...]
A convenience function which declares a type sym with the given elements and invokes
enum on it to make it enumerable in one go.

enumof sym
Given a member of an enumerated type as defined with enum, this returns the enu-
meration function of the type. Rules for this function are generated automatically by
enum.

2.3 Enumerated Types 307

Pure Language and Library Documentation, Release 0.59

type enum
The type of all enumerated type members. This is actually implemented as an interface
type. It matches members of all enumerated types constructed with enum.

enump x
Predicate to check for enumerated type members.

For instance, consider:

nonfix sun mon tue wed thu fri sat;
type day sun | day mon | day tue | day wed | day thu | day fri | day sat;

Once the type is defined, we can turn it into an enumeration simply as follows:

enum day;

There’s also a convenience function defenum which defines the type and makes it enumerable
in one go:
defenum day [sun,mon,tue,wed,thu,fri,sat];

In particular, this sets up the functions day and ord so that you can convert between members
of the day type and the corresponding ordinals:

> ord sun;

0

> day (ans+3);
wed

You can also retrieve the type of an enumerated type member (or rather its enumeration
function) with enumof:

> enumof sun;
day

> ans 5;

fri

Basic arithmetic, comparisons and arithmetic sequences also work as usual, provided that
the involved members are all from the same enumeration:

> succ mon;

tue

> pred sat;

fri

> sun+3;

wed

> fri-2;

wed

> fri-tue;

3

> mon..fri;

[mon, tue,wed, thu, fril
> sun:tue..sat;
[sun,tue, thu,sat]

308 2.3 Enumerated Types

Pure Language and Library Documentation, Release 0.59

> sat:fri..mon;
[sat,fri,thu,wed,tue,mon]

Note that given one member of the enumeration, you can use enumof to quickly enumerate
all members of the type starting at the given member. Here’s a little helper function which
does this:

enumerate x::enum = iterwhile (typep ty) succ x when ty = enumof x end;

For instance:

> enumerate sun;
[sun,mon, tue,wed, thu, fri,sat]

Also note that enum silently skips elements which are already enumerated type members (no
matter whether of the same or another type). Thus if you later add more elements to the day
type, you can just call enum again to update the enumeration accordingly:

> succ sat;

sat+l

> type day doomsday;
> enum day;

()

> succ sat;
doomsday

2.4 Container Types

The standard library provides a variety of efficient container data structures for different
purposes. These are all purely functional, i.e., immutable data structures implemented us-
ing different flavours of binary trees. This means that instead of modifying a data structure
in-place, operations like insertion and deletion return a new instance of the container, keep-
ing the previous instance intact. Nevertheless, all operations are performed efficiently, in
logarithmic time where possible.

The container types are all implemented as abstract data structures, so client modules
shouldn’t rely on the internal representation. Each type provides a corresponding type tag
(cf. Type Tags in the Pure Manual), as given in the description of each type, which can be
used to match values of the type, e.g.:

shift a::array = rmfirst a;

All container types implement the equality predicates == and ~= by recursively comparing
their members. In addition, the dictionary, set and bag data structures also provide the
other comparison predicates (<, <= etc.) which check whether one dictionary, set or bag is
contained in another.

2.4 Container Types 309

Pure Language and Library Documentation, Release 0.59

241 Arrays

The array.pure module implements an efficient functional array data structure which allows
to access and update individual array members, as well as to add and remove elements at
the beginning and end of an array. All these operations are carried out in logarithmic time.

type array
The array data type.

Imports

To use the operations of this module, add the following import declaration to your program:

using array;

Operations

emptyarray
return the empty array

array xs
create an array from a list xs

array2 xs
create a two-dimensional array from a list of lists

mkarray x n
create an array consisting of n x’s

mkarray2 x (n,m)
create a two-dimensional array of nxm x’s

arrayp x
check whether x is an array

#a
size of a

ali

return the ith member of a
at (i)

two-dimensional subscript

null a
test whether a is the empty array

members a
lista
list of values stored in a

310 2.4 Container Types

Pure Language and Library Documentation, Release 0.59

members2 a
list2 a
list of members in a two-dimensional array

firsta
last a
first and last member of a

rmfirst a
rmlast a
remove first and last member from a

insertax
insert x at the beginning of a

append a x
append x to the end of a

update aix
replace the ith member of a by x

update2 a (i,j) x
update two-dimensional array

Examples

Import the module:

> using array;

A one-dimensional array:

> let a::array = array (0.0:0.1..1.0);

> f#fa; members a;

11
[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

Indexing an array works in the usual way, using Pure’s ! operator. By virtue of the prelude,
slicing an array with !'! also works as expected:

> al5;

0.5

> all(3..7);
[0.3,0.4,0.5,0.6,0.7]

Updating a member of an array produces a new array:

> let b::array = update a 1 2.0;
> members b;
[0.0,2.0,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

Two-dimensional arrays can be created with array2 from a list of lists:

2.4.1 Arrays 311

Pure Language and Library Documentation, Release 0.59

> let a2::array = array2 [[i,x | x = [u,v,w]] | i =1..2];
> members2 a2;

[0(1,u),(1,v),(L,w)],[(2,u),(2,v),(2,w)]]

> a2!'(1,2);

2,w

> a2!'!'[(0,1),(1,2)]1;

[(1,v),(2,w)]

> a2!'!1(0..1,1..2);

[0(1,v),(1,w)],[(2,v),(2,w)]]

Here’s how to convert an array to a Pure matrix:
Yy

> matrix $ members a;
{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}
> matrix $ members2 a2;
{(1,u),(1,v),(1,w);(2,u),(2,v),(2,w)}

Converting back from a matrix to an array:

> let b2::array = array2 $ list2 {(1,u),(1,v),(1,w);(2,u),(2,v),(2,w)};
> members2 b2;
[0(L,u),(1,v),(1,w)],[(2,u),(2,v),(2,w)]]

2.4.2 Heaps

Heaps are a kind of priority queue data structure which allows quick (constant time) access
to the smallest member, and to remove the smallest member and insert new elements in log-
arithmic time. Our implementation does not allow quick update of arbitrary heap members;
if such functionality is required, bags can be used instead (see Sets and Bags).

Heap members must be ordered by the <= predicate. Multiple instances of the same element
may be stored in a heap; however, the order in which equal elements are retrieved is not
specified.

type heap
The heap data type.

Imports

To use the operations of this module, add the following import declaration to your program:

using heap;

Operations

emptyheap
return the empty heap

312 2.4 Container Types

Pure Language and Library Documentation, Release 0.59

heap xs
create a heap from a list xs

heapp x
check whether x is a heap

#h
size of a heap

nullh
test whether h is the empty heap

members h
listh
list the members of h in ascending order

firsth
the first (i.e., smallest) member of h

rmfirst h
remove the first (i.e., smallest) member from h

insert h x
insert x into h

Examples

> let h::heap = heap [5,1,3,11,3];
> members h;

[1,3,3,5,11]

> first h;

1

> members $ rmfirst h;

[3,3,5,11]

2.4.3 Dictionaries

The dict.pure module provides Pure’s dictionary data types based on AVL trees. There are
actually four different types to choose from, depending on whether you need ordered or
hashed dictionaries and whether multiple values for the same key should be allowed or not.

type dict
An ordered dictionary. This assumes an ordered key type, i.e., the predicate < must be
defined on the keys.

type hdict
A hashed dictionary which works with any (mixture of) key types but stores members
in an apparently random order.

2.4.3 Dictionaries 313

Pure Language and Library Documentation, Release 0.59

type mdict
An ordered dictionary, like dict, which allows multiple values to be associated with
the same key.

type hmdict
A multi-valued dictionary, like mdict, but uses hashed keys like hdict.

type xdict
This is just an abstract supertype for matching any kind of dictionary provided by this
module.

mdict and hmdict are also colloquially referred to as (ordered or hashed) multidicts. This
implementation guarantees that different members for the same key are always kept in the
order in which they were inserted, and this is also the order in which they will be retrieved
by the members, keys, vals and indexing operations.

The usual comparison predicates (==, ~=, <=, < etc.) are defined on all dictionary types, where
two dictionaries are considered “equal” (d1==d2) if they both contain the same key=>value
pairs, and dl<=d2 means that d1 is a sub-dictionary of d2, i.e., all key=>value pairs of d1
are also contained in d2 (taking into account multiplicities in the multidict case). Ordered
dictionaries compare keys using equality (assuming two keys a and b to be equal if neither
a<b nor b<a holds), while hashed dictionaries check for syntactical equality (using ===). The
associated values are compared using the == predicate if it is defined, falling back to syntactic
equality otherwise.

The underlying AVL tree data structure can be found in the avltrees.pure module which is
included in the library, but not to be invoked directly.

The AVL tree algorithm has its origin in the SWI-Prolog implementation of association lists.
The original implementation was created by R. A. O’Keefe and updated for SWI-Prolog by
Jan Wielemaker. For the original source see http://www.swi-prolog.org.

The port from SWI-Prolog and the deletion stuff (rmfirst, rmlast, delete) missing in the
Prolog implementation was provided by Jiri Spitz. The generalization of the code to arbitrary
combinations of ordered /hashed and single-/multi-valued keys was done by Albert Graef.

Imports

To use the operations of this module, add the following import declaration to your program:

using dict;

Operations

emptydict
emptyhdict
emptymdict
emptyhmdict
return an empty dictionary

314 2.4 Container Types

http://www.swi-prolog.org

Pure Language and Library Documentation, Release 0.59

dict xs

hdict xs

mdict xs

hmdict xs
create a dictionary of the corresponding type either from a list xs of key-value pairs
in the form key=>value, or from another dictionary; in the latter case the argument is
converted to a dictionary of the desired target type

dictpd

hdictp d

mdictpd

hmdictp d
check whether d is a dictionary of the corresponding type

mkdict y xs
mkhdict y xs
mkmdict y xs
mkhmdict y xs
create a dictionary from a list of keys and a constant value

dl +d2
sum: d1+d2 adds the members of d2 to d1

d1l -d2
difference: d1-d2 removes the members of d2 from d1

d1 =d2
intersection: d1*d2 removes the members not in d2 from d1

#d
size of a dictionary (the number of members it contains)

d!x
get the value from d by key x; in the case of a multidict this actually returns a list of
values (which may be empty if d doesn’t contain x)

nulld
test whether d is an empty dictionary

member d x
test whether d contains a member with key x

members d
listd
list the members of d (in ascending order for ordered dictionaries)

keys d
list the keys of d (in ascending order for ordered dictionaries)

vals d
list the values of d

firstd

2.4.3 Dictionaries 315

Pure Language and Library Documentation, Release 0.59

last d
return the first and the last member of d, respectively

rmfirst d
rmlast d
remove the first and the last member from d, respectively

insert d (x=>y)

updated xy
insert x=>y into d (this always adds a new member in a multidict, otherwise it replaces
an existing value if there is one); note that update is just a fully curried version of
insert,so update d x y behaves exactly like insert d (x=>y)

delete d x
remove x from d if present (in the multidict case, only the first member with the given
key x is removed)

delete_val d (x=>y)
remove a specific key-value pair x=>y from d if present (in the multidict case, only
the first instance of x=>y is removed); please also see the notes below regarding this
operation

delete_alld x
remove all instances of x from d (in the non-multidict case, this is just the same as
delete)

Note:

* The infix operators +, - and * work like the corresponding set and bag operations (see
Sets and Bags), treating dictionaries as collections of key=>val pairs. You can mix arbi-
trary operand types with these operations, as well as with the comparison operations;
the necessary conversions from less general dictionary types (ordered, single-valued)
to more general types (hashed, multi-valued) are handled automatically.

* The delete_val function compares values using equality (==) if it is defined, falling
back to syntactic equality (===) otherwise. If there is more than one instance of the
given value under the given key, the first such instance will be removed (which, if ==
is defined on the values, may be any instance that compares equal, not necessarily an
exact match).

¢ In the multidict case, delete_val may require linear time with respect to the number
of different values stored under the given key. Since this operation is also needed to
implement some other multidict operations like comparisons, difference and intersec-
tion, these may end up requiring quadratic running times in degenerate cases (i.e., if
the majority of members happens to be associated with only very few keys).

Examples

A normal (ordered) dictionary:

316 2.4 Container Types

Pure Language and Library Documentation, Release 0.59

> using dict;

> let d::dict = dict ["foo0"=>77,"bar"=>99.1];
> keys d; vals d; members d;

["bar","foo"]

[99.1,77]

["bpar"=>99.1,"foo"=>77]

Indexing a dictionary works in the usual way, using Pure’s ! operator. An out_of_bounds
exception is thrown if the key is not in the dictionary:

> d!"foo";
77
> d!"baz";

<stdin>, line 5: unhandled exception 'out_of_bounds’ while evaluating
'd!llbazlll

By virtue of the prelude, slicing a dictionary with ! ! also works as expected:

S d' [["fOO","bar‘","baz"];
[77,99.1]

A hashed dictionary can be used with any key values, which are stored in a seemingly ran-
dom order:

> let h::hdict = hdict [foo0=>77,42=>99.1];
> keys h; vals h; members h;

[42,fo0]

[99.1,77]

[42=>99.1, foo=>77]

> h!foo;

77

> h!lkeys h;

[99.1,77]

Multidicts work in pretty much the same fashion, but allow more than one value for a given
key to be stored in the dictionary. In this case, the indexing operation returns a list of all
values for the given key, which may be empty if the key is not in the dictionary (rather than
throwing an out_of_bounds exception):

> let d::mdict = mdict ["foo"=>77,"bar"=>99.1, "fo0"=>99];
> d!"foo"; d!"baz";

[77,99]

[]

Slicing thus returns a list of lists of values here:
> d!!'["foo","bar","baz"];
[[77,99],199.1],[]]

To obtain a flat list you can just concatenate the results:

> cat $ d!'!'["foo","bar","baz"];
[77,99,99.1]

2.4.3 Dictionaries 317

Pure Language and Library Documentation, Release 0.59

Hashed multidicts provide both key hashing and multiple values per key:

> let h::hmdict = hmdict [foo=>77,42=>99.1,42=>77];
> keys h; vals h; members h;

[42,42,f00]

[99.1,77,77]

[42=>99.1,42=>77,fo0=>77]

> h'42;

[99.1,77]

There are also some set-like operations which allow you to add/remove the members
(key=>val pairs) of one dictionary to/from another dictionary, and to compute the inter-
section of two dictionaries. For instance:

> let hl = hmdict [a=>1,6b=>2];
> let h2 hmdict [b=>2,c=>31;
> members (hl+h2);
[a=>1,c=>3,b=>2,b=>2]

> members (hl-h2);

[a=>1]

> members (hlxh2);

[b=>2]

It’s possible to mix dictionaries of different types in these operations. The necessary conver-
sions are handled automatically:

> let hl hmdict [a=>1,b=>2];
> let h2 hdict [b=>3,c=>4];
> members (hl+h2);
[a=>1,c=>4,b=>2,b=>3]

Note that the result will always be promoted to the most general operand type in such cases
(a hashed multidict in the above example). If this is not what you want, you'll have to apply
the necessary conversions manually:

> members (hdict hl+h2);
[a=>1, c=>4,b=>3]

2.4.4 Sets and Bags

The set.pure module implements Pure’s set data types based on AVL trees. These work
pretty much like dictionaries (cf. Dictionaries) but only store keys (called “elements” or
“members” here) without any associated data values. Hence sets provide membership tests
like dictionaries, but no indexing operations.

There are four variations of this data structure to choose from, depending on whether the
set members are ordered or hashed, and whether multiple instances of the same element are
allowed (in this case the set is actually called a multiset or a bag).

type set

318 2.4 Container Types

Pure Language and Library Documentation, Release 0.59

type bag
These implement the ordered set types. They require that members be ordered, i.e., the
predicate < must be defined on them.

type hset

type hbag
These implement the hashed set types which don’t require an order of the members.
Distinct members are stored in an apparently random order.

type xset
This is just an abstract supertype for matching any kind of set or bag provided by this
module.

The usual comparison predicates (==, ~=, <=, < etc.) are defined on all set and bag types,
where two sets or bags are considered “equal” (m1==m2) if they both contain the same el-
ements, and ml<=m2 means that ml is a subset or subbag of m2, i.e., all elements of ml are
also contained in m2 (taking into account multiplicities in the multiset case). Ordered sets
and bags compare elements using equality (considering two elements a and b to be equal if
neither a<b nor b<a holds), while hashed sets and bags check for syntactical equality (using

The underlying AVL tree data structure can be found in the avltrees.pure module which is
included in the library, but not to be invoked directly. The AVL tree algorithm has its origin
in the SWI-Prolog implementation of association lists and was ported to Pure by Jiri Spitz,
see Dictionaries for details.

Imports

To use the operations of this module, add the following import declaration to your program:

using set;

Operations

emptyset
emptybag
emptyhset
emptyhbag
return an empty set or bag

set xs

bag xs

hset xs

hbag xs
create a set or bag of the corresponding type from a list or another set or bag xs; in the
latter case the argument is converted to a set or bag of the desired target type

setpm

2.4.4 Sets and Bags 319

Pure Language and Library Documentation, Release 0.59

bagp m
hsetp m
hbagp m
check whether m is a set or bag of the corresponding type

ml +m?2
union/sum: m1+m2 adds the members of m2 to m1

ml - m2
difference: m1-m2 removes the members of m2 from ml

ml *m2
intersection: ml1*m2 removes the members not in m2 from ml

#m
size of a set or bag m

null m
test whether m is an empty set or bag

member m x
test whether m contains x

members m
listm
list the members of m (in ascending order for ordered sets and bags)

firstm
lastm
return the first and the last member of m, respectively

rmfirst m
rmlast m
remove the first and the last member from m, respectively

insert m x
insert x into m (replaces an existing element in the case of a set)

delete m x
remove x from m (in the bag case, only the first instance of x is removed)

delete_all m x
remove all instances of x from m (in the set case, this is just the same as delete)

Note: The infix operators (+, -, *, as well as the comparison operations) allow you to mix
arbitrary operand types; the necessary conversions from less general set types (ordered, set)
to more general types (hashed, multiset) are handled automatically.

Also note that in the case of sets, + is just the ordinary set union. There are basically two
generalizations of this operation to bags, multiset union and multiset sum; + implements
the latter. Thus, if a bag m1 contains k1 instances of an element x and a bag m2 contains k2
instances of x, then m1+m2 contains k1+k2 instances of x (rather than max kl k2 instances,
which would be the case for multiset union). Multiset sum is probably more common in

320 2.4 Container Types

Pure Language and Library Documentation, Release 0.59

practical applications, and also generalizes easily to multidicts (see Dictionaries). However,
if multiset union is needed, it can easily be defined in terms of multiset sum as follows:

union ml m2 = ml+(m2-ml);

Examples

Some basic set operations:

> let m::set = set [5,1,3,11,3];
> members m;

[1,3,5,11]

> map (member m) (1..5);
[1,0,1,0,1]

> members $ m+set (3..6);
[1,3,4,5,6,11]

> members $ m-set (3..6);
[1,11]

> members $ mxset (3..6);
[3,5]

The bag operations work in a similar fashion, but multiple instances are permitted in this
case, and each instance counts as a separate member:

> let m::bag = bag [5,1,3,11,3];
> members m;

[1,3,3,5,11]

> members $ delete m 3;
[1,3,5,11]

> members $ insert m 1;
[1,1,3,3,5,11]

> members $ m+bag (3..6);
[1,3,3,3,4,5,5,6,11]

> members $ m-bag (3..6);
[1,3,11]

> members $ mxbag (3..6);
[3,5]

As already mentioned, operands of different types can be mixed with the infix operators; the
necessary conversions are handled automatically. E.g., here’s how you add a set to a bag:

> let ml::bag bag [5,1,3,11,3];
> let m2::set set (3..6);

> members (ml+m2);
[1,3,3,3,4,5,5,6,11]

Note that the result will always be promoted to the most general operand type in such cases
(a bag in the above example). If this is not what you want, you'll have to apply the necessary
conversions manually:

2.4.4 Sets and Bags 321

Pure Language and Library Documentation, Release 0.59

> members (set ml+m2);
[1,3,4,5,6,11]

If set members aren’t ordered then you’ll get an exception when trying to create an ordered
set or bag from them:

> set [a,b,c];
<stdin>, line 5: unhandled exception ’'failed_cond’ while evaluating
"set [a,b,c]’

In such a case hashed sets and bags must be used instead. These work analogously to the
ordered sets and bags, but distinct members are stored in an apparently random order:

> members $ hset [a,b,c] * hset [c,d,e];
[c]

> members $ hbag [a,b,c] + hbag [c,d,e];
[a,c,c,b,d, el

2.5 System Interface

This module offers some useful system routines, straight from the C library, as well as some
convenience functions for wrapping these up in Pure. Even the “purest” program needs to
do some basic I/O every once in a while, and this module provides the necessary stuff to
do just that. The operations provided in this module should work (if necessary by a suit-
able emulation) on all supported systems. Most of the following functions are extensively
documented in the C library manual pages, so we concentrate on the Pure-specific aspects
here.

2.5.1 Imports

To use the operations of this module, add the following import declaration to your program:

using systenm;

Some functions of the system interface are provided in separate modules; see Regex Match-
ing, Additional POSIX Functions and Option Parsing.

2.5.2 Errno and Friends

errno

set_errnon

perror msg

strerrorn
This value and the related routines are indispensable to give proper diagnostics when
system calls fail for some reason. Note that, by its very nature, errno is a fairly volatile
value, don’t expect it to survive a return to the command line in interactive sessions.

322 2.5 System Interface

Pure Language and Library Documentation, Release 0.59

Example:

> using systenm;

> fopen "junk" "r", perror "junk";
junk: No such file or directory
fopen "junk" "r"

2.5.3 POSIX Locale

setlocale category locale
Set or retrieve the current locale.

Details are platform-specific, but you can expect that at least the categories LC_ALL,
LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC and LC_TIME are defined, as well as the
following values for the locale parameter: "C" or "POSIX" (the default POSIX locale), "" (the
system default locale), and NULL, to just query the current locale.

Other string values which can be passed as the locale argument depend on the implemen-
tation, please check your local setlocale(3) documentation for details. If locale is not NULL,
the current locale is changed accordingly. The return value is the new locale, or the current
locale when passing NULL for the locale parameter. In either case, the string returned by
setlocaleis such that it can be passed to setlocale to restore the same locale again. In case
of an error, setlocale fails (rather than returning a null pointer).

Please note that calling this function alters the Pure interpreter’s idea of what the current
locale is. When the interpreter starts up, it always sets the default system locale. Unless
your scripts rely on a specific encoding, setting the locale to either "C" or "" should always
be safe.

Example:

> setlocale LC_ALL NULL;
"en_US.UTF-8"

2.5.4 Signal Handling

trap action sig
Establish or remove Pure signal handlers.

The action parameter of trap can be one of the predefined integer values SIG_TRAP, SIG_IGN
and SIG_DFL. SIG_TRAP causes the given signal to be handled by mapping it to a Pure ex-
ception of the form signal sig. SIG_IGN ignores the signal, SIG_DFL reverts to the system’s
default handling. See show -g SIGx for a list of known signal values on your system.

Note: When the interpreter runs interactively, most standard termination signals (SIGINT,
SIGTERM, etc.) are already set up to report corresponding Pure exceptions; if this is not de-
sired, you can use trap to either ignore these or revert to the default handlers instead.

See Exception Handling in the Pure Manual for details and examples.

2.5.3 POSIX Locale 323

Pure Language and Library Documentation, Release 0.59

2.5.5 Time Functions

The usual date/time functions from the C library are all provided. This includes some func-
tions to retrieve wallclock and cpu time which usually offer much better resolution than the
venerable time function.

time
Reports the current time in seconds since the epoch, 00:00:00 UTC, Jan 1 1970. The
result is always a bigint (in fact, the time value is already 64 bit on many OSes nowa-
days).

gettimeofday
Returns wallclock time as seconds since the epoch, like time, but theoretically offers
resolutions in the microsec range (actual resolutions vary, but are usually in the msec
range for contemporary systems). The result is returned as a double value (which also
limits precision). This function may actually be implemented through different system
calls, depending on what’s available on the host OS.

clock
Returns the current CPU (not wallclock) time since an arbitrary point in the past, as a
machine int. The number of “ticks” per second is given by the CLOCKS_PER_SEC con-
stant. Note that this value will wrap around approximately every 72 minutes.

sleept

nanosleep t
Suspend execution for a given time interval in seconds. sleep takes integer (int/bigint)
arguments only and uses the sleep() system function. nanosleep also accepts double
arguments and theoretically supports resolutions down to 1 nanosecond (again, actual
resolutions vary). This function may actually be implemented through different sys-
tem calls, depending on what’s available on the host OS. Both functions usually return
zero, unless the sleep was interrupted by a signal, in which case the time remaining to
be slept is returned.

Examples:

> time,sleep 1,time;
1270241703L,0,1270241704L

> gettimeofday,nanosleep 0.1,gettimeofday;
1270241709.06338,0.0,1270241709.16341

Here’s a little macro which lets you time evaluations:

def timex x =y, (t2-t1)/CLOCKS_PER_SEC when
tl = clock; y = x; t2 = clock;
end;

Example:

> timex (foldl (+) 0 (1..100000));
705082704,0.07

324 2.5 System Interface

Pure Language and Library Documentation, Release 0.59

tzset
Initialize timezone information.

variable tzname
variable timezone
variable daylight
The timezone information.

The tzset function calls the corresponding routine from the C library and initializes the
(Pure) variables tzname, timezone and daylight accordingly. See the tzset(3) manual page
for details. This routine is also called automatically when the system module is loaded, so
you only have to invoke it to get up-to-date information after changes to the locale or the
timezone. Example:

> tzset;

()

> tzname, timezone, daylight;
["CET","CEST"],-3600,1

> tzname!daylight;

"CEST"

The following functions deal with date/time values in string and “broken-down” time for-
mat. See the ctime(3), gmtime(3), localtime(3), mktime(3), asctime(3), strftime(3) and strp-
time(3) manual pages for details.

ctime t
Convert a time value as returned by the time function to a string in local time.

gmtime t

localtime t
Convert a time value to UTC or local time in “broken-down” form (a static pointer to
a tm struct containing a bunch of int fields) which can then be passed to the asctime
and strftime functions, or to int_matrix if you want to convert the data to a matrix;
see the example below.

mktime tm
Converts broken-down time to a time value (seconds since the epoch). As with time,
the result is always a bigint.

asctime tm

strftime format tm
Format broken-down time as a string. strftime also uses a format string supplied by
the user, see below for a list of the most important conversion specifiers.

strptime s format tm
Parse a date/time string s according to the given format (using more or less the same
format specifiers as the strftime function) and store the broken-down time result in
the given tm struct. This function may fail, e.g., if strptime finds an error in the format
string. Otherwise it returns the part of the string which wasn’t processed, see the
example below.

Examples:

2.5.5 Time Functions 325

Pure Language and Library Documentation, Release 0.59

> let t = time; t;

1270239790L

> let tm = localtime t; tm;
#<pointer 0x7ff97ecbdded>

> mktime tm;

1270239790L

> asctime tm;

"Fri Apr 2 22:23:10 2010\n"

> int_matrix 9 tm;
{10,23,22,2,3,110,5,91,1}

> strftime "%c" tm;

"Fri 02 Apr 2010 10:23:10 PM CEST"
> strptime ans "%c" tm, int_matrix 9 tm;
"CEST",{10,23,22,2,3,110,5,91,1}

In the above example, strptime was given a static pointer to a tm struct returned by
localtime. This always works, but in some situations it may be preferable to allocate dy-
namic storage instead. This storage should be properly initialized (zeroed out) before pass-
ing it to strptime, since strptime only stores the values specified (at least in principle; please
consult your local C library documentation for details). Also note that while POSIX only
specifies nine int fields in a tm struct, depending on the host operating system the struct
may contain additional public and private fields. The actual size of a tm struct is given by
the SIZEOF_TM constant, so a safe way to allocate suitable dynamic storage for the strptime
function is as follows:

> let tm = pointer_cast "int*" $ calloc 1 SIZEOF_TM;
> strptime "4/2/10" "%D" tm, int_matrix 9 tm;
' {0,0,0,2,3,110,5,91,0}

Instead of explicitly allocating dynamic storage and converting it to a Pure matrix later, you
can also invoke strptime directly with an int matrix of sufficient size:

> let tm = imatrix (SIZEOF_TM div SIZEOF_INT + 1);
> strptime "4/2/10" "%D" tm, take 9 tm;
"“1{0101012,3,110,5,91,0}

Last but not least, to make calling st rptime more convenient, you can supply your own little
wrapper function which takes care of allocating the storage, e.g.:

mystrptime s format = s,take 9 tm when
tm = imatrix (SIZEOF_TM div SIZEOF_INT + 1);
s = strptime s format tm;

end;

> mystrptime "4/2/10" "%D";
**,{0,0,0,2,3,110,5,91,0}

Here is a list of some common format specifiers which can be used with the strftime and
strptime routines. These are all specified by POSIX and should thus be available on most
platforms. Note that many more formats are usually supported than what is listed here, so
please consult your local manual pages for the complete list.

326 2.5 System Interface

Pure Language and Library Documentation, Release 0.59

* %d, %m, %y: Day of the month, month and year as decimal two-digit numbers.
* %Y: The year as a four-digit number which includes the century.
* %H, %M, %S: Hours (range 00 to 23), minutes and seconds as decimal two-digit numbers.
¢ %I: The hours on a 12-hour clock (range 01 to 12).
The following formats are locale-dependent:
* %a, %A: Abbreviated and full weekday name.
® %b, %B: Abbreviated and full month name.
* %p: AM or PM. %P is the same in lowercase (strftime only).
There are also some useful meta-formats which specify various combinations of the above:
¢ %c: The preferred date and time representation for the current locale.
¢ %D: The American date format (%m/%d/%y).

¢ %F: The ISO 8601 date format (%Y-%m-%d). (This is generally supported by strftime
only, but strptime from GNU libc has it.)

e %r: The time in AM/PM notation (%I:%M:%S %p).
e %R: The time in 24-hour notation (%H : %M).
¢ %T: The time in 24-hour notation, including seconds (%H:%M:%S).

In addition, %% denotes a literal % character, %n newlines and %t tabs. (For strptime the latter
two are synonymous and match arbitrary whitespace.)

Windows users should note that strptime isn’t natively supported there. A basic emulation
is provided by the Pure runtime, but at present this only supports the C locale.

2.5.6 Process Functions

The following process functions are available on all systems. (Some additional process-
related functions such as fork, kill, wait and waitpid are available in the posix module,
see Additional POSIX Functions.)

system cmd
Execute a shell command.

execv prog argv

execvp prog argv

execve prog argv envp
Execute a new process. prog denotes the name of the executable to be run, argv the
argument vector (which repeats the program name in the first component), and envp
a vector of environment strings of the form "var=value". The execv function executes
the program prog exactly as given, while execvp also performs a path search. The
execve function is like execv, but also specifies an environment to be passed to the
process. In either case, the new process replaces the current process. For convenience,

2.5.6 Process Functions 327

Pure Language and Library Documentation, Release 0.59

both argv and envp can be specified as a Pure string vector or a list, which is automat-
ically translated to the raw, NULL-terminated C string vectors (i.e., charxx) required by
the underlying C functions.

spawnv mode prog argv

spawnvp mode prog argv

spawnve mode prog argv envp
Spawn a new child process. These work like the corresponding MS Windows func-
tions; on Un*x systems this functionality is implemented using a combination of fork
and execv. The arguments are the same as for the execv functions, except that there’s
an additional mode argument which specifies how the process is to be executed: P_WAIT
waits for the process to finish, after which spawnv returns with the exit status of the
terminated child process; P_NOWAIT makes spawnv return immediately, returning the
process id; and P_OVERLAY causes the child process to replace its parent, just like with
execv. (On Windows, there’s an additional P_DETACH flag which works like P_NOWAIT
but also turns the child process into a background task.)

Note that, in addition, the prelude provides the exit function which terminates the program
with a given exit code, cf. Other Special Primitives.

Examples:

> system "pwd";
/home/ag/svn/pure-lang/trunk/pure/lib

0

> spawnvp P_WAIT "pwd" ["pwd"];
/home/ag/svn/pure-lang/trunk/pure/lib

0

> spawnv P_WAIT "“/bin/sh" ["/bin/sh","-c","pwd"];
/home/ag/svn/pure-lang/trunk/pure/lib

0

2.5.7 Basic I/O Interface

Note that this module also defines the standard I/O streams stdin, stdout and stderr as
variables on startup. These are ready to be used with the operations described below. Also
note that for convenience some of the following routines are actually Pure wrappers, rather
than just providing the raw C library routines.

variable stdin
variable stdout
variable stderr
The standard I/O streams.

fopen name mode

popen cmd mode
Open a file or a pipe. These take care of closing a file object automagically when it’s
garbage-collected, and fail (instead of returning a null pointer) in case of error, so that
you can provide any desired error handling simply by adding suitable equations.

328 2.5 System Interface

Pure Language and Library Documentation, Release 0.59

fdopen fd mode
Associates a file object with a given existing file descriptor. Otherwise works like
fopen, so the resulting file is closed automatically when it’s garbage-collected.

freopen path mode fp
Reopens a file object. The existing file object is closed. Otherwise works like fopen, so
the resulting file is closed automatically when it’s garbage-collected.

fclose fp
pclose fp
Close a file or a pipe.

tmpfile
Creates a unique temporary file (opened in "w+b" mode) which gets deleted automati-
cally when it is closed or the file object gets garbage-collected.

feof fp
ferror fp
clearerr fp
Check the end-of-file and error bits. clearerr clears the error bit.

fileno fp
Returns the file descriptor associated with the given file.

fflush fp
Flushes the given file (or all open files if fp is NULL).

fgets fp

gets
Pure wrappers for the C fgets and gets functions which handle the necessary buffer-
ing automatically.

fget fp
A variation of fgets which slurps in an entire text file at once.

fputs s fp

puts s
Output a string to the given file or stdout, respectively. These are just the plain C
functions. Note that puts automatically adds a newline, while fputs doesn’t. Hmm.

fread ptr size nmemb fp

fwrite ptr size nmemb fp
Binary read/writes. Here you'll have to manage the buffers yourself. See the corre-
sponding manual pages for details.

fseek fp offset whence

ftell fp

rewind fp
Reposition the file pointer and retrieve its current value. The constants SEEK_SET,
SEEK_CUR and SEEK_END can be used for the whence argument of fseek. The call rewind
fp is equivalent to fseek fp © SEEK_SET (except that the latter also returns a result
code). See the corresponding manual pages for details.

2.5.7 Basic /0 Interface 329

Pure Language and Library Documentation, Release 0.59

setbuf fp buf
setvbuf fp buf mode size

Set the buffering of a file object, given as the first argument. The second argument
specifies the buffer, which must be a pointer to suitably allocated memory or NULL.
The mode argument of setvbuf specifies the buffering mode, which may be one of the
predefined constants _IONBF, _IOLBF and _IOFBF denoting no buffering, line buffering
and full (a.k.a. block) buffering, respectively; the size argument denotes the buffer

size.

For setbuf, the given buffer must be able to hold BUFSIZ characters, where BUFSIZ is a
constant defined by this module. setbuf fp buf is actually equivalent to the following

call (except that setvbuf also returns an integer return value):

setvbuf fp buf (if null buf then _IONBF else _IOFBF) BUFSIZ

Please see the setbuf(3) manual page for details.
Examples:

> puts "Hello, world!";
Hello, world!
14

> map fileno [stdin,stdout,stderr];
[0,1,2]

> let fp = fopen "/etc/passwd" "r";

> fgets fp;

"at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash\n"

> fgets fp;

"avahi:x:103:104:User for Avahi:/var/run/avahi-daemon:/bin/false\n"
> ftell fp;

121L

> rewind fp;

()

> fgets fp;

"at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash\n"

> split "\n" $ fget $ popen "ls x.pure" "r";
["array.pure","dict.pure", "getopt.pure","heap.pure","math.pure",
"matrices.pure","prelude.pure","primitives.pure",6 "quasiquote.pure",
"set.pure","strings.pure","system.pure",""]

C-style formatted I/0O is provided through the following wrappers for the C printf and
scanf functions. These wrapper functions take or return a tuple of values and are fully type-
safe, so they should never segfault. All basic formats derived from %cdioux, %efg, %s and
%p are supported, albeit without the standard length modifiers such as h and 1, which aren’t
of much use in Pure. (However, in addition to C printf and scanf, the Pure versions also
support the modifiers Z and R of the GMP and MPFR libraries, which are used for converting
multiprecision integer and floating point values, as shown in the examples below.)

printf format args

330 2.5 System Interface

http://gmplib.org
http://www.mpfr.org

Pure Language and Library Documentation, Release 0.59

fprintf fp format args

Print a formatted string to stdout or the given file, respectively. Normally, these func-
tions return the result of the underlying C routines (number of characters written, or
negative on error). However, in case of an abnormal condition in the wrapper func-
tion, such as argument mismatch, they will throw an exception. (In particular, an
out_of_bounds exception will be thrown if there are not enough arguments for the
given format string.)

sprintf format args

Print a formatted string to a buffer and return the result as a string. Note that, un-
like the C routine, the Pure version just returns the string result in the case of success;
otherwise, the error handling is the same as with printf and fprintf. The implemen-
tation actually uses the C routine snprintf for safety, and a suitable output buffer is
provided automatically.

scanf format
fscanf fp format

Read formatted input from stdin or the given file, respectively. These normally return
a tuple (or singleton) with the converted values. An exception of the form scanf_error
ret, where ret is the tuple of successfully converted values (which may be less than
the number of requested input items), is thrown if end-of-file was met or another error
occurred while still reading. The handling of other abnormal conditions is analogous
to printf et al. Also note that this implementation doesn’t accept any of the standard
length modifiers; in particular, floating point values will always be read in double pre-
cision and you just specify e, g etc. for these. The “assignment suppression” flag * is
understood, however; the corresponding items will not be returned.

sscanf s format

This works exactly like fscanf, but input comes from a string (first argument) rather
than a file.

Examples:

> do
foo5

(printf "%s%d\n") [("foo0",5),("catch",622)];

catch22

()

> sscanf "foo 5 22" "%s %d %g";
"foo",5,22.0

As mentioned above, special argument formats are provided for bigints and multiprecision
floats:

> sscanf "a(5) = 1234" "a(%d) = %Zd";

5,1234L
> sprintf "a(%d) = %Zd" ans;
"a(5) = 1234"

> using mpfr;
> mpfr_set_default_prec 113;

()

2.5.7 Basic /0 Interface 331

Pure Language and Library Documentation, Release 0.59

> printf "pi = %0.30Rg\n" (4xatan (mpfr 1));
pi = 3.14159265358979323846264338328
37

There are a number of other options for these conversions, please check the GMP and MPFR
documentation for details.

Note: In contrast to bigints, multiprecision floats aren’t directly supported by the Pure
language. If you would like to use these numbers, you'll have to install the mpfr addon
module which is not included in the standard library yet. Also note that, at the time of this
writing, MPFR only provides formatted output, so multiprecision floats are not supported
by the scanf functions. To work around this limitation, it is possible to read the number as
a string and then convert it using the mpfr function.

2.5.8 Stat and Friends

stat path
Return information about the given file. This is a simple wrapper around the corre-
sponding system call, see the stat(2) manual page for details. The function returns a
tuple with the most important fields from the stat structure, in this order: st_dev,
st_ino, st_mode, st_nlink, st_uid, st_gid, st_rdev, st_size, st_atime, st_mtime,
st_ctime. Among these, st_mode, st_nlink, st_uid and st_gid are simple machine
integers, the rest is encoded as bigints (even on 32 bit platforms).

lstat path
Return information about the given symbolic link (rather than the file it points to). On
systems where this function isn’t supported (e.g., Windows), lstat is identical to stat.

fstat fp
Return information about the given file object. Same as stat, but here the file is given
as a file pointer created with fopen (see Basic I/O Interface above). Note that the corre-
sponding system function actually takes a file descriptor, so the Pure implementation
is equivalent to the C call fstat(fileno(fp)). This function might not be supported
on all platforms.

For average applications, the most interesting fields are st_mode and st_size, which can
be retrieved with stat filename!![2,7]. Note that to facilitate access to the st_mode field,
the usual masks and bits for file types (S_IFMT, S_IFREG, etc.) and permissions (S_ISUID,
S_ISGID, S_IRWXU, etc.) are defined as constants by this module. Use the command show -g
S_xin the interpreter to get a full list of these. Other interesting fields are st_atime, st_mtime
and st_ctime, which can be accessed using stat filename!!(8..10). The values of these
fields are the times of last access, last modification and creation, respectively, which can be
decoded using the appropriate time functions like ctime or strftime, see Time Functions.

Examples:

332 2.5 System Interface

http://gmplib.org
http://www.mpfr.org
http://www.mpfr.org

Pure Language and Library Documentation, Release 0.59

> stat "/etc/passwd";
64773L,9726294L,33188,1,0,0,0L,1623L,1250373163L,1242692339L,1242692339L

> stat "/etc/passwd"!7; // file size
1623L
> strftime "%c" $ localtime $ stat "/etc/passwd"!10; // creation time

"Tue 19 May 2009 02:18:59 AM CEST"

> sprintf "0%0" $ stat "/etc/passwd"'2 and not S_IFMT; // permissions
II0644II

> stat "/etc/passwd"!'2 and S_IFMT == S_IFREG; // this is a regular file
1

> stat "/etc"!'2 and S_IFMT == S_IFDIR; // this is a directory

1

2.5.9 Reading Directories

readdir name
Read the contents of the given directory and return the names of all its entries as a list.

Example:

> readdir "/home";
["ag",". ||’||. . II]

2.5.10 Shell Globbing

fnmatch pat s flags
Returns a simple truth value (1 if pat matches s, 0 if it doesn’t), instead of an error code
like the C function.

glob pat flags
Returns a Pure list with the matches (unless there is an error in which case the integer
result code of the underlying C routine is returned).

The available flag values and glob error codes are available as symbolic FNM_x and GLOB_*
constants defined as variables in the global environment. See the fnmatch(3) and glob(3)
manpages for the meaning of these.

Example:

> glob "x.pure" 0;
["array.pure","dict.pure","getopt.pure","heap.pure","math.pure",

"matrices.pure","prelude.pure","primitives.pure
"strings.pure","system.pure"]

,"set.pure",

2,511 Regex Matching

Please note that, as of Pure 0.48, this part of the system interface is not included in the system
module any more, but is provided as a separate regex module which can be used indepen-

2.5.9 Reading Directories 333

Pure Language and Library Documentation, Release 0.59

dently of the system module. To use the operations of this module, add the following import
declaration to your program:

using regex;

Since the POSIX regex functions (regcomp and regexec) have a somewhat difficult calling
sequence, this module provides a couple of rather elaborate high-level wrapper functions
for use in Pure programs. These are implemented in terms of a low-level interface provided
in the runtime. (The low-level interface isn’t documented here, but these functions are also
callable if you want to create your own regular expression engines in Pure. You might wish
to take a look at the implementation of the high-level functions in regex.pure to see how this
can be done.)

regex pat cflags s eflags
Compiles and matches a regex in one go, and returns the list of submatches (if any).

Parameters

* pat (string) — the regular expression pattern

cflags (int) — the compilation flags (bitwise or of any of the flags ac-
cepted by regcomp(3))

s (string) — the subject string to be matched

eflags (int) — the matching execution flags (bitwise or of any of the
flags accepted by regexec(3))

Symbolic REG_x* constants are provided for the different flag values, see the regcomp(3) man-
page for an explanation of these. Two particularly important compilation flags (to be in-
cluded in the cflags argument) are REG_NOSUB, which prevents submatches to be computed,
and REG_EXTENDED, which switches regex from “basic” to “extended” regular expressions so
that it understands all the regular expression elements of egrep(1) in the pattern argument.

Depending on the flags and the outcome of the operation, the result of this function can take
one of the following forms:

* regerr code msg: This indicates an error during compilation of the pattern (e.g., if
there was a syntax error in the pattern). code is the nonzero integer code returned by
regcomp, and msg is the corresponding error message string, as returned by regerror.
You can redefine the regerr function as appropriate for your application (e.g., if you'd
like to print an error message or throw an exception).

* 0or 1: Just a truth value indicates whether the pattern matched or not. This will be the
form of the result if the REG_NOSUB flag was specified for compilation, indicating that
no submatch information is to be computed.

* 0 (indicating no match), or 1 (indicating a successful match), where the latter value is
followed by a tuple of (pos,substr) pairs for each submatch. This will be the form of
the result only if the REG_NOSUB flag was not specified for compilation, so that submatch
information is available.

334 2.5 System Interface

Pure Language and Library Documentation, Release 0.59

Note that, according to POSIX semantics, a return value of 1 does not generally mean that
the entire subject string was matched, unless you explicitly tie the pattern to the beginning
(") and end ($) of the string.

If the result takes the latter form, each (pos,substr) pair indicates a portion of the sub-
ject string which was matched; pos is the position at which the match starts, and substr is
the substring (starting at position pos) which was matched. The first (pos, substr) pair al-
ways indicates which portion of the string was matched by the entire pattern, the remaining
pairs represent submatches for the parenthesized subpatterns of the pattern, as described on
the regcomp(3) manual page. Note that some submatches may be empty (if they matched
the empty string), in which case a pair (pos,"") indicates the (nonnegative) position pos
where the subpattern matched the empty string. Other submatches may not participate in
the match at all, in which case the pair (-1,"") is returned.

The following helper functions are provided to analyze the result returned by regex.

reg_result res
Returns the result of a regex call, i.e., a regerr term if compilation failed, and a flag
indicating whether the match was successful otherwise.

reg_info res
Returns the submatch info if any, otherwise it returns ().

reg n info
Returns the nth submatch of the given submatch info, where info is the result of a
reg_info call.

regs info
Returns all valid submatches, i.e., the list of all triples (n,p,s) for which reg n ==
(p,s) with p>=0.

In addition, the following convenience functions are provided to perform global regex
searches, to perform substitutions, and to tokenize a string according to a given delimiter
regex.

regexg f pat cflags s eflags
Perform a global regular expression search. This routine will scan the entire string for
(non-overlapping) instances of the pattern, applies the given function f to the reg_info
for each match, and collects all results in a list. Note: Never specify the REG_NOSUB flag
with this function, it needs the submatch info.

regexgg f pat cflags s eflags
This works like regexg, but allows overlapping matches.

regsub f pat cflags s eflags
Replaces all non-overlapping instances of a pattern with a computed substitution
string. To these ends, the given function f is applied to the reg_info for each match.
The result string is then obtained by concatenating f info for all matches, with the
unmatched portions of the string in between. To make this work, f must always return
a string value; otherwise, regsub throws a bad_string_value exception.

2.5.11 Regex Matching 335

Pure Language and Library Documentation, Release 0.59

regsplit pat cflags s eflags
Splits a string into constituents delimited by substrings matching the given pattern.

Please note that these operations all operate in an eager fashion, i.e., they process the entire
input string in one go. This may be unwieldy or at least inefficient for huge amounts of text.
As a remedy, the following lazy alternatives are available:

regexgs f pat cflags s eflags

regexggs f pat cflags s eflags

regsplits pat cflags s eflags
These work like regexg, regexgg and regsplit above, but return a stream result which
enables you to process the matches one by one, using “call by need” evaluation.

Basic Examples

Let’s have a look at some simple examples:

> let pat = "[[:alpha:]][[:alnum:]]x";
> let s = "lvar foo 99 BAR $%&";

Simple match:

> regex pat 0 s 0;
1,1,"var"

Same without match info:

> regex pat REG_NOSUB s 0;
1

Global match, return the list of all matches:

> regexg id pat 0 s 0;
[(1,"var"),(5,"foo"), (12,"BAR")]

Same with overlapping matches:

> regexgg id pat 0 s 0;
[(1,"var"),(2,"ar"),(3,"r"),(5,"fo0"), (6,"00"),(7,"0"), (12, "BAR"),
(13,"AR"), (14,"R")]

Note that id (the identity function) in the examples above can be replaced with an arbitrary
function which processes the matches. For instance, if we only want the matched strings
instead of the full match info:

> regexg (!1) pat 0 s 0;
["Var","foo“,“BAR"]

Lazy versions of both regexg and regexgg are provided which return the result as a stream
instead. These can be processed in a “call by need” fashion:

336 2.5 System Interface

Pure Language and Library Documentation, Release 0.59

> regexgs id pat 0 s 0;

(1,"var") :#<thunk 0x7fb1b7976750>
> last ans;

12, "BAR"

Let’s verify that the processing is really done lazily:

> using systenm;

> test x = printf "got: %s\n" (str x) $$ x;
> let xs = regexgs test pat 0 s 0;

got: 1,"var"

> xs!l;

got: 5,"foo"

5,"foo"

> last xs;

got: 12,"BAR"

12,"BAR"

As you can see, the first match is produced immediately, while the remaining matches are
processed as the result stream is traversed. This is most useful if you have to deal with
bigger amounts of text. By processing the result stream in a piecemeal fashion, you can

avoid keeping the entire result list in memory. For instance, compare the following:

> let s2 = fget $ fopen "system.pure r;
> stats -m

> #regexg id pat 0 s2 0;

7977

0.18s, 55847 cells

> #regexgs id pat 0 s2 0;

7977

0.12s, 20 cells

Regex Substitutions and Splitting

We can also perform substitutions on matches:

> regsub (sprintf "<%d:%s>") pat 0 s 0;
"I<l:var> <5:foo> 99 <12:BAR> $%&"

Or split a string using a delimiter pattern (this uses an egrep pattern):

> let delim = "[[:space:]]+";

> regsplit delim REG_EXTENDED s 0;
[IllvarlllIIfOOII’II99II’IIBARII’II$0/°&II]

> regsplit delim REG_EXTENDED "The quick brown fox" 0;
[IITheII’Ilquickll’llbrownll'IIfOXII]

The regsplit operation also has a lazy variation:

> regsplits "[[:space:]]+" REG_EXTENDED "The quick brown fox" 0;

"The" :#<thunk 0x7fblb79775b0>

2.5.11 Regex Matching

337

Pure Language and Library Documentation, Release 0.59

> last ans;
" fOXII

Empty Matches

Empty matches are permitted, too, subject to the constraint that at most one match is re-
ported for each position (which also prevents looping). And of course an empty match will
only be reported if nothing else matches. For instance:

> regexg id "" REG_EXTENDED "foo" 0;
[(e,""),(1,""),(2,""),(3,"")]

> regexg id "ox" REG_EXTENDED "foo" 0;
[((e,""),(1,"00"),(3,"")]

> regexgg id "ox" REG_EXTENDED "foo" 0;
[(8,""),(1,"00"),(2,"0"),(3,"")]

This also works when substituting or splitting:

> regsub (cst " ") "" REG_EXTENDED "some text" 0;
"some text!"

> regsub (cst " ") " ?" REG_EXTENDED "some text" 0;
"some text"

> regsplit "" REG_EXTENDED "some text" 0;

[IIII’ IIsII’ "O", IImII’ IIeII’ n II’ Iltll’ Ilell’ IIXII’ Iltll’ IIII]
> regsplit " ?" REG_EXTENDED "some text" 0;
[IIII, "S", "O", "m", IIeII’ nn , IItII , IIeII , "X", "t", IIII]
Submatches

Parenthesized subexpressions in a pattern yield corresponding submatch information,
which is useful if we need to retrieve the text matched by a given subexpression. For in-
stance, suppose we want to parse environment lines, such as those returned by the shell’s
set command. These can be dissected using the following regex:

> const env_pat = "~(["=]+)=(.*)$";

> const env_flags = REG_EXTENDED or REG_NEWLINE;
> regex env_pat env_flags "SHELL=/bin/sh" 0;
1,0,"SHELL=/bin/sh",0,"SHELL",6,"/bin/sh"

Note that we again used an extended regex here, and we also added the REG_NEWLINE flag
so that we properly deal with multiline input. The desired information is in the 4th and 6th
element of the submatch info, we can retrieve that as follows:

> parse_env s = regexg (\info -> info!3 => info!5) env_pat env_flags s 0;
> parse_env "SHELL=/bin/sh\nHOME=/home/bar\n";
["SHELL"=>"/bin/sh","HOME"=>"/home/bar"]

We can get hold of the real process environment as follows:

338 2.5 System Interface

Pure Language and Library Documentation, Release 0.59

> using systenm;

> let env = parse_env $ fget $ popen "set" "r";
> #env;

109

> head env;

"BASH"=>"/usr/bin/sh"

Just for the fun of it, let’s convert this to a record, providing easy random access to the
environment variables:

> let env = record env;
> env!!["SHELL","HOME"];
{"/bin/bash","/home/ag"}

2.5.12 Additional POSIX Functions

Platforms: Mac, Unix The posix module provides some additional POSIX functions not avail-
able on all supported systems. (In particular, none of these functions are provided on MS
Windows.) You can load this module in addition to the system module if you need the
additional functionality. To use the operations of this module, add the following import
declaration to your program:

using posix;

The following operations are provided. Please see the appropriate POSIX manual pages for
a closer description of these functions.

fork
Fork a new process.

getpid
getppid
Get the process id of the current process and its parent process, respectively.

wait status

waitpid pid status options
Wait for any child process, or the given one. The status argument must be a pointer
to an int value, which is used to return the status of the child process.

kill pid sig
Send the given signal to the given process.

raise sig
Raise the given signal in the current process.

pause
Sleep until a signal is caught.

2.5.12 Additional POSIX Functions 339

Pure Language and Library Documentation, Release 0.59

2.5.13 Option Parsing

This is a quick-and-dirty replacement for the GNU getopt functions, ported from the Q li-
brary. To use the operations of this module, add the following import declaration to your
program:

using getopt;

The following operation is provided:

getopt opts args
Parse options as given by opts in the command line arguments args, return the parsed
options along with a list of the remaining (non-option) command line arguments.

The getopt function takes two arguments: opts, a list of option descriptions in the format
described below, and args, a list of strings containing the command line parameters to be
parsed for options. The result is a pair (opts_return,args_return) where opts_return
is a list of options and their values, and args_return is the list of remaining (non-option)
arguments. Options are parsed using the rules of GNU getopt(1). If an invalid option is
encountered (unrecognized option, missing or extra argument, etc.), getopt throws the of-
fending option string as an exception.

The opts_return value is a list of “hash pairs” opt=>val where opt is the (long) option
name (as given by the long_opt field given in the opts argument, see below) and val is the
corresponding value (() if none). Note that this format is ready to be passed to the dict or
hdict function, cf. Dictionaries, which makes it easy to retrieve option values or check for
the presence of options. (As of Pure 0.41, you can also just convert the list to a record and
employ the record functions to access the option data, cf. Record Functions.)

The opts argument of getopt must be a list of triples (long_opt, short_opt, flag), where
long_opt denotes the long option, short_opt the equivalent short option, and flag is one
of the symbolic integer values NOARG, OPTARG and REQARG which specifies whether the op-
tion has no argument, an optional argument or a required argument, respectively. Either
long_opt or short_opt should be a string value of the form "--abc" or "-x", respectively.
Note that since the long_opt value is always used to denote the corresponding option in the
opts_return list, you always have to specify a sensible value for that field. If no separate
long option name is needed, you can specify the same value as in the short_opt field, or
some other convenient value (e.g., an integer) which designates the option. Conversely, to
indicate that an option has no short option equivalent, simply specify an empty option string
for the short_opt field.

Examples:

> let opts = [("--help", "-h", NOARG), // no argument

> ("--version", "", NOARG), // no short option
> ("--filename", "-f", REQARG), // required argument
> ("--count", "-n", OPTARG)]; // optional argument
> getopt opts ["foo", "-h", "--filename", "bar", "-n0", "baz"];
["--help"=>(),"--filename"=>"bar","--count"=>"0"1,["foo","baz"]

> catch invalid_option $ getopt opts ["-h","-v"];
invalid_option "-v"

340 2.5 System Interface

Pure Language and Library Documentation, Release 0.59

> getopt opts [foo, "-h", bar];
["--help"=>()]1,[foo,bar]

As the last example shows, non-option arguments (as well as option values specified as
separate arguments) can actually be any values which are just copied to the result lists as is.

2.5.13 Option Parsing 341

Pure Language and Library Documentation, Release 0.59

342 2.5 System Interface

Chapter

pure-avahi: Pure Avahi Interface

Version 0.1, January 28, 2014
Albert Grif <aggraef@gmail.com>

This is a simple interface to Avahi, a Zeroconf implementation for Linux and other Un*x
systems. The module lets you publish and query Zeroconf network services using Avahi,
allowing you to establish connections for various kinds of TCP and UDP network services
without having to manually configure network addresses. It is typically used along with the
sockets module which lets you create the network connections discovered with avahi.

To keep things simple and easy to use, the module only exposes the most essential function-
ality of Ahavi right now, but the provided functions should hopefully be sufficient for most
programs which require interoperability with other Avahi or Apple Bonjour applications.
One known limitation is that the module allows you to publish and discover services in the
default Avahi domain only. Typically this is the local domain, limiting you to services in
the local network. However, this should cover most common uses of Zeroconf.

This module is in its early stages, so it may still contain bugs or lack some features. Please
report bugs on the issue tracker at the Pure Bitbucket site, and use the Pure mailing list for
general discussion of the module.

3.1 Copying

Copyright (c) 2014 by Albert Graef.

pure-avahi is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-avahi is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

343

mailto:aggraef@gmail.com
http://avahi.org/
http://en.wikipedia.org/wiki/Zero-configuration_networking

Pure Language and Library Documentation, Release 0.59

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

3.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
avahi-0.1.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make, and of course you need to have Pure and Avahi installed.
The latter should be readily available on most Linux systems, and ports are available for BSD
systems as well.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually, please check the Makefile for details.

3.3 Usage

To use the operations of this module, you need to have Avahi installed and the Avahi dae-
mon running on your system. The details of this depend on the particular system that you
use, so please consult the documentation of your Linux or BSD distribution for instructions.

The following import declaration loads the functions of the avahi module in your Pure script:

using avahi;

All operations are in the avahi namespace, so you might want to add the following declara-
tion to access the functions using their unqualified identifiers:

using namespace avahi;

3.4 Publishing Services

These functions allow you to advertise a network service using Avahi, so that the service can
be discovered by other applications participating in the Zeroconf protocol. Each service has
aname (a string which uniquely identifies the service), a type (indicating the application and
transport protocols utilized by the service) and a port number (TCP or UDP port number,
depending on the service type). The service type normally takes the form _app._tcp (for
TCP services) or _app._udp (for UDP), where _app specifies the protocol of the particular
application (such as _ipp for network-connected printers, or _osc for applications speaking
the OSC a.k.a. Open Sound Control protocol).

avahi: :publish name stype port
Advertise a service in the local domain, given by its name (a string), service type (a
string) and (TCP or UDP) port number (an integer). Note that this operation is actually

344 3.4 Publishing Services

http://www.gnu.org/licenses/
https://bitbucket.org/purelang/pure-lang/downloads/pure-avahi-0.1.tar.gz
https://bitbucket.org/purelang/pure-lang/downloads/pure-avahi-0.1.tar.gz

Pure Language and Library Documentation, Release 0.59

carried out asynchronously. Use avahi: : check below to wait for and report the result
of the operation. The returned result is a pointer to the service object which can be
passed to the following operations, or NULL in case of error. (A NULL pointer can be
passed safely to avahi: : check; it will fail in this case.) The service will be unpublished
automatically when the service object is garbage-collected.

avahi::check service
Check for the result of a avahi: :publish operation. This blocks until a result is avail-
able. A negative integer value indicates failure (in this case the result is the Avahi error
code). Otherwise the result is a triple with the actual service name, type and port.
Note that the name may be different from the one passed to avahi: :publish if there
was a name collision with another service. Such collisions are resolved automatically
by tacking on a suffix of the form #n to the service name.

3.5 Discovering Services

These functions let you discover services of a given service type. For each (resolvable) service
you’ll be able to retrieve the corresponding network address and port, which is what you'll
need to actually open a network connection to communicate with the service.

avahi: :browse stype

Browse available services of a given type in the local domain. This operation is carried
out asynchronously; use avahi::avail below to check whether new information is
available, and avahi::get to retrieve the actual service list. The result returned by
avahi::browse is a pointer to the browser object which can be passed to the following
operations, or NULL in case of error. (A NULL pointer can be passed safely to the other
operations; they will fail in this case.) Any resources allocated to the browser will be
released automatically when the browser object is garbage-collected.

avahi: :avail browser
Check whether the service information was updated since the last invocation of
avahi::get. Returns an integer (truth value), which may also be negative (indicating
the Avahi error code) in case of error.

avahi::get browser
Retrieve the current list of services. Each list entry is a tuple with the name, type,
domain, IP address (all string values) and port number (an integer) of a service. The
entries are in the same order as returned by Avahi, but only include services whose
network addresses can actually be resolved using Avahi. Note that this information
may change over time, as new services are announced on the network or removed
from it. An application will typically call avahi::avail from time to time to check
whether new information is available and then retrieve the updated service list using
avahi::get. The result may also be a negative integer (indicating the Avahi error code)
in case of error.

3.5 Discovering Services 345

Pure Language and Library Documentation, Release 0.59

3.6 Example

Here’s an example showing how to publish an UDP OSC (Open Sound Control) service
which might be used to connect to mobile OSC applications such as hexler’s TouchOSC:

using avahi;
using namespace avahi;

let s = publish "0SC Server" "_osc._udp" 8000;
check s;

The last line checks for the result of the operation and returns the actual service name, type
and port number if all went well. A TouchOSC instance running on the local network will
then offer you to connect to the service.

Continuing the example, here’s how you can obtain a list of OSC services currently available
on your local network:

let t = browse
avail t;
get t;

_osc._udp";

If you're running TouchOSC somewhere on your local network, it will be listed there, along
with our own service which we published above. The call in the second line can be used
to check whether any new information is available. Applications typically invoke these two
from time to time to update their service list, using code like the following:

avail t && get t;

346 3.6 Example

Chapter

pure-doc

Version 0.7, January 28, 2014
Albert Graef <aggraef@gmail.com>

pure-doc is a simple utility for literate programming and documenting source code written
in the Pure programming language. It is designed to be used with the excellent docutils tools
and the gentle markup format supported by these, called RST a.k.a. “reStructuredText”,
usually pronounced “rest”.

The basic idea is that you just comment your code as usual, but using RST markup instead of
plain text. In addition, you can also designate literate programming fragments in your code,
which will be translated to RST literal blocks automatically. You then run pure-doc on your
source files to extract all marked up comments and the literate code blocks. The resulting
RST source can then be processed with the docutils utilities like rst2html.py and rst2latex.py
to create the documentation in a variety of formats.

4.1 Copying

Copyright (c) 2009-2010 by Albert Graef.

pure-doc is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

pure-doc is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

347

mailto:aggraef@gmail.com
http://docutils.sourceforge.net
http://docutils.sourceforge.net/rst.html
http://www.gnu.org/licenses/

Pure Language and Library Documentation, Release 0.59

4.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
doc-0.7 tar.gz.

Unpack and do the customary make && sudo make install. This only needs flex and a
standards-compliant C++ compiler.

4.3 Usage

First, see the description of the RST format. RST is a very simple markup format, almost like
plain text (in fact, you're looking at RST right now, this document is written in it!). You can
learn enough of it to start marking up your source in about five minutes.

Second, you'll have to mark up your source comments. pure-doc recognizes comments in
RST format by looking at the first non-empty line of the comment. A comment (either /*

*/ or a contiguous sequence of // line comments) is assumed to contain RST format if
the first non-empty line starts with :, .. or __. Other comments are taken to be plain text
and are ignored by pure-doc.

Notes:

¢ pure-doc makes no other assumption about the contents of marked up comments, so
you can include whatever you want: titles, section headers, fields, admonitions, plain
text, whatever. Just make sure that the comment starts with one of the special tokens
listed above. (You can always putjust .. at the beginning of the comment to force it to
be recognized, this will be treated as a comment by the docutils tools.)

* Also, pure-doc makes very few assumptions about the source; in fact, any source files
with a C/C++-like comment and string syntax should work. So you could also use it
to document your C/C++ programs, or even plain text files like this one, as long as
they adhere to these standards.

* Indentation in extracted comments is preserved (assuming tabs = 8 spaces by default,
you can change this with the -t option). This is important because indentation conveys
document structure in RST.

For instance, here is a sample RST-formatted comment:

/* :Name: ‘‘rand’‘ - compute random numbers
:Synopsis: ‘‘rand‘’
:Description: Computes a (pseudo) random number. Takes no parameters.
:Example: Here is how you can call ‘‘rand’’ in Pure:

> extern int rand();
> rand;
1804289383

:See Also: rand(3) x*/

348 4.3 Usage

https://bitbucket.org/purelang/pure-lang/downloads/pure-doc-0.7.tar.gz
https://bitbucket.org/purelang/pure-lang/downloads/pure-doc-0.7.tar.gz
http://docutils.sourceforge.net/rst.html

Pure Language and Library Documentation, Release 0.59

This will be rendered as follows:
Name rand - compute random numbers
Synopsis rand

Description Computes a (pseudo) random number. Takes no param-
eters.

Example Here is how you can call rand in Pure:
> extern int rand();

> rand;
1804289383

See Also rand(3)
Finally, to extract the documentation you run pure-doc on your source files as follows:
pure-doc source-files ...
If no input files are specfied then the source is read from standard input. Otherwise all input

files are read and processed in the indicated order. The output is written to stdout, so that
you can directly pipe it into one of the docutils programs:

pure-doc source-files ... | rst2html.py

If you prefer to write the output to a file, you can do that as follows:

pure-doc source-files ... > rst-file

pure-doc also understands the following options. These must come before any file argu-
ments.

-h Print a short help message.

-i Automatic index creation (see below).

-s Generate Sphinx-compatible output (see below).
-twidth Set the tab width to the given number of spaces.

There are no other options. By its design pure-doc is just a plain simple “docstring scraping”
utility with no formatting knowledge of its own. All actual formatting is handled by the
docutils programs which offer plenty of options to change the appearance of the generated
output; please refer to the docutils documentation for details.

Note that since Pure 0.46, all Pure documentation is usually formatted using Sphinx, the
RST formatter used by the Python project which provides cross-document indexing and
referencing, and even more elaborate formatting options and prettier output than docutils.
pure-doc versions since 0.6 support this by adding the -s option which makes its output
compatible with Sphinx. (At present this option actually has any effect only when combined
with the -1 index generation option, see Hyperlink Targets and Index Generation below.)

4.3 Usage 349

http://docutils.sourceforge.net
http://sphinx.pocoo.org

Pure Language and Library Documentation, Release 0.59

4.4 Literate Programming

pure-doc also recognizes literate code delimited by comments which, besides the comment
delimiters and whitespace, contain nothing but the special start and end “tags” >>> and <<<.
Code between these delimiters (including all comments) is extracted from the source and
output as a RST literal code block.

For instance:

VAT
pure-doc supports literate programming, too. x/
/] >>>

// This is a literate comment.
/* .. This too! x/

extern int rand();
rand;

// <<<
This will be rendered as follows:

pure-doc supports literate programming, too.

// This is a literate comment.
/* .. This too! %/

extern int rand();
rand;

Try it now! You can scrape all the sample “documentation” from this file and format it as
html, as follows:

pure-doc README | rst2html.py --no-doc-title --no-doc-info > test.html

4.5 Hyperlink Targets and Index Generation

Note: This feature is now largely obsolete as Pure uses Sphinx for formatting its documen-
tation these days. Thus, as of version 0.6, the indexing feature must be enabled explicitly
with the -1 option.

When run with the -i option, pure-doc supplements the normal hyperlink target processing
by the docutils tools, by recognizing explicit hyperlink targets of the form .. _target:
and automatically creating raw html targets () for them. This works around
the docutils name mangling (which is undesirable if you're indexing, say, function names).

350 4.5 Hyperlink Targets and Index Generation

Pure Language and Library Documentation, Release 0.59

It also resolves a quirk with some w3m versions which don’t pick up all id attributes in the
docutils-generated html source.

In addition, you can also have pure-doc generate an index from all explicit targets. To these
ends, just add the following special directive at the place where you want the index to ap-
pear:

. makeindex::

The directive will be replaced with a list of references to all targets collected up to that point,
sorted alphabetically. This also resets the list of collected targets, so that you can have mul-
tiple smaller indices in your document instead of one big one.

It goes without saying that this facility is rather simplistic, but it may be useful when you
are working with plain docutils which does not provide its own indexing facility. Note,
however, that docutils doesn’t allow multiple explicit targets with the same name, so you
should take that into consideration when devising your index terms.

Also note that in Sphinx compatibility mode (-s), pure-doc will generate the appropriate
Sphinx markup for index entries (index: :) instead, and the makeindex:: directive will be
ignored. You should then use Sphinx to generate the index.

Finally, if the -i option isn’t specified, then all this special processing is disabled and the
makeindex:: directive won’t be recognized at all. This is the recommended way to process
Pure documentation files which have been fully converted to Sphinx.

4.6 Generating and Installing Local Documentation

Note: This section only applies to 3rd party packages with their own bundled documenta-
tion which isn’t part of the “official” Pure documentation. In this case it is possible to use
docutils or some other RST formatting software to generate additional documentation files
for use with the Pure interpreter. Please note that the method sketched out in this section
doesn’t provide full integration with the rest of Pure’s documentation, but at least it makes
it possible to read the local documentation in the interpreter.

If you're generating some library documentation for which you have to process a bigger col-
lection of source files, then it is often convenient to have a few Makefile rules to automatize
the process. To these ends, simply add rules similar to the following to your Makefile (the
following assumes GNU make and that you're using docutils to format the documentation):

The sources. Order matters here. The generated documentation will have the
comments from each source file in the indicated order.
sources = foo.pure bar.pure

The basename of the documentation files to be generated.
target = foo

.PHONY: html tex pdf

4.6 Generating and Installing Local Documentation 351

Pure Language and Library Documentation, Release 0.59

html: $(target).html
tex: $(target).tex
pdf: $(target).pdf

$(target).txt: $(sources)
pure-doc $(sources) > $@

This requires that you have docutils installed.

o°

html: %.txt
rst2html.py $< $@

o°

.tex: %.txt
rst2latex.py $< $@

This also requires that you have TeX installed.

o°

.pdf: %.tex
pdflatex $<
rm -f x.aux *.log *.out

clean:
rm -f *.html *.tex x.pdf

You might want to add - i to the pure-doc command line if you want to enable the indexing
feature described in the previous section. If you want to use some other RST formatting
software, please check the corresponding documentation for information on how to format
your documents and adjust the above rules for the html, tex and pdf targets accordingly.

Now you can just type make html to generate the documentation in html format, and make
tex or make pdf to generate the other formats. The clean target removes the generated files.

Having generated the documentation files in html format, you can install them in the docs
subdirectory of the Pure library directory to make it known to the Pure interpreter, so that
you can read your documentation with the help command of the interpreter. (When doing
this, name your documentation files in such a manner that you don’t overwrite any of the
Pure documentation files there.) The following Makefile rule automatizes this process. Add
this to the Makefile in the previous section:

Try to guess the installation prefix (this needs GNU make):
prefix = $(patsubst %/bin/pure,%,$(shell which pure 2>/dev/null))
ifeq ($(strip $(prefix)),)

Fall back to /usr/local.

prefix = /usr/local

endif

libdir = $(prefix)/1lib
docsdir = $(libdir)/pure/docs

install:
test -d "$(DESTDIR)$(docsdir)" || mkdir -p "$(DESTDIR)$(docsdir)"

352 4.6 Generating and Installing Local Documentation

Pure Language and Library Documentation, Release 0.59

cp $(target).html "$(DESTDIR)$(docsdir)"

After a make install your documentation should now end up in the appropriate place in
the Pure library directory and you can read it in the Pure interpreter using a command like
the following:

> help foo#

Note the hash character. This tells the help command that this is an auxiliary documentation
file, rather than a search term to be looked up in the Pure documentation. You can also look
up a specific section in your manual as follows:

> help foo#section-name

Please also refer to The Pure Manual for more information on how to use the interpreter’s
online help.

4.7 Formatting Tips

If you're generating documentation in pdf format using plain docutils, you might have to
fiddle with the formatting to get results suitable for publication purposes. Newer versions
of the rts2latex.py program provide some options which let you adjust the formatting of
various document elements. Here are the options that the author found particularly helpful:

* The table of contents that RST produces isn’t all that useful in printed documen-
tation, since it lacks page numbers. As a remedy, you can invoke rst2latex with
--use-latex-toc to have LaTeX handle the formatting of the table of contents, which
looks much nicer.

¢ Similarly, - -use-latex-docinfo can be used to tell rst2latex that you want the title
information (author and date) to be formatted the LaTeX way.

e If you need specific LaTeX document options, these can be specified with
--documentoptions, e.g.: --documentoptions="11pt".

¢ For more comprehensive formatting changes which require special LaTeX code and/or
packages, you can use the --stylesheet option. E.g., --stylesheet=preamble.tex
will cause a preamble.tex file with your own definitions to be included in the preamble
of the generated document.

* To format literal code blocks using an alternative environment instead of the
default verbatim environment, use the --literal-block-env option. E.g.,
--literal-block-env=lstlisting will use the highlighted code environment from
the listings package. (Note that in this case you'll also need a preamble which loads
the corresponding package.).

To learn more about this, please consult the rts2latex.py documentation at the docutils web-
site.

4.7 Formatting Tips 353

Pure Language and Library Documentation, Release 0.59

In addition, the pure-doc package contains a little GNU awk script called fixdoc, which
attempts to improve the LaTeX output produced by older svn versions of rst2latex in various
ways. (This isn’t necessary for the latest rst2latex versions, or if you use Sphinx.)

354 4.7 Formatting Tips

Chapter

pure-ffi

Version 0.13, January 28, 2014
Albert Graef <aggraef@gmail.com>

The libffi library provides a portable, high level programming interface to various calling
conventions. This allows a programmer to call any function specified by a call interface
description at run time. libffi should be present on most gcc-based systems, but it is also
available as a standalone package at http://sourceware.org/libffi/.

This module provides an interface to libffi which enables you to call C functions from Pure
and vice versa. It goes beyond Pure’s built-in C interface in that it also handles C structs and
makes Pure functions callable from C. Moreover, depending on the libffi implementation, it
may also be possible to call foreign languages other than C.

5.1 Copying

Copyright (c) 2008, 2009 by Albert Graef.

pure-ffi is free software: you can redistribute it and /or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

pure-ffi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

355

mailto:aggraef@gmail.com
http://sourceware.org/libffi/
http://www.gnu.org/licenses/

Pure Language and Library Documentation, Release 0.59

5.2 Installation

Get the latest source from https:/ /bitbucket.org/purelang/pure-lang/downloads/pure-ffi-
0.13.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make, and of course you need to have Pure and libffi installed.

make tries to guess your Pure installation directory and platform-specific setup. If it gets
this wrong, you can set some variables manually. In particular, make install prefix=/usr
sets the installation prefix, and make PIC=-fPIC or some similar flag might be needed for
compilation on 64 bit systems. Please see the Makefile for details.

NOTE: This module requires libffi 3.x (3.0.8 has been tested). Old libffi versions (2.x) do not
appear to work (closures are broken). Patches are welcome.

5.3 Usage

The module exposes a simplified interface to libffi tailored to the Pure language. Call in-
terfaces are described using the desired ABI, return type and tuple of argument types. The
ABI is specified using one of the FFI_* constants defined by the module; for most purposes,
FFI_DEFAULT_ABI is all that’s needed. C types are specified using special descriptors void_t,
uint_t etc., see ffi.pure for details. You can also get a list of these values using show -g
FFI_* *_t after importing the ffi module.

The primary interface for calling C from Pure and vice versa is as follows:

fcall name abi rtype atypes
Creates a Pure function from a C function with the given name, specified as a string.
This makes the C function callable in Pure, no matter whether it is already declared as
an extern or not. But note that if the function resides in a shared library, you still have
to import that library using a Pure using declaration, see the Pure manual for details.

fclos fn abi rtype atypes
Creates a pointer to a C function from the given Pure function fn. The resulting pointer
can then be passed to other C functions expecting functions as arguments. This allows
you to create C callbacks from Pure functions without writing a single line of C code.
(This functionality might not be available on some platforms.)

Note that in difference to extern functions, arguments to functions created with libffi are
always passed in uncurried form, as a Pure tuple. E.g.:

> using ffi;

> let fmod = fcall "fmod" FFI_DEFAULT_ABI double_t (double_t,double_t);
> fmod (5.3,0.7);

0.4

C structs are fully supported and are passed in a type-safe manner, see ffi.pure for details.
Note that these are to be used for passing structs by value. (When passing a pointer to a

356 5.3 Usage

https://bitbucket.org/purelang/pure-lang/downloads/pure-ffi-0.13.tar.gz
https://bitbucket.org/purelang/pure-lang/downloads/pure-ffi-0.13.tar.gz

Pure Language and Library Documentation, Release 0.59

struct, you must use pointer_t instead.) For instance:

> let complex_t = struct_t (double_t,double_t);

> let cexp = fcall "cexp" FFI_DEFAULT_ABI complex_t (complex_t);
> members (cexp (struct complex_t (0.0,1.0)));
0.54030230586814,0.841470984807897

See the examples folder in the sources for more examples.

5.4 TODO

The API isn’t perfect yet. In particular, one might consider to implement type descriptors as
structs instead of raw pointers, and support for typed pointers would be useful. Contribu-
tions and suggestions are welcome.

5.4 TODO 357

Pure Language and Library Documentation, Release 0.59

358 5.4 TODO

Chapter

pure-gen: Pure interface generator

Version 0.16, January 28, 2014
Albert Grif <aggraef@gmail.com>

pure-gen is a C interface generator for the Pure language. It takes a C header file as input
and generates a corresponding Pure module with the constant definitions and extern dec-
larations needed to use the C module from Pure. pure-gen can also generate FFI interfaces
rather than externs (using the pure-ffi module), and it can optionally create a C wrapper mod-

ule which allows you to create interfaces to pretty much any code which can be called via
C.

6.1 Synopsis
pure-gen [options ...] input-file
6.2 Options

6.2.1 General Options

-h
--help
Print a brief help message and exit.

-V
--version
Print version number and exit.

359

mailto:aggraef@gmail.com

Pure Language and Library Documentation, Release 0.59

--echo
Echo preprocessor lines. Prints all processed #defines, useful for debugging purposes.

-v
--verbose
Show parameters and progress information. Gives useful information about the con-
version process.

-w[level]

--warnings[=level]
Display warnings, level = 0 (disable most warnings), 1 (default, shows important
warnings only) or 2 (lots of additional warnings useful for debugging purposes).

6.2.2 Preprocessor Options

-I path
--include path
Add include path. Passed to the C preprocessor.

-D name[=value]
--define name[=value]
Define symbol. Passed to the C preprocessor.

-U name
--undefine name
Undefine symbol. Passed to the C preprocessor.

-C option
--cpp option
Pass through other preprocessor options and arguments.

6.2.3 Generator Options

-f iface

--interface iface
Interface type (extern, ¢, ffi or c-ffi). Default is extern. The extern and c types
generate Pure extern declarations, which is what you want in most cases. ffi and
c-ffi employ Pure’s libffi interface instead. The c and c-ffi types cause an addi-
tional C wrapper module to be created (see Generating C Code). These can also be
combined with the -auto suffix which creates C wrappers only when needed to get C
struct arguments and returns working, see Dealing with C Structs for details.

-1 lib

--lib-name lib
Add dynamic library module to be imported in the Pure output file. Default is -1
c-file (the filename specified with -c, see below, without filename extension) if one
of the - fc options was specified, none otherwise.

360 6.2 Options

Pure Language and Library Documentation, Release 0.59

-m name
--namespace name
Module namespace in which symbols should be declared.

-p prefix
--prefix prefix
Module name prefix to be removed from C symbols.

-P prefix
--wrap prefix
Prefix to be prepended to C wrapper symbols (- fc and friends). Default is Pure_.

-a
--all
Include “hidden” symbols in the output. Built-in preprocessor symbols and symbols
starting with an underscore are excluded unless this option is specified.

-s pattern

--select pattern
Selection of C symbols to be included in the output. pattern takes the form
[glob-patterns::][regex-pattern], designating a comma separated list of glob pat-
terns matching the source filenames, and an extended regular expression matching the
symbols to be processed. See glob(7) and regex(7). The default pattern is empty which
matches all symbols in all source modules.

-x pattern
--exclude pattern
Like - s, but excludes all matching C symbols from the selection.

-t file

--template file
Specify a C template file to be used with C wrapper generation (-fc). See Generating
C Code for details.

-T file

--alt-template file
Specify an alternate C template file to be used with C wrapper generation (-fc). See
Generating C Code for details.

6.2.4 Output Options

-n
--dry-run
Only parse without generating any output.

-N
--noclobber
Append output to existing files.

-0 file

6.2.4 Output Options 361

Pure Language and Library Documentation, Release 0.59

--output file
Pure output (.pure) filename. Default is input - file with new extension .pure.

-c¢ file
--c-output file
C wrapper (.c) filename (- fc). Default is input - file with new extension .c.

6.3 Description

pure-gen generates Pure bindings for C functions from a C header file. For instance, the
command

pure-gen foo.h

creates a Pure module foo.pure with extern declarations for the constants (#defines and
enums) and C routines declared in the given C header file and (recursively) its includes.

pure-gen only accepts a single header file on the command line. If you need to parse more
than one header in a single run, you can just create a dummy header with all the necessary
#includes in it and pass that to pure-gen instead.

When invoked with the -n option, pure-gen performs a dry run in which it only parses the
input without actually generating any output files. This is useful for checking the input
(possibly in combination with the -e, -v and/or -w options) before generating output. A
particularly useful example is

pure-gen -ne foo.h |
| awk ’$1=="#" && $2~/"[0-9]+$/ && $3!~/""<.x>"$/ { print $3 }’ |\
| sort | uniq

which prints on standard output all headers which are included in the source. This helps
to decide which headers you want to be included in the output, so that you can set up a
corresponding filter patterns (- s and - x options, see below).

The -I, -D and -U options are simply passed to the C preprocessor, as well as any other
option or argument escaped with the - C flag. This is handy if you need to define additional
preprocessor symbols, add directories to the include search path, etc., see cpp(1) for details.

There are some other options which affect the generated output. In particular, - f c generates
a C wrapper module along with the Pure module (see Generating C Code below), and -f
ffi generates a wrapper using Pure’s ffi module. Moreover, -1 libfoo generates a using
"lib:libfoo" declaration in the Pure source, for modules which require a shared library to
be loaded. Any number of - I options can be specified.

Other options for more advanced uses are explained in the following sections.

362 6.3 Description

Pure Language and Library Documentation, Release 0.59

6.4 Filtering

Note that pure-gen always parses the given header file as well as all its includes. If the
header file includes system headers, by default you will get those declarations as well. This
is often undesirable. As a remedy, pure-gen normally excludes built-in #defines of the C
preprocessor, as well as identifiers with a leading underscore (which are often found in sys-
tem headers) from processing. You can use the -a option to disable this, so that all these
symbols are included as well.

In addition, the -s and -x options enable you to filter C symbols using the source filename
and the symbol as search criteria. For instance, to just generate code for a single header foo.h
and none of the other headers included in foo.h, you can invoke pure-gen as follows:

pure-gen -s foo.h:: foo.h

Note that even in this case all included headers will be parsed so that #defined constants
and enum values can be resolved, but the generated output will only contain definitions and
declarations from the given header file.

In general, the -s option takes an argument of the form glob-patterns::regex-pattern
denoting a comma-separated list of glob patterns to be matched against the source filename
in which the symbol resides, and an extended regex to be matched against the symbol itself.
The glob-patterns:: part can also be omitted in which case it defaults to : : which matches
any source file. The regex can also be empty, in which case it matches any symbol. The
generated output will contain only the constant and function symbols matching the given
regex, from source files matching any of the the glob patterns. Thus, for instance, the option
-s foo.h,bar.h::~(foo|bar)_ pulls all symbols prefixed with either foo_ or bar_ from the
files foo.h and bar.h in the current directory.

Instead of :: you can also use a single semicolon ; to separate glob and regex pattern. This
is mainly for Windows compatibility, where the msys shell sometimes eats the colons or
changes them to ;.

The -x option works exactly the same, but excludes all matching symbols from the selection.
Thus, e.g., the option -x “bar_ causes all symbols with the prefix bar_ to not be included in
the output module.

Processing of glob patterns is performed using the customary rules for filename matching,
see glob(7) for details. Note that some include files may be specified using a full pathname.
This is the case, in particular, for system includes such as #include <stdio.h>, which are
resolved by the C preprocessor employing a search of the system include directories (as well
as any directories named with the - I option).

Since the x and ? wildcards never match the pathname separator /, you have to specify
the path in the glob patterns in such cases. Thus, e.g., if the foo.h file actually lives in
either /usr/include or /usr/local/include, then it must be matched using a pattern like
/usr/include/x*.h, /usr/local/include/*.h::. Just foo.h:: will not work in this case.
On the other hand, if you have set up your C sources in some local directory then specifying
a relative pathname is ok.

6.4 Filtering 363

Pure Language and Library Documentation, Release 0.59

6.5 Name Mangling

The -s option is often used in conjuction with the -p option, which lets you specify a
“module name prefix” which should be stripped off from C symbols. Case is insignificant
and a trailing underscore will be removed as well, so -p foo turns fooBar into Bar and
FOO_BAR into BAR. Moreover, the -m option allows you to specify the name of a Pure name-
space in which the resulting constants and functions are to be declared. So, for instance,
-s "~(foo|F00)" -p foo -m foo will select all symbols starting with the foo or FOO pre-
fix, stripping the prefix from the selected symbols and finally adding a foo:: namespace
qualifier to them instead.

6.6 Generating C Code

As already mentioned, pure-gen can be invoked with the - fc or - fc-ffi option to create a
C wrapper module along with the Pure module it generates. There are various situations in
which this is preferable, e.g.:

* You are about to create a new module for which you want to generate some boilerplate
code.

* The C routines to be wrapped aren’t available in a shared library, but in some other
form (e.g., object file or static library).

* You need to inject some custom code into the wrapper functions (e.g., to implement
custom argument preprocessing or lazy dynamic loading of functions from a shared
library).

¢ The C routines can’t be called directly through Pure externs.

The latter case might arise, e.g., if the module uses non-C linkage or calling conventions, or
if some of the operations to be wrapped are actually implemented as C macros. (Note that in
order to wrap macros as functions you'll have to create a staged header which declares the
macros as C functions, so that they are wrapped in the C module. pure-gen doesn’t do this
automatically.)

Another important case is that some of the C routines pass C structs by value or return them
as results. This is discussed in more detail in the following section.

For instance, let’s say that we want to generate a wrapper foo.c from the foo.h header file
whose operations are implemented in some library libfoo.a or libfoo.so. A command like the
following generates both the C wrapper and the corresponding Pure module:

pure-gen -fc foo.h
This creates foo.pure and foo.c, with an import clause for "1ib:foo" at the beginning of the

Pure module. (You can also change the name of the Pure and C output files using the -0 and
- ¢ options, respectively.)

364 6.6 Generating C Code

Pure Language and Library Documentation, Release 0.59

The generated wrapper is just an ordinary C file which should be compiled to a shared object
(dll on Windows) as usual. E.g., using gcc on Linux:

gcc -shared -o foo.so foo.c -1foo

That’s all. You should now be able to use the foo module by just putting the declaration
using foo; into your programs. The same approach also works with the ffi interface if you
replace the - fc option with - fc-ffi.

You can also adjust the C wrapper code to some extent by providing your own template file,
which has the following format:

/* frontmatter here x/
#include %h

)
6%

/* wrapper here x/
%I %w(%p)

-~

return %n(%a);

}

Note that the code up to the symbol %% on a line by itself denotes “frontmatter” which gets
inserted at the beginning of the C file. (The frontmatter section can also be empty or missing
altogether if you don’t need it, but usually it will contain at least an #include for the input
header file.)

The rest of the template is the code for each wrapper function. Substitutions of various syn-
tactical fragments of the function definition is performed using the following placeholders:

%h input header file

%I return type of the function

%w the name of the wrapper function

%p declaration of the formal parameters of the wrapper function

%n the real function name (i.e., the name of the target C function to be called)

%a the arguments of the function call (formal parameters with types stripped off)
%% escapes a literal %

A default template is provided if you don’t specify one (which looks pretty much like the
template above, minus the comments). A custom template is specified with the -t option.
(There’s also a - T option to specify an “alternate” template for dealing with routines return-
ing struct values, see Dealing with C Structs.)

For instance, suppose that we place the sample template above into a file foo.templ and
invoke pure-gen on the foo.h header file as follows:

pure-gen -fc -t foo.templ foo.h

Then in foo.c you'd get C output code like the following;:

6.6 Generating C Code 365

Pure Language and Library Documentation, Release 0.59

/* frontmatter here x/
#include "foo.h"

/* wrapper here x/
void Pure_foo(int arg0, voidx argl)

{

return foo(arg0, argl);

}

/* wrapper here x/
int Pure_bar(int argo)

{

return bar(arg0);

}

As indicated, the wrapper function names are usually stropped with the Pure_ prefix. You
can change this with the - P option.

This also works great to create boilerplate code for new modules. For this purpose the fol-
lowing template will do the trick:

/* Add #includes etc. here. x/

)
6%

o°

r %n(%p)

-~

/* Enter code of %n here. x/

}

6.7 Dealing with C Structs

Modern C compilers allow you to pass C structs by value or return them as results from a
C function. This represents a problem, because Pure doesn’t provide any support for that
in its extern declarations. Even Pure’s libffi interface only has limited support for C structs
(no unions, no bit fields), and at present pure-gen itself does not keep track of the internal
structure of C structs either.

Hence pure-gen will bark if you try to wrap an operation which passes or returns a C struct,
printing a warning message like the following which indicates that the given function could
not be wrapped:

Warning: foo: struct argument or return type, try -fc-auto

What Pure does know is how to pass and return pointers to C structs in its C interface. This
makes it possible to deal with struct arguments and return values in the C wrapper. To
make this work, you need to create a C wrapper module as explained in the previous section.
However, as C wrappers are only needed for functions which actually have struct arguments
or return values, you can also use the -fc-auto option (or -fc-ffi-auto if you prefer the

366 6.7 Dealing with C Structs

Pure Language and Library Documentation, Release 0.59

ffi interface) to only generate the C wrapper when required. This saves the overhead of an
extra function call if it’s not actually needed.

Struct arguments in the original C function then become struct pointers in the wrapper func-
tion. E.g., if the function is declared in the header as follows:

typedef struct { double x, y; } point;
extern double foo(point p);

Then the generated wrapper code becomes:

double Pure_foo(point* arg0)
{

return foo(*arg0);

}

Which is declared in the Pure interface as:

extern double Pure_foo(pointx) = foo;

Struct return values are handled by returning a pointer to a static variable holding the return
value. E.g.,

extern point bar(double x, double y);

becomes:

pointx Pure_bar(double arg0d, double argl)
{

static point ret;
ret = bar(arg0, argl); return &ret;

}

Which is declared in the Pure interface as:
extern pointx Pure_bar(double, double) = bar;
(Note that the generated code in this case comes from an alternate template. It’s possible to

configure the alternate template just like the normal one, using the - T option instead of - t.
See the Generating C Code section above for details about code templates.)

In a Pure script you can now call foo and bar as:
> foo (bar 0.0 1.0);
Note, however, that the pointer returned by bar points to static storage which will be over-

written each time you invoke the bar function. Thus in the following example both u and v
will point to the same point struct, namely that defined by the latter call to bar:

> let u = bar 1.0 0.0; let v = bar 0.0 1.0;

Which most likely is not what you want. To avoid this, you'll have to take dynamic copies
of returned structs. It’s possible to do this manually by fiddling around with malloc and

6.7 Dealing with C Structs 367

Pure Language and Library Documentation, Release 0.59

memcpy, but the most convenient way is to employ the struct functions provided by Pure’s ffi
module:

> using ffi;

> let point_t = struct_t (double_t, double_t);
> let u = copy_struct point_t (bar 1.0 0.0);
> let v = copy_struct point_t (bar 0.0 1.0);

Now u and v point to different, malloc’d structs which even take care of freeing themselves
when they are no longer needed. Moreover, the ffi module also allows you to access the
members of the structs in a direct fashion. Please refer to the pure-ffi documentation for
further details.

6.8 Notes

pure-gen currently requires gcc (-E) as the C preprocessor. It also needs a version of gcc
which understands the - fdirectives-only option, which means gcc 4.3 or later. It will run
with older versions of gcc, but then you'll get an error message from gcc indicating that it
doesn’t understand the - fdirectives-only option. pure-gen then won’t be able to extract
any #defined constants from the header files.

pure-gen itself is written in Pure, but uses a C parser implemented in Haskell, based on the
Language.C library written by Manuel Chakravarty and others.

pure-gen can only generate C bindings at this time. Other languages may have their own
calling conventions which make it hard or even impossible to call them directly through
Pure’s extern interface. However, if your C compiler knows how to call the other language,
then it may be possible to interface to modules written in that language by faking a C header
for the module and generating a C wrapper with a custom code template, as described in
Generating C Code. In principle, this approach should even work with behemoths like C++,
although it might be easier to use third-party tools like SWIG for that purpose.

In difference to SWIG and similar tools, pure-gen doesn’t require you to write any special
“interface files”, is controlled entirely by command line options, and the amount of mar-
shalling overhead in C wrappers is negligible. This is possible since pure-gen targets only
the Pure-C interface and Pure has good support for interfacing to C built into the language
already.

pure-gen usually works pretty well if the processed header files are written in a fairly clean
fashion. Nevertheless, some libraries defy fully automatic wrapper generation and may thus
require staged headers and /or manual editing of the generated output to get a nice wrapper
module.

In complex cases it may also be necessary to assemble the output of several runs of pure-
gen for different combinations of header files, symbol selections and /or namespace/ prefix
settings. In such a situation it is usually possible to just concatenate the various output files
produced by pure-gen to consolidate them into a single wrapper module. To make this
easier, pure-gen provides the -N a.k.a. --noclobber option which appends the output to
existing files instead of overwriting them. See the example below.

368 6.8 Notes

Pure Language and Library Documentation, Release 0.59

6.9 Example

For the sake of a substantial, real-world example, here is how you can wrap the entire GNU
Scientific Library in a single Pure module mygsl.pure, with the accompanying C module in
mygsl.c:

rm -f mygsl.pure mygsl.c
DEFS=-DGSL_DISABLE_DEPRECATED
for x in /usr/include/gsl/gsl_x.h; do
pure-gen $DEFS -N -fc-auto -s "$x::" $x -o mygsl.pure -c mygsl.c
done

The C module can then be compiled with:

gcc $DEFS -shared -o mygsl.so mygsl.c

Note that the GSL_DISABLE_DEPRECATED symbol must be defined here to avoid some botches
with constants being defined in incompatible ways in different GSL headers. Also, some
GSL versions have broken headers lacking some system includes which causes hiccups in
pure-gen’s C parser. Fixing those errors or working around them through some appropriate
cpp options should be a piece of cake, though.

6.10 License

BSD-like. See the accompanying COPYING file for details.

6.11 Authors

Scott E. Dillard (University of California at Davis), Albert Graef (Johannes Gutenberg Uni-
versity at Mainz, Germany).

6.12 See Also

Language.C A C parser written in Haskell by Manuel Chakravarty et al,
http:/ /www.sivity.net/projects/language.c.

SWIG The Simplified Wrapper and Interface Generator, http:/ /www.swig.org.

6.9 Example 369

http://www.sivity.net/projects/language.c
http://www.swig.org

Pure Language and Library Documentation, Release 0.59

370 6.12 See Also

Chapter

pure-readline

Version 0.2, January 28, 2014
Albert Graef <aggraef@gmail.com>

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
readline-0.2.tar.gz.

This is a trivial wrapper around GNU readline, which gives Pure scripts access to the most
important facilities of the readline interface. This includes support for the readline function
itself (without custom completion at present) and basic history management. The wrapper
can also be used with the BSD editline a.k.a. libedit library, a readline replacement licensed
under the 3-clause BSD license. You can find these at:

* GNU readline: http://tiswww.tis.case.edu/~chet/readline/rltop.html
* BSD editline/libedit: http:/ /www.thrysoee.dk/editline

We recommend GNU readline because it’s easier to use and has full UTF-8 support, but
in some situations BSD editline/libedit may be preferable for license reasons or because
it’s what the operating system provides. Note that in either case Pure programs using this
module are subject to the license terms of the library that you use (GPLv3+ in case of GNU
readline, BSD license in the case of BSD editline/libedit).

Normally, you should choose the same library that you use with the Pure interpreter, to
avoid having two different versions of the library linked into your program. (This doesn’t
matter if you only use this module with batch-compiled scripts, though, since the Pure run-
time doesn’t depend on readline in any way.) By default, the module will be built with GNU
readline. To select editline/libedit instead, you only have to uncomment a line at the be-
ginning of the Makefile. Also, you might want to check the beginning of readline.c for the
proper location of the corresponding header files.

The module provides the following functions:

readline prompt
Read a line of input from the user, with prompting and command line editing. Returns

371

mailto:aggraef@gmail.com
https://bitbucket.org/purelang/pure-lang/downloads/pure-readline-0.2.tar.gz
https://bitbucket.org/purelang/pure-lang/downloads/pure-readline-0.2.tar.gz
http://tiswww.tis.case.edu/~chet/readline/rltop.html
http://www.thrysoee.dk/editline

Pure Language and Library Documentation, Release 0.59

the input line (with the trailing newline removed), or NULL when reaching end of file.

add_history line
Adds the given line (a string) to the command history.

clear_history
Clears the command history.

read_history fname

Reads the command history from the given file. Note that this in fact adds the con-
tents of the history file to the current history, so you may want to call clear_history

beforehand if this function is called multiple times.

write_history fname
Writes the current command history to the given file.

Example:

> using readline;

> readline "input> ";

input> Hello, world!

"Hello, world!"

> add_history ans;

()

> readline "input> ";

input> <EOF>

#<pointer 0x0>
write_history "history"; // save the history

>

0

> clear_history;

> read_history "history"; // read the history
0

372

7 pure-readline

Chapter

pure-sockets: Pure Sockets Interface

Version 0.6, January 28, 2014
Albert Grif <aggraef@gmail.com>

This is an interface to the Berkeley socket functions. It provides most of the core functionality,
so you can create sockets for both stream and datagram based protocols and use these to
transmit messages. Unix-style file sockets are also available if the host system supports
them.

8.1 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
sockets-0.6.tar.gz.

Run make to compile the module and sudo make install to install it in the Pure library
directory. To uninstall the module, use sudo make uninstall. There are a number of other
targets (mostly for maintainers), please see the Makefile for details.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually. In particular, nake install prefix=/usr sets
the installation prefix, and make PIC=-fPIC or some similar flag might be needed for com-
pilation on 64 bit systems. You can also set custom compilation options with the CFLAGS
variable, e.g.: make CFLAGS=-03. Again, please see the Makefile for details.

8.2 Usage

To use the operations of this module, put the following in your Pure script:

using sockets;

373

mailto:aggraef@gmail.com
https://bitbucket.org/purelang/pure-lang/downloads/pure-sockets-0.6.tar.gz
https://bitbucket.org/purelang/pure-lang/downloads/pure-sockets-0.6.tar.gz

Pure Language and Library Documentation, Release 0.59

With the sockets module loaded, all the standard socket functions are available and work
pretty much like in C. The only real difference is that, for convenience, functions taking
socket addresses as parameters (struct_sockaddr* pointers in Pure), are called without the
addrlen parameter; the size of the socket address structure will be inferred automatically
and passed to the underlying C functions. Also, there are some convenience functions which
act as wrappers around getaddrinfo and getnameinfo to create socket addresses from sym-
bolic information (hostname or ip, port names or numbers) and return information about
existing address pointers, see Creating and Inspecting Socket Addresses below.

Below is a list of the provided functions. Please see the corresponding manual pages for
details, and check the Pure scripts in the examples subdirectory for some examples.

8.2.1 Creating and Inspecting Socket Addresses

These functions are Pure-specific. The created socket addresses are malloc’ed and free them-
selves automatically when garbage-collected.

sockaddr ()
Create a pointer to an empty socket address suitable to hold the socket address result
of routines like accept, getsockname, recvfrom, etc. which return a socket address.

sockaddr ([int family,] char *path)
Create a local (a.k.a. file) socket address for the given pathname. The family param-
eter, if specified, must be AF_UNIX here. Please note that AF_UNIX is not supported on
all platforms. You can check for this by testing the HAVE_AF_UNIX constant, which is a
truth value specifying whether AF_UNIX is available on your system.

sockaddr ([int family,] char *host, char *port)

sockaddr ([int family,] char *host, int port)
This uses getaddrinfo to retrieve an AF_INET or AF_INET6 address for the given host-
name (or numeric IP address in string form) and port (specified either as an int or a
string). If family is omitted, it defaults to AF_UNSPEC which matches both AF_INET and
AF_INET6 addresses.

sockaddrs ([int family,] char *host, char *port)
sockaddrs ([int family,] char *host, int port)
This works like sockaddr above, but returns a list with all matching addresses.

sockaddr_family addr
Returns the address family of the given address.

sockaddr_path addr
Returns the pathname for AF_UNIX addresses.

sockaddr_hostname addr
Returns the hostname if available, the IP address otherwise.

sockaddr_ip addr
Returns the IP address.

374 8.2 Usage

Pure Language and Library Documentation, Release 0.59

sockaddr_service addr
Returns the service (a.k.a. port) name.

sockaddr_port addr
Returns the port number.

sockaddr_info addr
Returns a readable description of a socket address, as a (family,hostname,port) tu-
ple. You should be able to pass this into sockaddr again to get the original address.

8.2.2 Creating and Closing Sockets

socket domain type protocol

Creates a socket for the given protocol family (AF_UNIX, AF_INET or AF_INET6), socket
type (SOCK_STREAM, SOCK_DGRAM, etc.) and protocol. Note that on Linux we also sup-
port the SOCK_NONBLOCK (non-blocking) and SOCK_CLOEXEC (close-on-exec) flags which
can be or’ed with the socket type to get sockets with the corresponding features. The
protocol number is usually 0, denoting the default protocol, but it can also be any of
the prescribed IPPROTO constants (a few common ones are predefined by this module,
try show -g IPPROTO_x for a list of those).

socketpair domain type protocol sv
Create a pair of sockets. The descriptors are returned in the integer vector sv passed in
the last argument.

shutdown fd how
Perform shutdown on a socket. The second argument should be one of SHUT_RD,
SHUT_WR and SHUT_RDWR.

closesocket fd
This is provided for Windows compatibility. On POSIX systems this is just close.

8.2.3 Establishing Connections

accept sockfd addr
bind sockfd addr
connect sockfd addr

listen sockfd backlog

8.2.4 Socket /0

recv fd buf len flags
send fd buf len flags
recvfrom fd buf len flags addr

8.2.2 Creating and Closing Sockets 375

Pure Language and Library Documentation, Release 0.59

sendto fd buf len flags addr

The usual send/recv flags specified by POSIX (MSG_EOR, MSG_00B, MSG_PEEK, MSG_WAITALL)
are provided. On Linux we also support MSG_DONTWAIT. Note that on POSIX systems you
can also just fdopen the socket descriptor and use the standard file I/O operations from the
system module instead.

8.2.5 Socket Information

getsockname fd addr
getpeername fd addr
getsockopt fd level name val len
setsockopt fd level name val len

For getsockopt and setsockopt, currently only the SOL_SOCKET level is defined (level ar-
gument) along with the available POSIX socket options (name argument). Try show -g SO_*
to get a list of those. Also note that for most socket level options the val argument is actually
an intx*, so you can pass a Pure int vector (with len = SIZEOF_INT) for that parameter.

8.3 Example

Here is a fairly minimal example using Unix stream sockets. To keep things simple, this does
no error checking whatsoever and just keeps sending strings back and forth. More elaborate
examples can be found in the examples directory in the sources.

using sockets, system;

const path = "server_socket";
extern int unlink(char xname);

server = loop with
loop = loop if ~null s && ~response fp s when
// Connect to a client.
cfd = accept fd $ sockaddr ();
// Open the client socket as a FILEx and read a request.
fp = fdopen cfd "r+"; s = fgets fp;
end;
loop = puts "server is exiting" $$ closesocket fd $$
unlink path $$ () otherwise;
response fp s::string = s=="quit\n" when
// Process the request. (Here we just print the received
// message and echo it back to the client.)
printf "server> %s" s;
fputs s fp;
end;
end when

376 8.3 Example

Pure Language and Library Documentation, Release 0.59

// Create the server socket and start listening.
unlink path;
fd = socket AF_UNIX SOCK_STREAM 0;
bind fd (sockaddr path); listen fd 5;
printf "server listening at ’%s’\n" path;
end;

client = loop with
// Keep reading requests from stdin.
loop = loop if ~null s && ~request s when
fputs "client> " stdout; s = fgets stdin;
end;
loop = puts “"client is exiting" $$ () otherwise;
request s::string = s=="quit\n" when
fd = socket AF_UNIX SOCK_STREAM 0;
connect fd (sockaddr path);
// Send the request to the server.
fp = fdopen fd "r+"; fputs s fp;
// Get the reply.
s = fgets fp;
end;
end;

To use this example, run the server function in one instance of the Pure interpreter and the
client function in another. Enter a line when the client prompts you for input; it will be
printed by the server. Behind the scenes, the server also sends the line back to the client.
After receiving the reply, the client prompts for the next input line. Entering end-of-file at
the client prompt terminates the client but keeps the server running, so that you can start
another client and reconnect to the server. Entering just quit in the client terminates both
server and client. Here is how a typical interaction may look like:

> client;

client> 1+1
client> foo bar
client> quit
client is exiting

()

> server;

server listening at ’'server_socket’
server> 1+1

server> foo bar

server> quit

server is exiting

()

Note that while the server processes requests sequentially, it accepts connections from a new
client after each request, so that you can run as many clients as you like.

8.3 Example 377

Pure Language and Library Documentation, Release 0.59

378 8.3 Example

Chapter

pure-stidict

Version 0.7, February 03, 2014
Albert Graef <aggraef@gmail.com>

This package provides a light-weight, no frills interface to the C++ dictionary containers map
and unordered_map. The st1dict module makes these data structures available in Pure land
and equips them with a (more or less) idiomatic Pure container interface.

The C++ containers are part of the standard C++ library, see the C++ standard library docu-
mentation for details. They were originally based on the Standard Template Library, so they
are also sometimes referred to as “STL containers”; hence the name of this package.

9.1 Copying

Copyright (c) 2011 by Albert Graef.

pure-stldict is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-stldict is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

9.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
stldict-0.7 tar.gz.

379

mailto:aggraef@gmail.com
http://en.cppreference.com/w/cpp
http://en.cppreference.com/w/cpp
http://www.sgi.com/tech/stl/
http://www.gnu.org/licenses/
https://bitbucket.org/purelang/pure-lang/downloads/pure-stldict-0.7.tar.gz
https://bitbucket.org/purelang/pure-lang/downloads/pure-stldict-0.7.tar.gz

Pure Language and Library Documentation, Release 0.59

Run make to compile the modules and make install (as root) to install them in the Pure
library directory. This requires GNU make, and of course you need to have Pure (and a C++
library which includes the STL) installed.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually, please check the Makefile for details.

Note: This module requires Pure 0.50 or later and a recent version of the C++ library (GNU
libstdc++ v3 has been tested). All proper C++11 libraries should work out of the box, while
(recent) C++0x implementations may require some fiddling with the sources and/or the
compilation options. Pre C++0x library versions surely require considerably more work,
especially in the hashdict module.

9.3 Usage

After installation, you can use the operations of this package by placing the following import
declaration in your Pure programs:

using stldict;

This imports the whole shebang. If you only need either the hashed or the ordered dictio-
naries, you can also import the corresponding modules separately, i.e.:

using hashdict;
or:

using orddict;

9.4 Types

In Pure land, the C++ map and unordered_map containers and their multimap variants are
made available as a collection of four data structures:

type hashdict

type hashmdict
Hashed (unordered) dictionary data structures. These work with arbitrary key (and
value) types, like the hashed dictionary and set data structures in the standard library,
and can be found in the hashdict.pure module.

type orddict

type ordmdict
Ordered dictionary data structures. These require the keys to be ordered by the stan-
dard < predicate, like the ordered dictionary and set data structures in the standard
library, and can be found in the orddict.pure module.

380 9.4 Types

Pure Language and Library Documentation, Release 0.59

Note that hashdict and hashmdict differ in that the former has exactly one key-value asso-
ciation for each key in the dictionary, while the latter is a “multidict” which allows multiple
values to be associated with a key. The same applies to the orddict and ordmdict types.

In addition, there are various supertypes which correspond to different unions of the hashed
and ordered dictionary types. These are:

type hashxdict
type ordxdict
Denotes any kind of hashed or ordered dictionary, respectively.

type stldict
type stlmdict
Denotes any kind of singled-valued or multi-valued dictionary, respectively.

type stlxdict
Denotes any kind of dictionary.

For instance, you can use hashxdict to match both hashdict and hashmdict values. Like-
wise, stlmdict matches both hashmdict and ordmdict values. To match any kind of dictio-
nary, use the stlxdict type.

These data structures are very thin wrappers around the C++ container types; in fact, they
are just pointers to the C++ containers. Memory management of these objects is automatic,
and customizable pretty-printing is provided as well.

All data structures offer most of the usual Pure container interface (as well as some exten-
sions). In contrast to the standard library dictionaries, they can be used both as dictionaries
(holding key => value pairs) and sets (holding only keys, without associated values), even
at the same time.

The other important difference to the standard library containers is that the stldict containers
are mutable data structures; inserting and deleting members really modifies the underlying
C++ containers. (However, it is possible to take copies of the containers in situations where
it’s necessary to preserve value semantics.)

9.5 Operations

All types of dictionaries are simply pointers to the corresponding C++ containers which
hold key-value associations where both keys and values may be arbitrary Pure expressions.
The basic operations described below can be used to create, query and modify these objects.
Comparisons of dictionaries are implemented as well, and the set-like operations let you
combine dictionaries in different ways. These operations provide an interface similar to the
usual Pure container APL

In addition, the stldict module provides some list-like operations on dictionaries, so that
the member data can be processed and aggregated in a convenient fashion (including the
ability to use dictionaries as generators in list and matrix comprehensions), and there’s also
an interface to C++ iterators which enables you to traverse, inspect and modify the contain-
ers in a more C++-like way. Some low-level operations are available to access information

9.5 Operations 381

Pure Language and Library Documentation, Release 0.59

about the underlying hash table of a hashed dictionary. Last but not least, the module also
offers some operations to customize the pretty-printing of dictionary values.

When working with these data structures, please note the following special properties of this
implementation:

¢ All dictionary types are mutable. Inserting and deleting members really modifies the

9.5.1

underlying C++ data structure as a side effect of the operation. If you need value
semantics, you should probably use one of the dictionary or set data structures from
the standard Pure library instead. Another possibility is to take a copy of a hashdict
using the copy function if you need to preserve the original value.

Keys in a hashed dictionary may be stored in an apparently random order (not nec-
essarily in the order in which they were inserted), while they are guaranteed to be in
ascending order (by key) for ordered dictionaries. However, note that even in the latter
case, the order of different members for the same key in a multi-valued dictionary is
not specified. This must be taken into account when comparing dictionaries, see below.
The order of members in a dictionary also matters when listing data from a container
using, e.g., the members, keys and vals operations.

Two dictionaries are considered syntactically equal iff they contain the same elements
in exactly the same order, using syntactic equality on both the keys and the associated
values. This test can always be done in linear time, but is of limited usefulness for
most kinds of dictionaries, since the exact order of members in the dictionary may
vary depending on how the dictionary was constructed. Semantic equality operations
are provided which check (albeit at the cost of increased running time) whether two
containers contain the same members irrespective of element order, using semantic
equality on the members. Various subset comparisons are provided as well, please
check the Comparisons section for details.

Values in a dictionary can be omitted, so that a dictionary can also be used as a set data
structure. This obviates the need for a separate set data structure at the cost of some
(small) increase in memory usage. Also note that you can’t really have a hash pair x=>y
as a member of a set, since it always denotes a key-value association. As a remedy, you
may use ordinary pairs (x,y) instead.

Basic Operations

hashdict xs
hashmdict xs
orddict xs
ordmdict xs

Create a dictionary of the corresponding type from a list, tuple or vector of its mem-
bers. Members can be specified as hash pairs x=>y to denote a key-value association.
Any other kind of value denotes a singleton key without associated value. Note that
the ordered dictionaries require that the keys be ordered, i.e., the < predicate must be
defined on them.

382

9.5 Operations

Pure Language and Library Documentation, Release 0.59

The same operations can also be used to construct a dictionary from another dictionary
of any type. If the given dictionary is already of the corresponding type, this is a no-op
(if you want to copy the dictionary instead, use the copy function below). Otherwise
the given dictionary is converted to a new dictionary of the desired target type.

mkhashdict y xs

mkhashmdict y xs

mkorddict y xs

mkordmdict y xs
Create a dictionary from a list of keys and a constant value. The resulting dictionary
has the given keys and y as the value for each key.

copy m
Create a new dictionary with the same type and content as m. This is useful if you
want to preserve value semantics when using destructive update operations such as
insert and delete. In such a case, copy can be used to take a copy of the dictionary
beforehand, so that the original dictionary remains unmodified.

Note: This operation needs linear time with respect to the size of the dictionary (i.e.,
its number of members). If logarithmic update times are needed while still preserv-
ing value semantics, you should use the dictionary and set data structures from the
standard library instead.

hashdictp m
hashmdictp m
orddictp m
ordmdictp m
Check whether the argument is a dictionary of the corresponding type.

hashxdictp m
ordxdictp m
stldictpm
stlmdictp m
stlxdictpm
Check whether the argument is a dictionary of the corresponding supertype.

#m
The size of a dictionary (the number of members it contains).

m! x
Get the value stored under key x in the dictionary m. This may be x itself if x is a mem-
ber of mbut has no associated value. In the case of a multidict this actually returns a list
of values (which may be empty if m doesn’t contain x). Otherwise an out_of_bounds
exception is thrown if m doesn’t contain x.

null m
Test whether mis empty, i.e., has zero members.

member m x

9.5.1 Basic Operations 383

Pure Language and Library Documentation, Release 0.59

Test whether m contains a member with key x.

members m

listm
Return the list of members of m. The member list will be in an apparently random
order in the hashed dictionary case, while it is guaranteed to be in ascending order
(by key) for ordered dictionaries. The same order is also used for the other inspection
operations below.

stream m
Like list, but the member list is returned as a lazy list (cf. Lazy Evaluation and Streams)
whose members will be computed on the fly as the list is being traversed; cf. Iterators.

tuplem
vector m
Return the members as a tuple or vector.

keys m
Return the list of keys in the dictionary.

vals m
Return the list of corresponding values. In the case of a singleton key x without asso-
ciated value, x itself is returned instead.

As already mentioned, the following modification operations are destructive, i.e., they actu-
ally modify the underlying dictionary data structure. If this is not desired, you'll first have
to take a copy of the target dictionary, see copy.

insert m x

insert m (x=>y)

update m x y
Insert a singleton key x or a key-value pair x=>y into m and return the modified dictio-
nary. This always adds a new member in a multidict, otherwise it replaces an existing
value if there is one. update is provided as a fully curried version of insert, so update
m x y behaves exactly like insert m (x=>y).

delete m x

delete m (x=>y)
Remove the key x or the specific key-value pair x=>y from m (if present) and return the
modified dictionary. In the multidict case, only the first member with the given key x
or key-value pair x=>y is removed.

clear m
Remove all members from m, making m an empty dictionary. Returns ().

9.5.2 Comparisons

The usual comparison predicates (==, ~=, <=, < etc.) are defined on all dictionary types, where
two dictionaries are considered “equal” (m1==m2) if they both contain the same key=>value
pairs, and ml<=m2 means that ml is a sub-dictionary of m2, i.e., all key=>value pairs of ml

384 9.5 Operations

Pure Language and Library Documentation, Release 0.59

are also contained in m2 (taking into account multiplicities in the multidict case). Ordered
dictionaries compare keys using equality (assuming two keys a and b to be equal if neither
a<b nor b<a holds), while hashed dictionaries check for syntactical equality (using ===). The
associated values are compared using the == predicate if it is defined, falling back to syntactic
equality otherwise.

The module also defines syntactic equality on all dictionary types, so that two dictionaries
of the same type are considered syntactically equal iff they contain the same (syntactically
equal) members in the same order. This is always guaranteed if two dictionaries are “iden-
tical” (the same C++ pointer), but generally the member order will depend on how the dic-
tionary was constructed. Thus if you need to check that two dictionaries contain the same
members irrespective of the order in which the members are listed, the semantic equality
operation == should be used instead; this will also handle the case of mixed operand types.

Note that if you really need to check whether two dictionaries are the same object rather
than just syntactically equal, you'll have to cast them to generic C pointers before comparing
them with ===. This can be done with the following little helper function:

same_dict x y = pointer_cast "void*" x === pointer_cast "voidx" y;

9.5.3 Set-Like Operations

These operations work with mixed operand types, promoting less general types to more
general ones (i.e., ordered to hashed, and single-valued to multi-valued dictionaries). The
result is always a new dictionary, leaving the operands unmodified.

ml+m2
Sum: m1+m2 adds the members of m2 to m1.

ml - m2
Difference: m1-m2 removes the members of m2 from m1l.

ml * m2
Intersection: m1xm2 removes the members notf in m2 from ml.

9.5.4 List-Like Operations
The following operations are all overloaded so that they work like their list counterparts,
treating their dictionary argument as if it was the member list of the dictionary:

® do, map, catmap, listmap, rowmap, rowcatmap, colmap, colcatmap

e all, any, filter, foldl, foldll, foldr, foldrl, scanl, scanll, scanr, scanrl, sort

Note that this includes the generic comprehension helpers listmap, catmap et al, so that
dictionaries can be used as generators in list and matrix comprehensions as usual (see below
for some examples).

9.5.3 Set-Like Operations 385

Pure Language and Library Documentation, Release 0.59

9.5.5 lterators

These operations give direct access to C++ iterators on dictionaries which let you query the
elements and do basic manipulations of the container. The operations are available in the
stldict namespace.

The iterator concept is somewhat alien to Pure and there are some pitfalls (most notably,
destructive updates may render iterators invalid), but the operations described here are still
useful in some situations, especially if you need to speed up sequential accesses to large con-
tainers or modify values stored in a container in a direct way. They are also used internally
to compute lazy member lists of containers (stream function).

You should only use these directly if you know what you are doing. In particular, make sure
to consult the C++ standard library documentation for further details on C++ iterator usage.

The following operations are provided to create an iterator for a given dictionary.

stldict::beginm

stldict::end m
Return iterators pointing to the beginning and the end of the container. (Note that
stldict::end must always be specified in qualified form since end is a keyword in the
Pure language.)

stldict::find mx
Locates a key or specific key=>value pair x in the container and returns an iterator
pointing to the corresponding member (or stldict::end mif m doesn’t contain x).

Note that these operations return a new iterator object for each invocation. Also, the cre-
ated iterator object keeps track of the container it belongs to, so that the container isn’t
garbage-collected while the iterator is still being used. However, removing a member from
the container (using either delete or stldict::erase) invalidates all iterators pointing to
that member; the result of trying to access such an invalidated iterator is undefined (most
likely your program will crash).

Similar caveats also apply to the stream function which, as already mentioned, uses iterators
internally to implement lazy list traversal of the members of a dictionary. Thus, if you delete
a member of a dictionary while traversing it using stream, you better make sure that this
member is not the next stream element remaining to be visited; otherwise bad things will

happen.

The following operations on iterators let you query and modify the contents of the underly-
ing container:

stldict::dicti
Return the dictionary to which i belongs.

stldict::endpi
Check whether the iterator i points to the end of the container (i.e., past the last ele-
ment).

stldict::nexti
Advance the iterator to the next element. Note that for convenience, in contrast to the

386 9.5 Operations

http://en.cppreference.com/w/cpp

Pure Language and Library Documentation, Release 0.59

corresponding C++ operation this operation is non-destructive. Thus it actually creates
a new iterator object, leaving the original iterator i unmodified. The operation fails if i
is already at the end of the container.

stldict::geti
Retrieve the key=>val pair stored in the member pointed to by i (or just the key if there
is no associated value). The operation fails if i is at the end of the container.

stldict::putiy
Change the value associated with the member pointed to by i to y, and return the new
value y. The operation fails if i is at the end of the container. Note that stldict::put
only allows you to set the associated value, not the key of the member.

stldict::erasei
Remove the member pointed to by i (this invalidates i and all other iterators pointing
to this member). The operation fails if i is at the end of the container.

i==j

=
Semantic equality of iterators. Two iterators are considered equal (i == j)if i and j
point to the same element in the same container, and unequal (i ~= j) if they don't.
(In contrast, note that iterators are in fact just pointers to a corresponding C++ data
structure, and thus syntactical equality (i === j) holds only if two iterators are the
same object.)

9.5.6 Low-Level Operations

The hashdict module also provides a few specialized low-level operations dealing with
the layouts of buckets and the hash policy of the hashdict and hashmdict containers, such
as bucket_count, load_factor, rehash etc. These operations, which are all kept in their
own separate hashdict namespace, are useful to obtain performance-related information
and modify the setup of the underlying hash table. Please check the hashdict.pure module
and the C++ standard library documentation for further details.

9.5.7 Pretty-Printing

By default, dictionaries are pretty-printed in the format somedict xs, where somedict is the
actual construction function such as hashdict, orddict, etc., and xs is the member list of the
dictionary. This is usually convenient, as the printed expression will evaluate to an equal
container when reentered as Pure code. However, it is also possible to define your own
custom pretty-printing with the following function.

hashdict_symbol f

hashmdict_symbol f

orddict_symbol f

ordmdict_symbol f
Makes the pretty-printer use the format f xs (where xs is the member list) for printing
the corresponding type of dictionary.

9.5.6 Low-Level Operations 387

http://en.cppreference.com/w/cpp

Pure Language and Library Documentation, Release 0.59

Note that f may also be an operator symbol (nonfix and unary symbols work best). In the
case of an outfix symbol the list brackets around the members are removed; this makes it
possible to render the container in a format similar to Pure’s list syntax. For instance:

> using stldict;

> outfix {$ $};

> orddict_symbol ({$ $3});
()

> orddict (1..5);
{$1,2,3,4,5%}

See orddict_examp.pure included in the distribution for a complete example which also
discusses how to make such a custom print representation reparsable.

9.6 Examples

Some basic examples showing hashdict in action:

> using stldict;

> let m = hashdict [foo=>99, bar=>bar 4711L, baz=>1..5]; m;
hashdict [foo=>99,bar=>bar 4711L,baz=>[1,2,3,4,5]]
> m!bar;

bar 4711L

> keys m;

[foo,bar,baz]

> vals m;

[99,bar 4711L,[1,2,3,4,5]]

> list m;

[foo=>99,bar=>bar 4711L,baz=>[1,2,3,4,5]]

> member m foo, member m bar;

1,1

Hashed multidicts (hashmdict):

> let m = hashmdict [fo0=>99,baz=>1..5,baz=>bar 4711L]; m;
hashmdict [foo0o=>99,baz=>[1,2,3,4,5],baz=>bar 4711L]

> m!baz;

[[1,2,3,4,5],bar 4711L]

> m!foo;

[99]

The following example illustrates how to employ ordered dictionaries (orddict) as a set data
structure:

> let ml = orddict [5,1,3,11,3];
> let m2 = orddict (3..6);
> ml;m2;

orddict [1,3,5,11]
orddict [3,4,5,6]

> ml+m2;

orddict [1,3,4,5,6,11]

388 9.6 Examples

Pure Language and Library Documentation, Release 0.59

> ml-m2;

orddict [1,11]

> ml*m2;

orddict [3,5]

> mlxm2 <= ml, mlxm2 <= m2;
1,1

> ml < ml+m2, m2 < ml+m2;
1,1

Of course, the same works with ordered multidicts (ordmdict):

> let ml = ordmdict [5,1,3,11,3];
> let m2 = ordmdict (3..6);

> ml;m2;

ordmdict [1,3,3,5,11]

ordmdict [3,4,5,6]

> ml+m2;

ordmdict [1,3,3,3,4,5,5,6,11]

> ml-m2;

ordmdict [1,3,11]

> mlxm2;

ordmdict [3,5]

> mlkm2 <= ml, ml*m2 <= m2;
1,1

> ml < ml+m2, m2 < ml+m2;
1,1

In fact, the binary operations (comparisons as well as the set operations +, - and *) work
with any combination of dictionary operands:

> let ml = hashdict (1..5);

> let m2 ordmdict (3..7);

> ml+m2;

hashmdict [1,2,3,3,4,4,5,5,6,7]

Note that the operands are always promoted to the more general operand type, where
hashed beats ordered and multi-valued beats single-valued dictionaries. If this is not what
you want, you can also specify the desired conversions explicitly:

> ml+orddict m2;

hashdict [1,2,3,4,5,6,7]

> orddict ml+m2;

ordmdict [1,2,3,3,4,4,5,5,6,7]

Also note that the “set” operations not only work with proper sets, but also with general
dictionaries:

> hashdict [i=>i+1]|i=1..4]+hashdict [i=>i-1|i=3..5];
hashdict [1=>2,2=>3,3=>2,4=>3,5=>4]

All dictionary containers can be used as generators in list and matrix comprehensions:

9.6 Examples 389

Pure Language and Library Documentation, Release 0.59

> let m = hashmdict [f00=>99,baz=>1..5,baz=>bar 4711L];
> [xy | x=>y =m];

[foo 99,baz [1,2,3,4,5],baz (bar 4711L)]

> {{x;y} | x=>y = m};

{foo,baz,baz;99,[1,2,3,4,5],bar 4711L}

Note that in the current implementation this always computes the full member list of the
dictionary as an intermediate value, which will need considerable extra memory in the case
of large dictionaries. As a remedy, you can also use the stream function to convert the
dictionary to a lazy list instead. This will often be slower, but in the case of big dictionaries
the tradeoff between memory usage and execution speed might be worth considering. For
instance:

> let m = hashdict [foo i => 1 | 1 = 1..10000];
> stream m;

(foo 1512=>1512) :#<thunk 0x7fal718350a8>
> stats -m

> #list m;

10000

0.01s, 40001 cells

> #stream m;

10000

0.1s, 16 cells

> #[y | x=>y =m; gcd y 767~=1];

925

0.05s, 61853 cells

> #[y | x=>y = stream m; gcd y 767~=1];
925

0.15s, 10979 cells

390 9.6 Examples

o 10

pure-stllib

Version 0.5, January 28, 2014
Peter Summerland <p.summerland@gmail.com>

pure-stllib is an “umbrella” package that contains a pair of Pure addons, pure-stlvec and pure-
stlmap. These addons provide Pure interfaces to a selection of containers provided by the
C++ Standard Library, specialized to hold pointers to arbitrary Pure expressions. pure-stlvec
is a Pure interface to C++’s vector and the STL algorithms that act on them. pure-stimap is an
interface to six (of the eight) of C++’s associative containers: map, set, multimap, multiset,
unordered_map and unordered_set.

10.1 Copying

Copyright (c) 2011-2012 by Peter Summerland <p.summerland@gmail.com>.

All rights reserved.

pure-stllib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE.

pure-stllib is distributed under a BSD-style license, see the COPYING file for details.

391

mailto:p.summerland@gmail.com
http://purelang.bitbucket.org
http://en.cppreference.com/w/cpp
mailto:p.summerland@gmail.com

Pure Language and Library Documentation, Release 0.59

10.2 Installation

pure-stllib-0.5 requires at least Pure 0.50. The latest version of Pure is available at
http:/ /code.google.com/p/pure-lang/downloads/list.

The latest version of the source code for pure-stllib can be downloaded from
https:/ /bitbucket.org/purelang/pure-lang /downloads/pure-stllib-0.5.tar.gz.

To install pure-stllib-0.5 (on Linux), extract the source code (e.g., tar -xzf pure-stllib-
0.5.tar.gz), cd to the pure-stllib-0.5 directory, and run make. After this you can (and should)
also run make check torun a few unit tests to make sure that pure-stlvec and pure-stimap work
properly on your system. If make check works, run sudo make install to install pure-stivec
and pure-stlmap. Run sudo make uninstall to remove them.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually. In particular, make install prefix=/usr sets
the installation prefix. Please see the Makefile for details.

10.3 Usage

pure-stlvec provides functions that act on a single mutable container, stlvec, which is a wrap-
per around C++’s vector, specialized to hold Pure expressions. It also provides functions
that correspond to C++’s STL algorithms specialized to act on stlvecs.

pure-stlmap provides functions that act on six mutable containers, “stlmap”, “stlset”,
“stimmap”, “stlmset”, “stlhmap” and “stlhset”, that are thin wrappers around the cor-
responding associative containers provided by C++, map, set, multimap, multiset, un-
ordered_map and unordered_set, specialized to hold Pure expressions.

The functions provided by pure-stivec and pure-stimap are made available by importing one
or more of the following modules.

stlvec - support for stlvecs

stlvec::algorithms - STL algorithms specialized to act on stlvecs
stlmap - support for stimap and stlset

stlmmap - support for sttmmap and stlmset

stlhmap - support for stthmap and stlhset

10.4 Documentation

Please see the documentation for pure-stlvec and pure-stimap.

For the impatient, the functions that act on containers provided by the stlmap, stlmmap,
stlhmap and stlvec modules are summarized in a rudimentary cheatsheet, pure-stllib-
cheatsheet.pdf, which can be found in the pure-stllib/doc directory.

392 10.4 Documentation

http://code.google.com/p/pure-lang/downloads/list
https://bitbucket.org/purelang/pure-lang/downloads/pure-stllib-0.5.tar.gz

Pure Language and Library Documentation, Release 0.59

10.5 Changes

Version 0.1 - Bundle pure-stlvec-0.3 and pure-stimap-0.1.
Version 0.2 - Bundle pure-stlvec-0.3 and pure-stlmap-0.2.
Version 0.3 - Bundle pure-stlvec-0.4 and pure-stimap-0.3.

10.5 Changes 393

Pure Language and Library Documentation, Release 0.59

394 10.5 Changes

o 1 1

pure-stimap

Version 0.4, January 28, 2014
Peter Summerland <p.summerland@gmail.com>

pure-stlmap is a Pure interface to six associative containers provided by the C++ Standard
Library: map, set, multimap, multiset, unordered_map and unordered_set.

11.1 Copying

Copyright (c) 2012 by Peter Summerland <p.summerland@gmail.com>.

All rights reserved.

pure-stlmap is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

pure-stlmap is distributed under a BSD-style license, see the COPYING file for details.

11.2 Introduction

This is pure-stimap-0.1, the first release of pure-stlmap. It is possible that some of the func-
tions might be changed slightly or even removed. Comments and questions would be espe-
cially appreciated at this early stage.

395

mailto:p.summerland@gmail.com
http://purelang.bitbucket.org
http://en.cppreference.com/w/cpp
http://en.cppreference.com/w/cpp
mailto:p.summerland@gmail.com

Pure Language and Library Documentation, Release 0.59

11.2.1 Supported Containers

The Standard C++ Containers Library, often refered to as the standard template library
(“STL”), provides templates for generic containers and generic algorithms. pure-stimap
provides six mutable containers, “stlmap”, “stlset”, “stimmap”, “stlmset”, “stlhmap” and
“stlhset”, that are thin wrappers around the corresponding associative containers provided
by the STL, map, set, multimap, multiset, unordered_map and unordered_set, specialized
to hold pure-expressions. pure-stimap does not provide wrappers for unordered_multimap

and unordered_multiset.

11.2.2 Interface

pure-stlmap provides a “key-based” interface that can be used to work with the supported
STL containers in a way that should feel natural to Pure programmers. For example, the
(") function can be used to access values associated with keys and functions like map, foldl,
filter and do can be used to operate on all or part of a container’s elements without using
an explict tail recursive loop. In addition, for the ordered containers, stimap, sttmmap, stlset
and stlmset, pure-stimap provides an “interator-based” interface that corresponds to the
C++ interface, mostly on a one-to-one basis.

The interface for the unordered or “hash table” containers, stthmap and stlhset, is limited
compared to that provided for the ordered containers. In particular iterators, operations on
subsequences (ranges) and set operations are not supported.

In some cases, the STL's associative containers have different semantics than the the associa-
tive containers provided by the Pure standard library. Where there is a conflict, pure-stlmap
follows the STL.

Many of the functions provided by pure-stlmap, such as the constructors, equivalence and
lexicographical comparison operations, insert and erase operations, and the set operations
are just thin wrappers around the the corresponding C++ functions. Users can consult the
C++ Library documentation to understand the performance characteristics and corner case
behavior of any pure-stimap function that has a corresponding function in the STL.

The C++ library is sometimes more complicated than the Pure Standard Library. For exam-
ple many of the applicable C++ functions, including set operations and tests for equality, as-
sume that the containers are lexicographically ordered. The reward for playing by the rules
(which occurs automatically for stimap and stlset) is O(n) time complexity for comparison
and set operations.

11.3 Installation

pure-stimap-0.4 is included in the “umbrella” addon, pure-stilib which is available at
http://code.google.com/p/pure-lang/downloads/list. After you have downloaded and
installed pure-stllib, you will be able to use pure-stlmap (and pure-stivec, as well).

396 11.3 Installation

http://code.google.com/p/pure-lang/downloads/list

Pure Language and Library Documentation, Release 0.59

11.4 Examples

The pure-stlmap/uts subdirectory contains Pure scripts that are used to test pure-stlmap.
These scripts contain simple tests, each of which consists of a single line of code followed by
a comment that contains the expected output. E.g.,

let sml = stlmap ["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5];
//7- ()

sml!stl::smbeg, sml!"a", sml!"d", sml!"e"
//- 1111415

catch id $ sml!"0@";
//- out_of_bounds

You might consider pasting parts of these scripts into a temporary file that you can play with
if you are curious about how something works.

Two short example programs, anagrams.pure and poly.pure, can be found in the pure-
stlmap /examples subdirectory.

11.5 Quick Start

This section introduces the basic functions you need to get up and running with pure-stlmap.
For a quick look at the other functions provided by pure-stimap, you can refer to pure-stllib-
cheatsheet.pdf, which can be found in the pure-stllib/doc directory.

11.5.1 Example Containers

The code snippets that appear in the examples that follow assume that six containers have
been created by entering the following at the prompt.

$> pure -q
> using stlmap, stlhmap, stlmmap;
> using namespace stl;

// Make some maps and sets with default characteristics

let sm = stlmap ["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5];

let shm = stlhmap ["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5];

let smm = stlmmap ["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4,"e"=>5];
let ss = stlset ["a","b","c","d","e"];

let shs = stlhset ["a","b","c","d","e"];

let sms = stlmset ["a","b","c","c","d"];

V VV VYV VYV

The using statement imports the three modules provided by pure-stimap: stlmap provides
the interface for the stlmap and stlset containers, st1mmap provides the interface the sttmmap

11.4 Examples 397

Pure Language and Library Documentation, Release 0.59

and stlmset containers, and stlhmap provides the interface to the stthmap and stlhset con-
tainers. The let statements set up an instance of each of the containers provided by pure-
stimap, loaded with some sample elements.

To save typing you can run readme-data.pure, a file that contains the corresponding source
code. It can be found in in the pure-stlmap/examples directory.

11.5.2 Constructors

You can construct empty pure-stimap containers using the emptystilmap, emptystlset,
emptystlmmap, emptystimset, emptystlhmap and emptystlhset functions.

> let sml = emptystlmap; // uses (<) to order keys

You can construct a pure-stimap container and fill it with elements all in one go using the
stlmap, stlset, stlmmap, stlmset, stlhmap and stlhset functions.

> let shml = stlhmap ["a"=>1,"b"=>2,"c"=>3];

> members shml;
[“C"=>3, Ilall=>1’ Ilbll=>2]

> smhl!"b";
2

As opposed to the hashed containers (stthmap and stlhset), the ordered containers (stlmap,
stlset, stimmap and stlmset) keep their elements ordered by key.

> let sml = stlmap ["a"=>1,"b"=>2,"c"=>3]; members sml;
[“a"=>1,"b"=>2,"C"=>3]

11.5.3 Ranges

For the ordered containers (stlmap, stlset, sttmmap and stlmset) you can work with subse-
quences, called “ranges”, of the containers” elements. A range is specified by a tuple that
consists of a container and two keys. If (sm, first_key, last_key) designates a range, the ele-
ments of the range are all of elements of the container sm whose keys are equivalent to or
greater than first_key and less than last_key. If first_key and last_key are left out of the tuple,
the range consists of all of sm’s elements.

> members sm; // no range keys - the whole container
[Ilall=>1’Ilbll=>2’llcll=>3’Ildll=>4'llell=>5]

> members (sm,"b","e"); // a range from "b" up but not including "e"
[”b"=>2,"C"=>3,"d"=>4]

> members (sm,"cl","z"); // keys do not have to be stored
[Ildll=>4' Ilell=>5]

398 11.5 Quick Start

Pure Language and Library Documentation, Release 0.59

> members shm; // works on a unordered set (with no range keys)
[“C"=>3,"d"=>4’"e“=>5'"a"=>1,“b“=>2]

Two special keys, stl::smbeg and stl::smend are reserved for use in ranges to designate
the first element in a container and the imaginary “past-end” element.

> members (sm,smbeg,"d");
[“a"=>1,"b"=>2,"C"=>3]

> members (sm,"b",smend);
[Ilbll=>2’ "C"=>3, Ildll=>4’ Ilell=>5]

Perhaps it should go without saying, but you cannot use either of these symbols as the keys
of elements stored in a pure-stimap container.

11.5.4 Inserting and Replacing Elements

You can insert elements and, for the maps (stlmap, sttmmap and stlhmap), replace the val-
ues associated with keys that are already stored in the map, using the insert, replace
and insert_or_replace functions. For the maps, the elements to inserted are specified as
(key=>value) hash-pairs.

> let sml = emptystlmap;

> insert sml ("e"=>5); // returns number of elements inserted
1

> members sml;

["e"=>5]

> replace sml "e" 15; // returns value
15

> members sml;

["e"=>15]

> catch id $ replace sml "x" 10; // replace never inserts new elements
out_of_bounds

> insert sml ("e"=>25); // insert never changes existing elements
0

> members sml;

["e"=>15]

> insert_or_replace sml ("e"=>25); // 1 value changed

1

> members sml;
[Ilell=>25]

>

The insert and insert_or_replace functions are overloaded to insert or replace elements
specified in a list, vector, stlvec or another pure-stimap container (of the same type). E.g.,

11.5.4 Inserting and Replacing Elements 399

Pure Language and Library Documentation, Release 0.59

> let sm2 = emptystimap;

> insert sm2 ["b"=>2,"a"=>1]; // insert from a list
2

> insert sm2 (sm,"c","e"); // insert from a range
2

> members sm2;
[Ilall=>1’ Ilbll=>2, "C"=>3, Ildll=>4]

> insert_or_replace sm2 {"a"=>11,"e"=>15};
2

> members sm2;
[Ilall=>11’ Ilbll=>2’ "C"=>3’ Ildll=>4’ Ilell=>15]

11.5.5 Access

If you want to see if a key is stored in a container use the member function. (A key, k, is con-
sidered to be “stored” in a container if there is an element in the container that is equivalent
to k.)

> member sm "x"; // ("x"=>val) is not an element of sm for any val

0

> member sm "a"; // ("a"=>1) is an element with key equivalent to "a"
1

The value (or values for a multi-key container) associated with a key can be accessed using
the (!) function.

> sm!"a"; // return the value associated with "a"
1

> shm!"b"; // try it with a hashed map

2

> smm!"c"; // multimap returns a the list of values associated with "c"
[31,32]

> ssl'a"; // with sets, return the key

Ilall

> sms!"c"; // with multisets, return a list of keys

["C", IICII]

If the key is not stored in the container, (!) throws an out_of_bounds exception.

400 11.5 Quick Start

Pure Language and Library Documentation, Release 0.59

> catch id $ sm!"x"; // "x" is not stored as a key in sm
out_of_bounds

Please note that all access is strictly by keys. For example you cannot use the member function

to determine if (“a”=>1) is an element stored in sm; you can only ask if the key “a” is stored
in sm.

11.5.6 Erasing Elements

For any pure-stimap container, you can use the erase function to remove all the elements
associated with a given key in the container, all of the elements in the container or, unless
the container is a stthhmap or stlhset, all of the elements in a range defined on the container.

> let shml stlhmap shm; // make some copies of maps
> let smml = stlmmap smm;
> let sml = stlmap sm;

> members smml; // smml has multiple values for "c"
[Ilall=>1’ Ilbll=>2’ "C"=>31' "C"=>32’ Ildll=>4’ Ilell=>5]

> erase (shml,"c"); // erase "c" keyed elements from a stlmmap
1
> members shml; // all the "c" keyed elements are gone

["d"=>4, ||e||=>5' ||a||=>1’ ||b||=>2]

> erase shml; // erase all elements
4

> empty shml;

1

> erase (sml,"b","d"); // erase a subsequence
2

> members sml;

["a"=>1,"d"=>4,"e"=>5]

> erase (sml,"x"); // attempt to erase something not there
0

> erase (smml,"c"); // erase all elements with key "c"

2

> members smml;
[Ilall=>1’ Ilbll=>2, Ildll=>4’ Ilell=>5]

11.5.7 Conversions

The elements of an associated container be copied into a list, vector or stlvec using the
members, stl::vectorand stlvec functions. For ordered containers (stimap, stlset, sttmmap
and stlmset) the list, vector or stlvec can be built from a range.

11.5.6 Erasing Elements 401

Pure Language and Library Documentation, Release 0.59

> members ss;
[“a","b","C","d"’"e“]

> members (ss,"b","d"); // list subsequence from "b" up to but not "d"

["b","c"]

> members (smm,"c","e");
["C"=>31' IICII=>32’ Ildll=>4]

> members (shm,"b","d"); // fails - ranges not supported for stlhmaps
stl::members (#<pointer 0x83b4908>,"b","d")

> members shm; // ok - all elements are copied
[Ildll=>4' Ilell=>5’ Ilall=>1’ Ilbll=>2’ IICII=>3]

> vector (sm,smbeg,"d");
{Ilall=>1’ Ilbll=>2’ "C"=>3}

> using stlvec;
> members $ stlvec sm;
[Ilall=>1’ Ilbll=>2’ "C"=>3, Ildll=>4’ Ilell=>5]

You can convert the contents of an ordered container (stlmap, stlset, sttmmap or stlmset) or

a range defined on one to a stream using the stream function.

> let ssl = stlhset (0..100000);
> stats -m

> let xx = drop 99998 $ scanl (+) 0 (stream ss);
0.3s, 18 cells

> list xx;
[704782707,704882705,704982704,705082704]
0s, 17 cells

11.5.8 Functional Programming

Most of the Pure list operations, including map, do, filter, catmap, foldl and foldll can be
applied to any of pure-stimap’s associative containers. E.g.,

> map (\x->x-32) shs;
[IIDII’IIEII’IIAII’IIBII,IICII]

> using system;

> do (puts . str) (sm,smbeg,"c");
Ilall=>1

Ilbll=>2

()

402 11.5 Quick Start

Pure Language and Library Documentation, Release 0.59

List comprehensions also work.

> [k-32=>v+100 | (k=>v) = smm; k>"a" && k<"e"];
[IIBII=>102’IICII=>131,IICII=>132’IIDII=>104]

> {k-32=>v+100 | (k=>v) = (smm,"b","e")};
{IIBII=>102’IICII=>131,IICII=>132'IIDII=>104}

It is highly recommended that you use the functional programming operations, as opposed
to recursive loops, whenever possible.

11.6 Concepts

This section describes pure-stimap’s containers, iterators, ranges, elements, keys, values and
how these objects are related to each other. It also describes a group of functions associ-
ated with containers that help define the container’s behavior. E.g., each ordered container
(stlmap, stlset, stimmap or stlmset) stores a function that it used to order its keys and to
determine if two keys are equivalent.

11.6.1 Containers and Elements

The six associative containers supported by pure-stimap can be grouped together in terms
of certain defining attributes.

The three “maps” provided by pure-stlmap, stlmap, stimmap and stthmap, associate values
with keys. If a value v is associated with a key, k, in an map, m, then we say that (k=>v) is
an element of m, k is a key stored in m and v is a value stored in m.

The three “sets” provided by pure-stlmap, stlset, stimset and stlhset, hold single elements,
as opposed to key value pairs. If an element e is contained a set, s, we say that e is simulta-
neously an element, key and value stored s. In other words, we sometimes speak of a set as
if it were a map where each element, key and value are the same object.

The “ordered” containers, stimap, stlset, stimmap and stlmset, each have a “key-less-than”
function that they use keep their elements in a sequence that is ordered by keys. The default
key-less-than function is (<), but this can be changed when the container is created. The ele-
ments stored in a stimap or stlset have unique keys, i.e., two elements stored in the container
will never have equivalent keys. For these purposes, two keys are “equivalent” if neither key
is key-less-than the other. In contrast, sttmmap and stlmset do not have unique keys. lLe., it
is possible for different elements stored in a sttmmap or stimset can have equivalent keys.

The “hashed” containers, sthmap and stlhset do not keep their elements in a sequence. In-
stead they store their elments in a hash table using a “key-hash” function and a “key-equal”
function. Currently the key-hash function is always hash and the key-equal function is al-
ways (===), both of which are defined in the Prelude. The elements stored in a hashed
container have unique keys. lLe., two elements stored in the container will never by “key-
equal”. At times we say that two keys stored in a hashed container are “equivalent” if they
are key-equal.

11.6 Concepts 403

Pure Language and Library Documentation, Release 0.59

The “ordered maps”, stimap and stimmap, each have a “value-less-than” function and a
“value-equal” function that is used for lexicographical comparisons. The default functions
are (<) and (==) respectively, but these can customized when the container is created.

As is the case for the underlying C++ functions, set operations (i.e., union, intersection, etc.)
and container equivalence for the ordered containers are based on lexicographical compar-
isons. For these purposes one element, el, is less than another, €2, if (a) el’s key is less-than
e2’s key and, (b) if the ordered container is a stimap or stlmap, el’s value is value-less-than
e2’s value. Finally, for purposes of determining if two ordered containers are equal, el and
e2 are considered to be equal if (a) their keys are equivalent and (b), in the case of stimap or
stimmap, their values are value-equal.

Set operations are not provided for the hashed containers, stthmap and stlhset.

11.6.2 Ranges

For the ordered containers (stlmap, stlset, sttmmap and stlmset), you can work with a sub-
sequence or “range” of a container’s elements. Given an ordered container, oc, and keys f
and I, the range (oc,f,1) consists of all of the elements in oc starting with the first element that
is not less than f up to but not including the first element that is greater or equal to 1. Note
that f and 1 do not have to be stored in oc.

> members (sm,"b","e");
[Ilbll=>2’ "C"=>3, Ildll=>4]

> members (sm,"cl",smend);
[Ildll=>4'llell=>5]

When a range is passed to a function provided by pure-stlmap, the keys can be dropped, in
which case the range consists of all of the container’s elements.

> members sm;
[Ilall=>1’ Ilbll=>2' "C"=>3, Ildll=>4’ Ilell=>5]

Please note that support for ranges is not provided for the unordered containers (stthmap
and stlhset). Most pure-stimap functions that act on ranges can, however, operate on
stlhmaps or stlhsets as well, except that, for stthmaps and stlhsets, they always operate on all
of the container’s elements. Accordingly, whenever the documentation of a function refers
to a range, and the container in question is a a stthmap or stlhset, the range simply refers to
the container itself.

11.6.3 Ilterators

The native STL interface is based on “iterators” that point to elements in containers. pure-
stlmap provides support for iterators defined on its ordered containers (stimap, sttmmap,
stlset and stlmset) but not for its unordered containers (stthmap and stlhset).

Iterators are most useful when dealing with stimmaps where elements with different values
can have equivalent keys. In most cases, it is recommended that you avoid using iterators.

404 11.6 Concepts

Pure Language and Library Documentation, Release 0.59

The functions that operate on or return iterators are discussed separately at the end of this
document.

11.6.4 Selecting Elements Using Keys

Throughout pure-stlmap, unless you resort to using iterators, you can only specify elements
and ranges of elements using keys. For example you cannot use the member function to see
if a specific key, value pair is an element of a stimap.

> members sm;
[Ilall=>1’ Ilbll=>2' "C"=>3, Ildll=>4’ Ilell=>5]

> member sm "a";
1

> catch id $ member sm (a=>1);
bad_argument

In the last line of code, member treats (a=>1) as a key. Because (a=>1) cannot be compared to
a string using (<), the ersatz key is treated as a bad argument.

This “key access only” approach can be an issue for sttmmaps and because multiple elements
can have equivalent keys. Le., given a sttmmap, smm, that containes multiple element with
keys equivalent to, say, k, which element should (!) return? pure-stimap dodges this issue
by returning all on them. Thus, for stimmap and stlmset (!) and replace work with lists of
elements associated with a given key rather than, say, the first elment with the given key.

> members smm;
[Ilall=>1’ Ilbll=>2' "C"=>31, "C"=>32, Ildll=>4] ;

> smm!"c";
"c"=>[31,32]

> replace smm "c" [31,32,33]; members smm;
["a"=>1,"b"=>2,"C"=>31,"C"=>32,"C"=>33,"d"=>4]

> replace smm "c" []; members smm;
[Ilall=>1’Ilbll=>2’lldll=>4’Ilell=>5]

If selecting and replacing lists of elements with the same key is not convenient, you can
always use iterators to track down and modify any specific element.

11.6.5 C++ Implementation

For those that want to refer to the C++ standard library documentation, stlmap
is (essentially) map<px*px*>, stlmmap is multimap<px*px*> and stlhmap is un-
ordered_map<px*,px*>, where px is defined by “typedef pure_expr px”. Le., in C++ Con-
tainers library speak, key_type is px*, mapped_type is px* and value_type is pair<px*,px*>.
This might be a bit confusing because pure-stlmap’s (key=>value) “elements” correspond

11.6.4 Selecting Elements Using Keys 405

http://en.cppreference.com/w/cpp

Pure Language and Library Documentation, Release 0.59

to C++ value_types, a pair<key_type,mapped_type>, and pure-stimap’s values correspond
to mapped_types. The C++ objects for stlset, stimset and stlhset are the same as stlmap,
stmmap and stthmap except that pure-stimap ensures that the second member of the C++
value_type pair is always NULL.

11.7 Modules

pure-stlmap provides three separate modules stlmap, stlmmap and stlhmap.

Importing any one of these modules defines the stl namespace as well as two important
symbols, stl::smbegand stl::smend.

constructor stl: :smbheg

constructor stl::smend
These symbols are used to designate the key of the first element in an ordered container
(stlmap, stlset, sttmmap or stlmset) and the key of an imaginary element that would
come immediately after the last element of in the constainer. They are used to define
ranges over the ordered containers.

Eg.,

> members sm;
[Ilall=>1’ Ilbll=>2' "C"=>3, Ildll=>4’ Ilell=>5]

> members (sm,"c",smend);
[IICII=>3’Ildll=>4’llell=>5]

11.7.1 The stihmap Module

If all you want is fast insertion and lookup, you don’t care about the order of the
elements stored in the container, and you do not want to use set operations like
stl::map_intersection, then stlhmap is probably your best choice. The supported con-
tainers, stthhmap and stlhset are simpler to use and faster than the other containers provided
by pure-stlmap.

The stlhmap module defines stthhmaps and stlhsets and provides functions for dealing with
them. You can import it by adding the following using statement to your code.

> using stlhmap;

The stlhmap module defines types two types:

type stlhmap
type stlhset

Please note that a stlhset is just a stthmap where the values associated with keys cannot be
accessed or modified. L.e., a stlhset is a specialized kind of stthmap.

406 11.7 Modules

Pure Language and Library Documentation, Release 0.59

11.7.2 The stimap Module

The stlmap module provides you with stlmaps and stlsets and the functions that op-
erate on them. Consider using these containers if you want their elements to be or-
derd by key, want to use ranges or if you are using any set operations (stl::map_union,
stl::map_intersection, etc).

You can import the stimap module by adding the following using statement to your code.

> using stlmap;

Importing the stimap module introduces types to describe stimap and stlset, their iterators
and ranges defined on them.

type stlmap
type stlset

type stlmap_iter
type stlmap_rng

Please note that a stlset is just a stlmap where the values associated with keys cannot be
accessed or modified. Le., a stlset is a specialized kind of stlmap. Accordingly, it is not nec-
essary, for example, to define a separate type for iterators on stlsets as opposed to iterators
on stlmaps.

11.7.3 The stimmap Module

If you need a multi-keyed container, the stlmmap module, which provides support for
stimaps and stlmsets, is your only choice. Set operations and ranges are supported, but
the semantics are more complicated than is the case for stimap and stlset. Because the keys
stored in multi-keyed containers are not unique you might have to resort to using iterators
when working with them.

You can import the stlmmap module by adding the following using statement to your code.
> using stlmmap;

Importing the stimmap module introduces types to describe sttmmap and stlmset, along
with their iterators and ranges defined on them.

type stlmmap
type stlmset

type stlmmap_iter
type stlmmap_rng

Please note that a stlmset is just a sttmmap where the values associated with keys cannot
be accessed or modified. Le., a stlmset is a specialized kind of stimmap. Accordingly, it is
not necessary, for example, to define a separate type for iterators on stlmsets as opposed to
iterators on stimmaps.

11.7.2 The stimap Module 407

Pure Language and Library Documentation, Release 0.59

11.8 Container Operations

Each of the six associative containers supported by pure-stlmap has its own set of unique
characteristics. Because of this the description of functions that operate on more than one
type of container can get a little complicated. When reading this section it might be helpful
to consult pure-stllib-cheatsheet.pdf which can be found in the pure-stlib/doc directory.

11.8.1 Container Construction

New empty ordered containers (stlmap, stlset, stitmmap and stlmset) can be constructed
using optional parameters that allow you to specify customized key-less-than functions, de-
fault values, value-less-than and value-equal functions.

mkstlmap (klt,dflt,vIt,veq)

mkstlmmap (klt,dflt,vlt,veq)
Create a new stlmap or stimmap where klt is the map’s key-less-than function. dflt is
the maps default value (used by replace_with and find_with_default). vlt is the map’s
value-compare function and veq is its value-equal function. Only k1t is required, and
the default values for dflt, vlt, veq are [], (<) and (==) respectively.

mkstlset kit
mkstlmset kit
Create a new stlset or stimset where klt is the set’s key-less-than function.

The internal lookup functions for the ordered containers (stimap, stlset, stitmmap and stlm-
set) are optimized to avoid callbacks if the container’s key-less-than function is is (>) or (<)
and the keys being compared are a pair of strings, ints, bigints or doubles.

You can create an empty associative container using default values for using emptystimap
and friends.

emptystilmap

emptystlmmap

emptystlset

emptystlmset
Create a new ordered map or set using default values. I.e., emptystlmap is the same as
mkstlmap (<), and so on.

emptystlhmap

emptystlhset
Create a new stlhmap or stlhset with default values. The hash-function is hash and the
value-equal function is (===).

Convenience functions are also provided to construct an empty container and insert ele-
ments into it in one go. The source of the elements can be a list, vector, a stlvec, or a range
defined on another container of the same type as the new container.

stlmap src
stlmmap src

408 11.8 Container Operations

Pure Language and Library Documentation, Release 0.59

stlset src

stlmset src

stlhmap src

stlhset src
Create an associative constructor using default values and insert elements from copied
from src. src can be a list, vector or stlvec of elements or a range defined over a
container of the same type as the new container. If the new container is a stlmap,
sttmmap or stlhmap, the elements of src must be (key=>val) pairs. If the new container
is a stlset, stimset or stlhset they can be any pure expression that can be used as a key
(i.e., anything except for stl::smbeg or stl::smend).

11.8.2 Information

This group of functions allows you make inquiries regarding the number of elments in a
container, the number of instances of a given key held by a container, the upper and lower
bounds of a range and other information. In addition this group includes a function that can
be used to change the number of slots used by a stthmap or stlhset.

acon
Return the number of elements in acon.

stl::empty acon
Return true if acon is empty, else false.

stl::distance rng
Returns the number of elements contained in rng where rng is a range defined on an
ordered container (stlmap, stimmap, stlset, stimset).

stl::count acon k
Returns the number of elements in an associative container, acon, that have a key that
is equivalent to k.

stl::bounds rng
Return a pair of keys, first and last, such that first <= k < last for each k, where k is the
key of an element in rng. If there is no such last, the second member of the returned
pair will be stl::smend. If first is the key of the first element of rng’s container, the
first member of the returned pair will st1: :smbeg.

Here are two examples using the stl::bounds function. Notice that bounds returns
stl::smbeg instead of “a” in the first example.

> members sm;
[Ilall=>1’ Ilbll=>2’ "C"=>3, Ildll=>4’ Ilell=>5]

> bounds sm;
stl::smbeg,stl::smend

> bounds (sm,"al","e");
Ilbll , Ilell

11.8.2 Information 409

Pure Language and Library Documentation, Release 0.59

stl::container_info acon
If acon is a stlmap or stimmap, returns (0, klt, dflt, vlt, veq) where kit is acon’s key-
less-than function, dflt is its default value, vlt is its value-less-than function and veq
is its value_equal function. If acon is a stlset or stlmset, returns (1,klt,_,_,) where
klt is acon’s key-less-than function. If acon is a stthmap or stlhset, returns (is_set,
bucket_count, load_factor, max_load_factor).

stl::bucket_size haconn
Returns the number of elements in hacon’s nth (zero-based) bucket where hacon is a
stthmap or stlhset.

stl::hmap_reserve hacon mlf size
Sets hacon’s max_load_factor to mlf, sets the number of hacon ’s buckets to
‘‘size/mlf‘’ and rehashes ‘‘hacon where hacon is a stthmap or stlhset.

11.8.3 Modification

You can insert new items or, for the maps (stimap, sttmmap and stlhmap), replace values
associated with keys using the insert, replace or insert_or_replace functions.

Please note that when working with the ordered containers (stlmap, stlset, stimmap and
stlmset) the keys of elements passed to these functions must be compatible with the con-
tainer’s key-less-than function and keys that are already inserted. E.g.,

> members ss;
[Ilall’ Ilbll’ "C", Ildll’ Ilell]

> catch id $ insert ss 1; // e.g., 1<"a" is not defined
bad_argument

Currently there is no similar restriction for stthmaps and stlhsets because (a) they do not
have a key-less-than function and (b) the function they do use for testing equality, the key-
equal function is always (===), a function that can compare any two objects.

> members shs;
[“C","d"’"e"’"a"’"b“]

> insert shs 1;

1

> members shs;
["c",1,"d","e","a","b"]

Elements can be inserted into a pure-stlmap container individually or en masse from a list,
vector, stlvec or another container of the same type. If there is a key in the container that
is equivalent to the key of the element being inserted, the element will not be inserted (un-
less the container is a sttmmap or stlmset, both of which can hold multiple elements with
equivalent keys).

insert acon src
Attempts to copy elements from src a valid “insert source” into acon which can be any

410 11.8 Container Operations

Pure Language and Library Documentation, Release 0.59

pure-stlmap container. A valid insert source is (a) a single element, (b) a list, vector,
stlvec of elements or (c), a range over an associative container of the same type as
acon. If acon is an associative map (stlmap, sttmmap or stlhmap), the src itself, or all
the elements of src, must be key value pairs of the form (k=>v). In contrast, if acon
is a stlset, stimset or stlhset, src or all of its elements can be any pure object (except
stl::smbeg or stl::smend). If acon is a stimap, stlset, stthmap or stlhset, the element
will not be inserted if its key is already stored in the target container. Returns the
number of elements inserted, if any.

If you are dealing with a stlmap or stlhmap and want to override the values of elements
have keys that equivalent to the keys of the items you wan to insert you can use the
insert_or_replace function.

insert_or_replace acon src
The same as insert except that (a) acon must be a stimap or a stthmap and (b) if an
element (key=>newval) is about to be inserted and the container already contains an
element (key=>oldval) the element in the container will be changed to (key=>newval).
Returns the number of elements inserted or updated.

replace map key x

map must be a stlmap, stimmap or stlhmap. If key is not stored in map this function
throws out_of_bounds. If map is a stlmap or stthmap and (oldkey=>oldval) is an ele-
ment of map, where oldkey is equivalent to key, change the element to (oldkey=>"x").
If map is a stimmap and key is stored in map, change the values of elements with key
eqivalent to key, one by one, to the elements of x. Add or delete elements as necessary
so that, when the smoke clears, the values of map!“’key’” are copies of the elements of x.
In all cases, if key is stored in map returns x.

Here are some examples using replace.

> members sml;
[Ilall=>1’ Ilbll=>2’ "C"=>3, Ildll=>4’ Ilell=>5]

> replace sml "e" 50;
50

> members sml;
[Ilall=>1’ Ilbll=>2' “C"=>3, Ildll=>4’ Ilell=>50]

> members smml;
[Ilall=>1’ Ilbll=>2’ IICII=>31' IICII=>32' Ildll=>4’ Ilell=>5]

> replace smml "c" [31,33,35,36] $$ smml!"c";
[31,33,35,36]

> replace smml "c" [] $$ smml!"c";

[]

> members smml;
[Ilall=>1’ Ilbll=>2, Ildll=>4’ Ilell=>5]

11.8.3 Modification 411

Pure Language and Library Documentation, Release 0.59

replace_with fun map (k=>v)
map must be a stlmap. The effect of this function is as follows: (a) if ~ member map k then
insertmap (k‘‘=>dflt) else (), where dflt is ‘‘map’s dfltvalue, (b) replace map
k nv when nv = fun v (map!“’k’’) end. Returns map.

Here is an example using replace_with in which a sttmmap is converted to a stimap.

> let sml = emptystimap;

> members smm;
[Ilall=>1’ Ilbll=>2’ IICII=>31' IICII=>32’ Ildll=>4’ Ilell=>5]

> do (replace_with (:) sml) smm;
()

> members sml;
["a"=>[1],"b"=>[2],"c"=>[32,31],"d"=>[4], "e"=>[5]]

Here is another example in which items are counted.

> let sml = mkstlmap ((<), 0);

> members sms;
[Ilall' Ilbll' "C", "C", Ildll]

> do (\x->replace_with (+) sml (x=>1)) sms;

()

> members sml;
[Ilall=>1’ Ilbll=>1' "C"=>2, Ildll=>1]

You can remove all the elements in a container, remove all the elements equivalent to a given
key or a remove a range of elements using the erase function.

erase acon

erase (acon,k)

erase (acon,k1,k2)
The first form erases all elements in acon which can be any container provided by
pure-stimap. The second erases all elements in acon with key equivalent to k. The
third erases the elements in the range (acon,”k1”,”k2"). The third form only applys
to the ordered containers (stimap, stimmap, stlset and stlmset), not stthmap or stlh-
set (because ranges are not defined for stthmaps or stlhsets). Returns the number of
elements removed from the container.

Here are some examples using erase.

> members smm;
[Ilall=>1’ Ilbll=>2’ "C"=>31, "C"=>32, Ildll=>4’ Ilell=>5]

> erase (sm,"z");
0

> erase (smm,"c");

412 11.8 Container Operations

Pure Language and Library Documentation, Release 0.59

2

> members smm;
[Ilall=>1’ Ilbll=>2' Ildll=>4’ Ilell=>5]

> erase (smm,"b","e");
2

> members smm;;
[”a"=>1,"e"=>5]

stl::swap aconl acon2
Swaps the elements of the two containers, aconl and acon2 where aconl and acon2 are
the same type of container (E.g., both are stimaps or both are stimsets).

11.8.4 Accessing Elements

You can test if a key is stored in a container and access the value associated with a key using
the familiar member and (!) functions.

member acon k
Returns true if acon, any container provided by pure-stlmap, contains an element that
has a key that is equivalent to k.

acon ! k
If acon is not a stimmap then (a) if acon has an element with key equivalent to k return
its value, otherwise (b) throw an out_of_bounds exception. If acon is a sttmmap then
(a) if acon has as least one element with key equivalent to k return a list of values of all
the elements with key equivalent to k, otherwise (b) return an null list.

E.g.:

> sm!"c";

3

> catch id $ sm!"f"; // "f" is not stored in sm

out_of_bounds

> catch id $ sm!100; // 100 cannot be compared to strings using (<)
bad_argument

> smm!"c"; // for stlmmap, return list of values
[31,32]
> smm!"f"; // stlmmap returns null list if key is not stored

[]

You can access a sequence of elements in an ordered container (stlmap, stlset, sttmmap or
stimset) without resorting to iterators using the next_key and prev_key functions.

stl::next_key acon k

11.8.4 Accessing Elements 413

Pure Language and Library Documentation, Release 0.59

stl::prev_key acon k
acon must be a stlmap, stlset, sttmmap or stlmmap. Also if k is not stl::smbeg,
stl::smend or an element of acon an out_of_bounds exception will be throw. next_key
returns the key of the first element in acon that has a key that is greater than k. If no
such element exists or if kis st1: :smend, returns st1: : smend. prev_key returns the last
element in acon that has a key that is less that k, oz, if no such element exists, throws
an out_of_bounds exception.

For various reasons, it is very common to see a call to (!) or replace preceded by a call to
member with the same container and key. E.g.,

> bump_wc sm w = if member sm w then replace sm w (sm!w + 1)
else insert sm (w=>1);

In general, this function would require two lookups to add a new word and three lookups
to bump the count for an existing word. For the ordered containers, lookups have O(log N)
complexity which can be relatively slow for large containers.

To speed things up, each stlmap or stlset maintains a small cache of (key, C++ iterator) pairs
for recently accessed keys. During lookup, the cache is checked for a matching key, and if the
key is found, the element pointed to by the C++ iterator is used immediately. Thus, when
applied to a stlmap or stlset bump_wc will use only one O(log N) search, rather than two or
three. For these purposes, a key matches a key in the cache only if it is the same Pure object
(i.e., the test is C++ pointer equality, not Pure’s (===) or (==) functions). For example, the
following will result in two O(log N) lookups.

> if member sm "a" then sm!"a" else insert sm ("a"=>10);

Here each “a” is a distinct Pure object. The two “a”s satisfy (==) and even (===) but they are
not the same internally and the caching mechanism will not help.

Almost any pure-stlmap function that accepts a stlmap or stlset as an argument will check
the container’s cache before doing an O(log N) lookup. Currently the cache is limited to hold
only the most recently used key.

Here are some examples produced by compiling pure-stimap with a trace function that
shows caching in action.

> let a_key = "a";

> members sm;
[Ilall=>1’ Ilbll=>2’ "C"=>3, Ildll=>4’ Ilell=>5]

> member sm a_key; // a_key is not yet in the cache
1

> sm!a_key; // a_key 1is found in the cache
found iterator for: "a"

1

> replace sm a_key 10;
found iterator for: "a"

414 11.8 Container Operations

Pure Language and Library Documentation, Release 0.59

10

> sm!"a"; // "a" is a new key, not same C++ pointer as k or a_key

> let k = next_key sm a_key; // now k is in the cache, in front of a_key

found iterator for: "a

> let k1l = next_key sm k; // now k1 is at the head of the queue
found iterator for: "b"

> replace sm k1l 30;
found iterator for: "c"
30

> members sm;
[Ilall=>10’ Ilbll=>2’ "C"=>30, Ildll=>4’ Ilell=>5]

These examples show that caching can be effective wnen visiting elements of a stlmap or
stlset in order using next_key or prev_key.

11.8.5 Conversions

The contents of a pure-stimap container can be copied to a list, vector, stlvec. For stlmaps,
stlsets, sttmmaps and stlmsets, these operations act on ranges as well as on the entire con-
tainer.

members rng
Returns a list of the elments in the range, rng.

keys rng
vals rng
Return the keys and vals of the range’s elements.

Here are some examples using the members, keys and vals functions.

> members shm; // must do all of shm elements because shm is a stlhmap
[Ildll=>4’Ilell=>5’llall=>1’Ilbll=>2,llcll=>3]

> keys (sm,"b","e"); // can ask for a range - sm is an ordered container
[IIbII’IICII’IIdII]

> vals (sm,"b","e");
[2,3,4]

stl::vectorrng
Return a vector containing the elments of in the range, rng.

stlvec rng
returns a stlvec containing the elments of in the range, rng.

11.8.5 Conversions 415

Pure Language and Library Documentation, Release 0.59

You can also convert an ordered container (stlmap, stlset, stimmap or stlmset) into a stream
of elements.

stream rng
Returns a stream consisting of the range’s elements.

Here is an example using the stream function on a stimmap.

> members smm;
[Ilall=>1’ Ilbll=>2’ IICII=>31' IICII=>32’ Ildll=>4’ Ilell=>5]

> take 3 $ stream smm;
("a"=>1) :#<thunk 0xb70f438c>

> list ans;
[||a||=>1’ ||b||=>2’ ||C||=>31]

11.8.6 Functional Programming

pure-stlmap provides the most commonly used functional programming operations, imple-
mented to act on ranges as if they were lists.

do fun rng

map fun rng

filter pred rng

foldl fun x rng

foldll fun rng

foldr fun x rng

foldrl fun rng
These functions are the same as the corresponding functions provided in the Prelude
for lists. rng is a rng defined on a stlmap, stlset, sttmmap or stimset or rng is simply a
stthmap or stlhset. foldr and foldrl are not defined for stlhmaps or stlhsets.

Here are some examples.

> members sm;
[Ilall=>1’ Ilbll=>2, IICII=>3’ Ildll=>4’ Ilell=>5]

> map (\(k=>v)->k+str v) (sm,"b","e");
[IIb2II’IIC3II'IId4II]

> foldrl (\(k=>v) (ks=>sum)-> (k+ks=>v+sum)) (sm,"b","e");
Ilbcdll=>9

> filter (\(k=>v)->v mod 2) sm;
["a"=>1,"C"=>3,"e"=>5]

listmap fun rng
catmap fun rng
rowmap fun rng
rowcatmap fun rng

416 11.8 Container Operations

Pure Language and Library Documentation, Release 0.59

colmap fun rng

colcatmap fun rng
These functions are the same as the corresponding functions provided in the Prelude
for lists. rngis a rng defined on a stimap, stlset, sttmmap or stimset or simply a stthmap
or stlhset.

These functions are provided primarily to enable the use of list and matrix comprehensions
over pure-stlmap’s containers. E.g.,

> [k + str v | (k=>v) = (sm,"b","e")];
[IIb2II’IIC3II'IId4II]
> [k=>v | (k=>v) = sm; v mod 2];

[||a||=>1’ "C"=>3, Ilell=>5]

> { {k;v} | (k=>v) = sm; v mod 2};
{"a","c","e";1,3,5}

The functional programming operations work directly on the underlying data structure.

> let ints = 0..10000;

stats -m

> filter (==99) ints;
[99]

0s, 6 cells

11.8.7 Comparison

Two associative containers of the same type are considered to be equal if they contain the
same number of elements and if each pair of their corresponding elements are equal. Two
elements are equal if their keys are equivalent and, if the container is a stlmap, stlmap or
stlhmap, the values associated with equal keys are equal (using the container’s value-equal
function).

stl::map_equal rngl rng2

gl ==rng2

rngl ~=rng2
Test rngl and rng2 for equality or nonequality where rngl and rng2 are ranges defined
over containers of the same type.

You need to be careful when using these operators. E.g.,

> members ss;
["a","b","C","d"'"e"]

> let xx = stlset ss;

> XX == ss;
1

11.8.7 Comparison 417

Pure Language and Library Documentation, Release 0.59

> (XX’IIaII’IICII) - (SS’IIaII,IICII); // OOpS.’
0

The second comparison was intended to compare identical ranges and return true. It failed
to do so because (==) is defined in the Prelude to compare tuples element by element, long
before it is defined in the stimap module to compare ranges. The tuple operation take prece-
dence and determines that the tuples are not equal because xx and ss are different (pointers)
for purposes of this comparison. To avoid this issue when using ranges, you can use the
stl::map_equal function.

> map_equal (XX,”a”,”C”) (ss,"a","c"); 1

The other comparison operators (<), (<=), (>) and (>=) are provided only for the ordered
containers (stlmap, stlset, sttmmap and stlmset). These operators reflect lexicographical
comparisons of keys and, then if the keys are equal, lexicographical comparisons of val-
ues. Le., this is not set inclusion - order matters. Accordingly, these comparison operators
are not defined for a stthmap or stlhset.

rngl < rng?2
Traverse the ranges comparing pairs of elements el and e2. If el is less than e2, stop
and return true; if €2 is less than el then stop and return false. If rng1 is exhausted but
rng? is not, return true, else return false. The two ranges must be defined on ordered
associative containers of the same type.

rngl > rng?2

rngl <=rng?2

rngl >=rng?2
The these three operators are the same as rng2 < rngl, ~(rngl>"rng2’) and
~(rngl‘ ‘<" ‘rng2) respectively.

You also have to be careful when using equivalence and comparison operators with
stimmaps because elements with the same key and different values are not necessarily or-
dered by values.

> let smm2 = stlmmap ["a"=>1,"b"=>2,"c"=>32,"c"=>31,"d"=>4];

> members smm;
[Ilall=>1’ Ilbll=>2' "C"=>31, "C"=>32, Ildll=>4]

> members smm2;
[Ilall=>1’ Ilbll=>2’ IICII=>32' "C"=>31' Ildll=>4]

> smm == smm2; // probably not what you want
0

These operations do not make much sense for a stimmap unless elements with equivalent
keys are stored by value, in the order enforced by the stimmap’s value-comp function. In
this regard it is worth noting that, depending on your implementation, the insert function
may or may not preserve the order of insertion of elements with equivalent keys (C++11
does preserve the order).

418 11.8 Container Operations

Pure Language and Library Documentation, Release 0.59

11.8.8 Set Algorithms

pure-stlmap provides wrappers for the STL set algorithms that apply to ranges defined on
the four ordered associative containers (stlmap, stlset, stimmap and stlmset). These algo-
rithms are very efficient, with linear time complexity, but they do require that the elements
of the two ranges be ordered. Accordingly, the set algorithms are not applicable to stlhmap
or stlhset. Also, when dealing with stimmaps, care must be taken to ensure that items with
the equivalent keys are ordered by their values.

stl::map_merge rngl rng2
Constructs a new ordered container from rngl and then insert the elments of rng2 into
the new container and return it. rngl and rng2 must be defined on the same type of
ordered container.

stl::map_union rngl rng2

stl::map_difference rngl rng?2

stl::map_intersection rngl rng2

stl::map_symmetric_difference rngl rng2

stl::map_includes rngl rng?2
Returns a new ordered associative container of the same type as the ordered containers
underlying rngl and rng2. If the ranges are defined over a stimap or stimmap elements
of rngl have priority over the elments of rng2. Uses rngl’s key-less-than, value-less-
than and value-equal functions.

pure-stlmap’s set functions do not necessarily produce the same results as their Pure
standard library counterparts. In particular, when applied to multi-keyed contaners,
stl::map_union Produces the multiset union of its arguments while (+) in the Pure standard
library produces the multiset sum. If you want the multiset sum of a sttmmap or stthmap,
use stl::map_merge. Also, in pure-stlmap, as in the STL, the left hand map or set has prior-
ity of elements while in the Pure standard library the right hand set has priority of elements.
This can make a difference when applying set operations to a pair of stimaps or stimmaps.
E.g.,

> let smml
> let smm2

S‘tlmmap ["a"=>1,"b"=>2,"C"=>31,"C"=>32];
Stlmmap ["C"=>32,"C"=>32,“C"=>33,“d"=>4,"e"=>5];

> members $ map_merge smml smm2; // three "c"=>32
[Ilall=>1’ Ilbll=>2’ "C"=>31, "C"=>32, "C"=>32, "C"=>32, "C"=>33, Ildll=>4’ Ilell=>5]

> members $ map_union smml smm2; // two "c"=>32
["a"=>1,"b"=>2,"C"=>31,"C"=>32,"C"=>32,"C"=>33,"d"=>4,"e"=>5]

> let sml
> let sm2

stlmap ["a"=>l,"b"=>2,"C"=>31];
stlmap ["c"=>32,"d"=>4,"e"=>5];

> members $ map_union sml sm2; // "c"=>31 from sml, not "c"=>32 from sm2
["a"=>1,"b"=>2,"C"=>31,"d"=>4,"e“=>5]

> members $ map_intersection sml sm2; // "c"=>31 from sml
[IICII=>31]

11.8.8 Set Algorithms 419

Pure

Language and Library Documentation, Release 0.59

11.8.9 Direct C Calls

It is common to encounter code that (a) tests if a key is stored in a container using member
and (b) in the case of maps, retreives the value or values associated with the key using (!)
and/or (c) changes the value or values using replace. Depending on what modules have
been loaded, these functions may be heavily overloaded which can cause a small delay when
the functions are called. To avoid this, pure-stimap exposes the corresponding C functions
so that they can be called directly. The C functions have the same name as the overloaded
functions except for a prefix. E.g.,

stl:
stl:
stl:

stl:
stl:
stl:

stl:
stl:
stl:

11.9

:sm_member sm key
:sm_get sm key
:sm_put sm key val

The first two functions are the direct C call equivalents of (::member sm key) and
(sm!key). The third is like (: : replace sm key val) except that it will insert (key=>val)
if key is not already stored in sm. Here, smis a stimap or a stlset (except that sm_put is
not defined for stlsets).

: shm_member shm key
:shm_get shm key
:shm_put shm key val

The first two functions are the direct C call equivalents of (::member shm key) and
(shm!key). The third is like (: : replace shm key val) except that it will insert (key=>val)
if key is not already stored in shm. Here, shm is a stlhmap or a stlhset (except that
shm_put is not defined for stlhsets).

: smm_member smm key
:smm_get smm key
:smm_put smm key vals

The first two functions are the direct C call equivalents of (::member smm key) and
(smm!key). The third is like (::replace smm key val) except that it will insert
(key=>vall, key=>val2, ...) if key is not already stored in smm. Here, smm is a sttmmap
or a stlmset (except that smm_put is not defined for stlmsets).

lterators

/7

This section provides a quick overview of pure-stlmap’s “iterator-based” interface.

11.9.1

Concepts

Given a valid iterator you can access, modify or erase the element it points to.

> let

sml = stlmap sm; members sml;

[||a||=>1’ "b"=>2, "C"=>3, "d"=>4, ||e||=>5] ;

> let

i = find sml "b"; // use find to get an iterator - like C++

420

11.9 lterators

Pure Language and Library Documentation, Release 0.59

> get_elm 1i;
Ilbll=>2

> get_val i;
2

> put_val i 20;
20

> members sml;
[Ilall=>1’ Ilbll=>20’ "C"=>3, Ildll=>4’ Ilell=>5]

Please note that you can never modify an element’s key, only its value. If you want to change
both key and value, you have to erase the element and insert a new element.

> erase (sml,i) $$ insert sml ("b1"=>21);
1

> members sml;
[Ilall=>1’ Ilblll=>21' "C"=>3, Ildll=>4’ Ilell=>5]

Given two iterators, i and j, pointing into a ordered container oc, the range (i j), denotes oc’s
elements starting with “oc[i]”, the element pointed to by i, up to but not including oc[j]. In
pure-stlmap, this range is denoted by the tuple (i,j).

> members sm;
[Ilall=>1’ Ilbll=>2’ IICII=>3’ Ildll=>4’ Ilell=>5]

> let i = stl::find sml "b"; // get the iterator
> let j = stl::find sml "e";

> members (i,j); // get the elements in the range
[Ilbll=>2’ "C"=>3, Ildll=>4]

Perhaps it is worth mentioning that functions that act on ranges do not care if the range is
specified by a pair of iterators or by keys.

> members ss;
["a","b","C","d"’"e"]

> map (+21) (ss,"c",smend);
[IIXII’IIyII’IIZII]

> let i = find ss "c";
> let j = pastend ss;
> map (+21) (i,j);
["x","y","z"]

11.9.1 Concepts 421

Pure Language and Library Documentation, Release 0.59

11.9.2 Exceptions

In pure-stlmap functions that accept iterators throw a bad_argument exception if called with
an invalid iterator. An iterator remains valid until the element it was pointing to has been
erased. These functions also attempt to throw bad argument exceptions for invalid usage
that would otherwise result in undefined behavior. An example of an invalid use would be
a range specified by iterators from different containers. Here are some examples of iterator
erTors.

> let i,j = find sm "a", find sm "d";

> get_elm i, get_elm j;
Ilall=>1' Ildll=>4

> members (i,j);
[||a||=>1’ "b"=>2, ||C||=>3]

> catch id $ members (j,i); // j and i transposed, C++ would segfault
bad_argument

> erase (sm,"b"); // erase "b"=>2, leaving i and j valid
1

> get_elm i; // still valid
ngtes1

> erase (sm,"a"); // erase "a"=>1 - invalidating i
1

> catch id $ get_elm i; // bad iterator exception
bad_argument

11.9.3 Functions

In this section “acon” always denotes one of the containers that supports interators (stlmap,
stlset, sttmmap and stlmset).

stl::iteratori
Returns a new iterator that points to the same element as i.

stl::begin acon
stl::pastend acon
Returns acon’s begin or past-end iterator.

stl::find acon k
Creates a new iterator that points to an element in acon with key equivalent to k (if
any) or acon’s past-end iterator if no such element exists.

stl::find_with_default map k
Returns an iterator pointing to the element in map, a stimap, with key equivalent to

422 11.9 lterators

Pure Language and Library Documentation, Release 0.59

k. If no such element existed before the call, one is created and inserted using k and
map’s default value. This function is pure-stimap’s version of C++’s [] operator for
associative containers.

stl::insert_elmacon elm

Attempts to insert elm into acon. (If acon is a stimap or stimmap, then elm must be a
key value pair, (k=>v)). If acon is a stlmap or stlset (i.e., with unique keys) insert_elm
returns a pair, the first of which is an iterator pointing to the element with key k that
was just inserted (or the pre-existing element that blocked the insertion). The second
element in the pair is a boolean value that is true if a new element was inserted. In
contrast, if acon is a multi-keyed container (sttmmap or stlmset) the insert will always
be successful and insert_elm returns an iterator pointing to the element with key k
that was just inserted, instead of an (iterator, boolean) tuple.

stl::insert_elm acon (elm,i)
This is the same as the previous function except that (a) i is passed in as a hint to where
the new element should be inserted and (b) a single iterator is returned rather than a
iterator,boolean pair. If the new element is inserted just after i, the insertion can have
constant time complexity.

stl::1_bound acon k
Return a new iterator that points to the first element in acon, a stimap, stlset, sttmmap
or stlmset, that is not less than k, or acon’s past-end iterator if none exists.

stl::u_bound acon k
Return a new iterator that points to the first element in acon, a stimap, stlset, sttmmap
or stimset, that is greater than k, or acon’s past-end iterator if none exists.

stl::lu_bounds acon k
Return the pair 1_bound acon k, u_bound acon k.

E.g.,

> let ok, smx, f, 1 = stl::range_info (sml,"b","e");

> ok, smx === sml, stl::members (f,1);
1,1,["b"=>2,"C"=>3,"d"=>4]

stl::inci

stl::deci

stl::movein:int
Move the iterator i forward one, back one or forward n elements respectively, where
n can be negative. The iterator is mutated by these operations, provided the move is
successful. An attempt to move to a position before the first element’s position causes
an out_of_bounds exception. Moves past the last element return the past-end iterator
for the container that i is defined on.

stl::get_elmi
stl::get_keyi
stl::get_vali
Return the element pointed to by the iterator i, or the element’s key or value. For maps

11.9.3 Functions 423

Pure Language and Library Documentation, Release 0.59

stl:

stl:
stl:

stl:

j::j

the element is returned as a key=>value hash rocket pair. For sets, get_elem, get_key
and get_val all return the element (which is the same as its key).

:put_valinewvalue

Change the value of the element pointed to by the iterator i to newvalue. The element’s
key cannot be changed. The iterator must point into a stlmap or stimmap.

:beginp i
:pastendp i

Returns true if the iterator i is the begin iterator or pastend iterator of the container it
is defined on.

:get_infoi

Returns a tuple (is_valid,acon, key,val) where is_valid is true if the iterator i is valid or
false if not, acon is the container that i is defined on, and key, val are the key and value
of the element i points to, if any. If i is the past-end iterator, key and val are set to
stl::smend and [], respectively.

Returns true if the iterators i and j point to the same element.

erase (acon,i)
erase (acon,i,j)

Erases the element pointed to by i or the elements in the range (i, j). Both i and j
must be iterators defined on acon (or a bad_argument exception will be thrown).

11.9.4 Examples

Here are some examples using iterators.

> let b,e = begin smm, pastend smm;

> members (b,e);
["a"=>1,"b"=>2,"C"=>31,"C"=>32,"d"=>4,"e”=>5]

> let i,j = lu_bounds smm "c";

> members (b,i);
[Ilall=>1’ Ilbll=>2]

> members (i,j);
[“C"=>31,"C"=>32]

> members (j,e);
[Ildll=>4’ Ilell=>5]

> get_elm 1i;
IICII=>31

> get_elm (inc 1i);
IICII=>32

424

11.9 lterators

Pure Language and Library Documentation, Release 0.59

> put_val i 132;
132

> map (\(k=>_)->k=>ord k) (b,i);
["a"=>97,"b"=>98,"C"=>99]

> let is_set, smml, k, v = get_info i; is_set, members smml, Kk, v;
1’[Ilall=>1’Ilbll=>2’llcll=>31'IICII=>132’Ildll=>4’llell=>5]’IICII’132

> get_elm (dec j);
"C"=>132

> inc j $$ inc j $$ get_elm j;
Ilell=>5

> inc j $$ endp j;
1

11.10 Backward Compatibilty

This section documents changes in pure-stlmap.

11.10.1 pure-stimap-0.2

Optimized common predicates, such as (<) and (>)

11.10.2 pure-stimap-0.3

Fixed (>) comparisons on plain old data.

11.10 Backward Compatibilty 425

Pure Language and Library Documentation, Release 0.59

426 11.10 Backward Compatibilty

oo 12

pure-stlvec

Version 0.4, January 28, 2014
Peter Summerland <p.summerland@gmail.com>

Pure’s interface to C++ vectors, specialized to hold pointers to arbitrary Pure expressions,
and the C++ Standard Template Library algorithms that act on them.

12.1 Copying

Copyright (c) 2011 by Peter Summerland <p.summerland@gmail.com>.

All rights reserved.

pure-stlvec is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

pure-stlvec is distributed under a BSD-style license, see the COPYING file for details.

12.2 Installation

pure-stlvec-0.4 is included in the “umbrella” addon, pure-stillib, which is available at
http://code.google.com/p/pure-lang/downloads/list. After you have downloaded and
installed pure-stllib, you will be able to use pure-stlvec (and pure-stimap, as well).

427

mailto:p.summerland@gmail.com
mailto:p.summerland@gmail.com
http://code.google.com/p/pure-lang/downloads/list

Pure Language and Library Documentation, Release 0.59

12.3 Overview

The C++ Standard Template Library (“STL”) is a library of generic containers (data structures
designed for storing other objects) and a rich set of generic algorithms that operate on them.
pure-stlvec provides an interface to one of its most useful containers, “vector”, adopted to
hold pointers to Pure expressions. The interface provides Pure programmers with a mutable
container “stlvec”, that, like the STL's vector, holds a sequence of objects that can be accessed
in constant time according to their position in the sequence.

12.3.1 Modules

The usual operations for creating, accessing and modifying stlvecs are provided by the stlvec
module. Most of the operations are similar in name and function to those provided by the
Pure Library for other containers. As is the case for their Pure Library counterparts, these
operations are in the global namespace. There are a few operations that have been placed in
the stl namespace usually because they do not have Pure Library counterparts.

In addition to the stlvec module, pure-stlvec provides a group of modules, stlvec::modifying,
stlvec:nonmodifying, stlvec:sort, stlvec:merge, stlvec:heap, stlvec:minmax and
stlvec:numeric, that are straight wrappers the STL algorithms (specialized to work
with STL vectors of pointers to Pure expressions). This grouping of the STL algorithms
follows that found at http://www.cplusplus.com/reference/algorithm/. This web page
contains a table that summarizes of all of the algorithms in one place.

pure-stlvec provides an “umbrella” module, stlvec::algorithms, that pulls in all of the
STL algorithm interface modules in one go. The STL algorithm wrapper functions reside in
the stl namespace and have the same names as their counterparts in the STL.

12.3.2 Simple Examples
Here are some examples that use the basic operations provided by the stlvec module.
> using stlvec;

> let svl = stlvec (0..4); members svl;
[0,1,2,3,4]

> insert (svl,stl::svend) (5..7); members svl;
STLVEC #<pointer 0Oxaf4d2c0>
[0!1!2!3!4!5!6!7]

> svl1l!3;
3

> svl!!1[2,4,6];
[2,4,6]

> replace svl 3 33; members svl;

428 12.3 Overview

Pure Language and Library Documentation, Release 0.59

STLVEC #<pointer 0xaf4d2c0>
[0’1’2!33I415I6I7]

> stl::erase (svl,2,5); members svl;
STLVEC #<pointer Oxaf4d2c0>
[011!57677]

> insert (sv1,2) [2,3,4]; members svl;
STLVEC #<pointer Oxaf4d2c0>
[0,1,2,3,4,5,6,7]

> let pure_vector = stl::vector (svl1l,1,5); pure_vector;
{1!2!3!4}

> stlvec pure_vector;
STLVEC #<pointer 0x9145a38>

> members ans;
[1,2,3,4]

> map (+10) svl;
[10,11,12,13,14,15,16,17]

> map (+10) (svl1,2,5);
[12,13,14]

> foldl (+) 0 svl;
28

> [x+10 | x = svl; x mod 2];
[11,13,15,17]

> {x+10 | x = (sv1,2,6); x mod 2};
{13,15}

Here are some examples that use STL algorithms.

> using stlvec::algorithms;

> stl::reverse (svl,2,6); members svl;

()
[0,1,5,4,3,2,6,7]

> stl::stable_sort svl (>); members svl;

()
[7’6’5’4’3’2’1’0]

> stl::random_shuffle svl; members svl 1;
()
[113157470171672]

> stl::partition svl (<3); members (svl1l,0,ans); members svl;

12.3.2 Simple Examples 429

Pure Language and Library Documentation, Release 0.59

3
[1,2,0]
(1,2,0,4,5,7,6,3]

> stl::transform svl (sv1,0) (*2); members svl;
-1
[2,4,0,8,10,14,12,6]

> let sv2 = emptystlvec;

> stl::transform svl (sv2,stl::svback) (div 2); members sv2;
-1
[1,2,0,4,5,7,6,3]

Many more examples can be found in the pure-stlvec/ut directory.

12.3.3 Members and Sequences of Members

Throughout the documentation for pure-stlvec, the member of a stlvec that is at the nth
position in the sequence of expressions stored in the stlvec is referred to as its nth member
or nth element. The nth member of a stlvec, sv, is sometimes denoted by svIn. The sequence
of members of sv starting at position i up to but not including j is denoted by sv[i,j). There is
a “past-the-end” symbol, stl::svend, that denotes the position after that occupied by the last
member contained by a stlvec.

For example, if sv contains the sequence “a”, “b”, “c” “d” and “e”, sv!0 is “a”, sv[1,3) is the

“"_ 1

sequence consisting of “b” followed by “c” and v[3,stl::svend) denotes the sequence consist-

“”_ 7

ing of “d” followed by “e”.

12.3.4 STL lterators and Value Semantics

In C++ a programmer accesses a STL container’s elements by means of “iterators”, which
can be thought of as pointers to the container’s elements. A single iterator can be used to
access a specific element, and a pair of iterators can be used to access a “range” of elements.
By convention, such a range includes the member pointed to by the first iterator and all
succeeding members up to but not including the member pointed to by the second iterator.
Each container has a past-the-end iterator that can be used to specifiy ranges that include the
container’s last member.

In the case of vectors there is an obvious correspondence between an iterator that points to
an element and the element’s position (starting at zero) in the vector. pure-stlvec uses this
correspondence to designate a stlvec’s members in a way that makes it relatively easy to see
how pure-stlvec’s functions are acting on the stlvec’s underlying STL vector by referencing
the STL’s documentation. Thus, if sv is a stlvec, and j is an int, “replace sv j x” uses the
STL to replace the element pointed to by the iterator for position j of sv’s underlying STL
vector. If, in addition, k is an int, stl::sort (sv,j, k) (<) uses the STL to sort the elements in the
range designated by the “jth” and “kth” iterators for sv’s underlying STL vector. This range,

430 12.3 Overview

Pure Language and Library Documentation, Release 0.59

written as sv[j k), is the subsequence of sv that begins with the element at position j and ends
with the element at position (k-1).

Besides iterators, another cornerstone of the STL is its “value semantics”, i.e., all of the STL
containers are mutable and if a container is copied, all of its elements are copied. pure-stlvec
deals with the STL’s value semantics by introducing mutable and nonmutable stlvecs, and
by storing smart pointers to objects (which have cheap copies) rather than the actual objects.

12.3.5 Iterator Tuples

As mentioned in the previous section, in C++ ranges are specified by a pair of STL iterators.

In pure-stlvec ranges of elements in a stlvec are specified by “iterator tuples” rather than,
say, actual pointers to STL iterators. Iterator tuples consist of the name of a stlvec followed
by one of more ints that indicate positions (starting from zero) of the stlvec’s elements.

To illustrate how iterator tuples are used, consider the STL stable_sort function, which sorts
objects in the range [first, last) in the order imposed by comp. Its C++ signature looks like
this:

void stable_sort (RandomAccesslterator first, RandomAccesslterator last, Com-
pare comp)

The corresponding pure-stlvec function, from the stlvec::sort module, looks like this:
stable_sort (msv, first, last) comp

where msv is a mutable stlvec, and first and last are ints. The first thing that the Pure sta-
ble_sort does is create a pair of C++ iterators that point to the elements in msv’s underlying
STL vector that occupy the positions designated by first and last. Next it wraps the Pure
comp function in a C++ function object that, along with the two iterators, is passed to the
C++ stable_sort function.

For convenience, (sv,stl::svbeg, stl::svend) can be written simply as sv. Thus, if first were
stl:svbeg (or 0), and last were stl::svend (or #msv, the number of elements in msv), the last
Pure call could be written:

stable_sort msv comp

It should be noted that often the STL library provides a default version of its functions,
which like stable_sort, use a comparator or other callback function provided by the caller.
E.g., the C++ stable_sort has a default version that assumes the “<” operator can be used on
the elements held by the container in question:

void stable_sort (RandomAccesslterator first, RandomAccesslterator last)

The corresponding functions provided by the pure-stlvec modules rarely, if ever, supply a
default version. A typical example is stlvec::sort’s stable_sort which must be called with a
comparator callback function:

stable_sort msv (<);

12.3.5 Iterator Tuples 431

Pure Language and Library Documentation, Release 0.59

Note also that the comparator (e.g., (<)), or other function being passed to a pure-stlvec algo-
rithm wrapper is almost always the last parameter. This is the opposite of what is required
for similar Pure functions, but is consistent with the STL calling conventions.

12.3.6 Predefined lterator Tuple Indexes

The following integer constants are defined in the stl namespace for use in iterator tuples.

constant stl::svbeg =0
constant stl::svend = -1
constant stl::svback =-2

These three symbols are declared as nonfix. svend corresponds to STL’s past-end iterator for
STL vectors. It makes it possible to specify ranges that include the last element of an stlvec.
Le., the iterator tuple (sv,stl::svbeg,stl::svend) would specify sv[0,n), where n is the number
of elements in sv. In order to understand the purpose of svback, it is necessary to understand
a bit about STL's “back insert iterators.”

12.3.7 Back Insert Iterators

Many of the STL algorithms insert members into a target range designated by an iterator
that points to the first member of the target range. Consistent with raw C usage, it is ok to
copy over existing elements the target stlvec. E.g.,:

> using stlvec::modifying;
> let vl = stlvec (0..2);
> let v2 = stlvec ("a".."g");

> stl::copy vl (v2,2) $$ members v2;
[Ilall’llbll’e’l’z’Ilfll'llgll]

This is great for C++ programmers, but for Pure programmers it is almost always preferable
to append the copied items to the end of a target stlvec, rather than overwriting all or part
or part of it. This can be accomplished using stl::svback. E.g.,:

> stl::copy vl (v2,stl::svback) $$ members v2;
[uau’||b||’0’1’2’uf||’||g||’0’1’2]

In short, when a pure-stlvec function detects “stl::svback” in a target iterator tuple, it con-
structs a STL “back inserter iterator” and passes it on to the corresponding wrapped STL
function.

12.3.8 Data Structure

Currently, stlvecs are of the form (STLVEC x) or (CONST_STLVEC x), where STLVEC AND
CONST_STLVEC are defined as nonfix symbols in the global namespace and x is a pointer

432 12.3 Overview

Pure Language and Library Documentation, Release 0.59

to the underlying STL vector. The stlvec module defines corresponding type tags, stlvec and
const_stlvec, so the programmer never needs to worry about the underlying representaton.

This representation may change in the future, and must not be relied upon by client modules.
In particular, one must never attempt to use the embedded pointer directly.

As the names suggest, stlvecs are mutable and const_stlvecs are immutable. Functions that
modify a stlvec will simply fail unless the stlvec is mutable.

> let v = const_stlvec $ stlvec (0..3); v2;
CONST_STLVEC #<pointer 0x8cldbfo>

> replace v 0 100; // fails
replace (CONST_STLVEC #<pointer 0x9f07690> 0 100

12.3.9 Types

pure-stlvec introduces six type tags, all of which are in the global namespace:

type mutable_stlvec
The type for a mutable stlvec.

type const_stlvec
The type for an immutable stlvec.

type stlvec
The type for a stlvec, mutable or immutable.

type mutable_svit
The type for an iterator tuple whose underlying stlvec is mutable.

type const_svit
The type for an iterator tuple whose underlying stlvec is immutable.

type svit
The type for an iterator tuple. The underlying stlvec can be mutable or immutable.

12.3.10 Copy-On-Write Semantics

The pure-stlvec module functions do not implement automatic copy-on-write semantics.
Functions that modify stlvec parameters will simply fail if they are passed a const_stlvec
when they expect a mutable_stlvec.

For those that prefer immutable data structures, stlvecs can be converted to const_stlvecs
(usually after they have been created and modified within a function) by the const_stlvec
function. This function converts a mutable stlvec to an immutable stlvec without changing
the underlying STL vector.

Typically, a “pure” function that “modifies” a stlvec passed to it as an argument will first
copy the input stlvec to a new locally scoped (mutable) stlvec using the stlvec function. It

12.3.9 Types 433

Pure Language and Library Documentation, Release 0.59

will then modify the new stlvec and use const_stlvec to make the new stlvec immutable
before it is returned. It should be noted that several of the STL algorithms have “copy”
versions which place their results directly into a new stlvec, which can eliminate the need to
copy the input stlvec. E.g.:

> let svl = stlvec ("a".."e");

> let sv2

emptystlvec;

> stl::reverse_copy svl (sv2,stl::svback) $$ members sv2;
[”e","d","C","b","a"]

Without reverse_copy, one would have had to copy sv1 into sv2 and then reverse sv2.

If desired, in Pure it is easy to write functions that have automatic copy-on-write semantics.
E.g.,

> my_replace csv::const_stlvec i x = my_replace (stlvec csv) i x;
> my_replace sv::stlvec i x = replace sv i Xx;

12.3.11 Documentation

The pure-stllib/doc directory includes a rudimentary cheatsheet, pure-stllib-cheatsheet.pdf,
that shows the signatures of all of the functions provided by pure-stlvec (and by pure-stimap
as well).

The documentation of the functions provided by the stlvec module are reasonably complete.
In contrast, the descriptions of functions provided by the STL algorithm modules are pur-
posely simplified (and may not, therefore, be technically accurate). This reflects that fact that
the functions provided by pure-stlvec have an obvious correspondence to the functions pro-
vided by the STL, and the STL is extremely well documented. Furthermore, using the Pure
interpreter, it is very easy to simply play around with with any of the pure-stlvec functions
if there are doubts, especially with respect to “corner cases.” Often this leads to a deeper
understanding compared to reading a precise technical description.

A good book on the STL is STL Tutorial and Reference Guide, Second Edition, by David R.
Musser, Gillmer J. Derge and Atul Saini. A summary of all of the STL algorithms can be
found at http:/ /www.cplusplus.com/reference/stl/.

12.3.12 Parameter Names

In the descriptions of functions that follow, parameter names used in function descriptions
represent specific types of Pure objects:

sv stlvec (mutable or immutable)

csv const (i.e., immutable) stlvec

msv mutable stlvec

434 12.3 Overview

http://www.cplusplus.com/reference/stl/

Pure Language and Library Documentation, Release 0.59

x an arbitrary Pure expression

xs a list of arbitrary Pure expressions

count, sz, n whole numbers to indicate a number of elements, size of a vector, etc
i,j whole numbers used to designate indexes into a stlvec

f,m,1 whole numbers (or stl::beg or stl::svend) designating the “first”, “middle” or “last”
iterators in a stlvec iterator tuple

p a whole number (or other iterator constant such as stl::svend or stl::svback) used in a two
element iterator tuple (e.g., (sv,p))

(sv,p) an iterator tuple that will be mapped to an iterator that points to the pth position of
sv’s underlying STL vector, v, (or to a back iterator on v if p is stl::svback)

(sv,£,1) an iterator tuple that will be mapped to the pair of iterators that are designated by
(sv,f) and (sv;])

(sv,f,m,]) an iterator tuple that will be mapped to the iterators that are designated by (sv,f),
(sv;m) and (sv)])

svlf,]) the range of members beginning with that at (sv,f) up to but not including that at
(con,l)

comp a function that accepts two objects and returns true if the first argument is less than
the second (in the strict weak ordering defined by comp), and false otherwise

unary_pred a function that accepts one object and returns true or false

bin_pred a function that accepts two objects and returns true or false

unary_fun a function that accepts one objects and returns another

bin_fun a function that accepts two objects and returns another

gen_fun a function of one parameter that produces a sequence of objects, one for each call

For readability, and to correspond with the STL documentation, the words “first”, “middle”,
and “last”, or variants such as “firstl” are often used instead of f,m,l.

12.4 Error Handling

The functions provided this module handle errors by throwing exceptions.

12.4.1 Exception Symbols

constructor bad_argument
This exception is thrown when a function is passed an unexpected value. A subtle
error to watch for is a malformed iterator tuple (e.g., one with the wrong number of
elements).

12.4 Error Handling 435

Pure Language and Library Documentation, Release 0.59

constructor bad_function
This exception is thrown when a purported Pure call-back function is not even callable.

constructor failed_cond
This exception is thrown when a Pure call-back predicate returns a value that is not an
int.

constructor out_of_bounds
This exception is thrown if the specified index is out of bounds.

constructor range_overflow
This exception is thrown by functions that write over part of a target stlvec (e.g., copy)
when the target range too small to accommodate the result.

constructor range_overlap
This exception is thrown by algorithm functions that write over part of a target stlvec
when the target and source ranges overlap in a way that is not allowed.

In addition, any exception thrown by a Pure callback function passed to a pure-stlvec func-
tion will be caught and be rethrown by the pure-stlvec function.

12.4.2 Examples

> using stlvec, stlvec::modifying;

> let svl = stlvec (0..4); members svl;
[0,1,2,3,4]

> let sv2 = stlvec ("a".."e"); members sv2;
[IIaII’IIbII’IICII’IIdII'IIeII]
> sv1!10;

<stdin>, line 25: unhandled exception ’'out_of_bounds’

> stl::copy svl (sv2,10);
<stdin>, line 26: unhandled exception ’'out_of_bounds’

> stl::copy svl (sv2,2,3); // sb (sv2,pos)
<stdin>, line 22: unhandled exception ’bad_argument’

> stl::copy svl (sv2,2);
<stdin>, line 23: unhandled exception ’'range_overflow’

> stl::copy sv2 (sv2,2);
<stdin>, line 24: unhandled exception ’'range_overlap’

> stl::copy (svl1l,1,3) (sv2,0); members sv2; // ok
2
[1’2’IICII’IIdII’IIeII]

> stl::sort sv2 (>); // apples and oranges

436 12.4 Error Handling

Pure Language and Library Documentation, Release 0.59

<stdin>, line 31: unhandled exception ’'failed_cond’

> listmap (\x->throw DOA) svl; // callback function throws exception
<stdin>, line 34: unhandled exception 'DOA’

12.5 Operations Included in the stlvec Module

The stlvec module provides functions for creating, accessing and modifying stlvecs. In gen-
eral, operations that have the same name as a corresponding function in the Pure standard
library are in the global namespace. The remaining functions, which are usually specific to
stlvecs, are in the stl namespace.

Please note that “stlvec to stlvec” functions are provided by the pure-stl algorithm modules.
Thus, for example, the stlvec module does not provide a function that maps one stlvec onto
anew stlvec. That functionality, and more, is provided by stl::transform, which can be found
in the stlvec:modifying module.

12.5.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec;

12.5.2 Operations in the Global Namespace

When reading the function descriptions that follow, please bear in mind that whenever a
function is passed an iterator tuple of the form (sv,first, last), first and last can be dropped,
leaving (sv), or simply sv. The function will treat the “unary” iterator tuple (sv) as (sv,
stl::svbeg, stl::svend).

emptystlvec
return an empty stlvec

stlvec source /stlvec
create a new stlvec that contains the elements of source; source can be a stlvec, an
iterator tuple(sv first,last), a list or a vector (i.e., a matrix consisting of a single row or
column). The underlying STL vector is always a new STL vector. lLe., if source is a
stlvec the new stlvec does not share source’s underlying STL vector.

mkstlvec x count
create a new stlvec consisting of count x’s.

const_stlvec source
create a new const_stlvec that contains the elements of source; source can be a stlvec,
an iterator tuple(sv,first,last), a list or a vector (i.e., a matrix consisting of a single row

12.5 Operations Included in the stlvec Module 437

Pure Language and Library Documentation, Release 0.59

or column). If source is a stlvec (mutable or const), the new const_stlvec shares source’s
underlying STL vector.

#sv
return the number of elements in sv.

Note that # applied to an iterator tuple like (sv,b,e) will just return the number of elements in
the tuple. Use stl::bounds if you need to know the number of elements in the range denoted
by an iterator tuple.

sv!i
return the ith member of sv

Note that 'k applied to an iterator tuple like (sv,b,e) will just return the kth element of the
tuple. In addition, in stlvec, integers used to denote postions (as in 'k) or in iterators, always,
are relative to the beginning of the underlying vector. So it makes no sense to apply ! to an
iterator tuple.

first sv
last sv
first and last member of sv

members (sv, first, last)
return a list of values stored in sv[first,last)

replace msvix
replace the ith member of msv by x and return x; throws out_of_bounds if i is less than
0 or great or equal to the number of elements in msv

update msv i x
the same as replace except that update returns msv instead of x. This function is DEP-
RECATED.

append sv x
append x to the end of sv

insert (msv,p) xs

insert (msv,p) (sv first last)
insert members of the list xs or the range sv/[first, last) into msv, all preceding the pth
member of msv. Members are shifted to make room for the inserted members

rmfirst msv
rmlast msv
remove the first or last member from msv

erase (msv,first,last)

erase (msv,p)

erase msv
remove msv/[first,last) from msv, remove msv!p from msv, or make msv empty. Mem-
bers are shifted to occupy vacated slots

svl == sv2

438 12.5 Operations Included in the stlvec Module

Pure Language and Library Documentation, Release 0.59

svl ~=sv2
(x ==y) is the same as stl::allpairs (==) x y and x ~=y is simply ~(allpairs (==) x y)

Note that == and ~== are not defined for iterator tuples (the rules would never be executed
because == is defined on tuples in the Prelude).

The stlvec module provides convenience functions that apply map, catmap, foldl, etc, to
directly access Pure expressions stored in a stlvec.

map unary_fun (sv, first, last)
one pass equivalent of map unary_fun $ members (sv, first, last)

listmap unary_fun (sv, first, last)
same as map, used in list comprehensions

catmap unary_fun (sv, first, last)
one pass equivalent of catmap unary_fun $ members (sv, first, last)

do unary_fun (sv, first, last)
one pass equivalent of do unary_fun $ members (sv, first, last)

foldl bin_fun x (sv, first, last)
one pass equivalent of foldl bin_fun x $ members (sv, first, last)

foldll bin_fun (sv, first, last)
one pass equivalent of foldll bin_fun $ members (sv, first, last)

filter unary_pred (sv, first, last)
one pass equivalent of filter unary_pred $ members (sv, first, last)

The following four functions map (or catmap) stlvecs onto row and col matrixes, primarily
for use in matrix comprehensions.

rowmap unary_fun (sv, first, last)
rowcatmap unary_fun (sv, first, last)
colmap unary_fun (sv, first, last)

colcatmap unary_fun (sv, first, last)

12.5.3 Operations in the st Namespace

stl::empty sv
test whether sv is empty

stl::vector (sv,first last)
create a Pure vector that contains the members of sv|first,last)

stl::allpairs bin_pred (svl, firstl, lastl) (sv2, first2, last2)
returns true if bin_pred is true for all corresponding members of sv1[firstl, lastl) and
sv2[first2, last2)

12.5.3 Operations in the stl Namespace 439

Pure

Language and Library Documentation, Release 0.59

stl::

stl:

stl:

bounds (sv,first,last)

throws out-of-bounds if first or last is out of bounds. returns the tuple (sv,first last)
except that if first is stl::begin it will be replaced by 0 and if last is stl::svend it will be
replaced by the number of elements in sv.

:reserve msv count

modify the underlying STL vector to have at least count slots, useful for packing data
into a fixed size vector and possibly to speed up the addition of new members

:capacity sv

return the number of slots (as opposed to the number of elements) held by the under-
lying STL vector

12.5.4 Examples

See ut_stlvec.pure and ut_global_stlvec.pure in the pure-stlvec/ut directory.

12.6

STL Nonmodifying Algorithms

The stlvec:nonmodifying module provides an interface to the STL’s non-modifying se-
quence operations.

12.6.1

Imports

To use the operations of this module, add the following import declaration to your program:

using

stlvec: :nonmodifying;

All of the functions are in the stl namespace.

12.6.2 Operations

stl::for_each (sv, first, last) unary_fun
applies unary_fun to each of the elements in sv|first,last)

stl::find (sv, first, last) x
returns the position of the first element in sv|first,last) for which (==x) is true (or
stl::svend if not found)

stl::find_if (sv, first, last) unary_pred
returns the position of the first element in sv[first,last) for which unary_pred is true (or
stl::svend if not found)

stl::find_first_of (svl, firstl, lastl) (sv2, first2, last2) bin_pred
Returns the position of the first element, X, in sv1[firstl,lastl) for which there exists y
in sv2[first2, last2) and (bin_pred x y) is true (or stl::svend if no such x exists).

440 12.6 STL Nonmodifying Algorithms

Pure Language and Library Documentation, Release 0.59

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

:adjacent_find (sv, first, last) bin_pred

search sv[first,last) for the first occurrence of two consecutive elements (x,y) for which
(bin_pred x y) is true. Returns the position of x, if found, or stl::svend if not found)

:count (sv, first, last) x

returns the number of elements in the range svl[first last) for which (x==) is true

:count_if (sv, first, last) unary_pred

returns the number of elements in the range svl[first,last) for which unary_pred is true

:mismatch (svl, firstl, lastl) (sv2, first2) bin_pred

applies bin_pred pairwise to the elements of sv1[firstl,lastl) and (sv2first2 first2 + n),
with n equal to last1-firstl until it finds i and j such that bin_pred (sv1'i) (sv2!j) is false
and returns (ij). If bin_pred is true for all of the pairs of elements, i will be stl::svend
and j will be first2 + n (or stl::svend)

requal (svl, firstl, lastl) (sv2, first2) bin_pred

applies bin_pred pairwise to the elements of sv1[firstl, lastl) and (sv2first2 first2 + n),
with n equal to last1-firstl, and returns true if bin_pred is true for each pair

:search (svl, firstl, lastl) (sv2, first2) bin_pred

using bin_pred to determine equality of the elements, searches sv1[firstl,lastl) for the
tirst occurrence of the sequence defined by sv2[first2 last2), and returns the position in
sv1 of its first element (or stl::svend if not found)

:search_n (sv, first, last) count x bin_pred

using bin_pred to determine equality of the elements, searches sv|[first,last) for a se-
quence of count elements that equal x. If such a sequence is found, it returns the posi-
tion of the first of its elements, otherwise it returns stl::svend

:find_end (svl, firstl, lastl) (sv2, first2, last2) bin_pred

using bin_pred to determine equality of the elements, searches sv1[firstl,lastl) for the
last occurrence of sv2[first2, last2). Returns the position of the first element in sv1 of the
occurrence (or stl::svend if not found).

12.6.3 Examples

See ut_nonmodifying.pure in the pure-stlvec/ut directory.

12.7

STL Modifying Algorithms

The stlvec::modifying module provides an interface to the STL's modifying algorithms.

12.7.1

Imports

To use the operations of this module, add the following import declaration to your program:

12.6.3 Examples 441

Pure Language and Library Documentation, Release 0.59

using stlvec::modifying;

All of the functions are in the stl namespace.

12.7.2 Operations

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

: copy (sv, firstl, lastl) (msv, first2)

copies the elements in sv|[firstl,lastl) into the range whose first element is (msv,first2)

: copy_backward (sv,first1,lastl) (msv,last2)

copies the elements in sv([firstl,lastl), moving backward from (lastl), into the range
msv[first2,last2) where first2 is last2 minus the number of elements in sv|firstl,lastl)

:swap_ranges (sv,first,last) (msv, p)

exchanges the elements in sv[first, last) with those in msv[p, p+n) where n is last - first

:transform (sv first last) (msv, p) unary_fun

applies unary_fun to the elements of sv[first,last) and places the resulting sequence in
msv[p, p+n) where n is last - first. If sv is mutable, msv and sv can be the same stlvec.
Returns (msv,p+n)

:transform_2 (sv1,firstl,lastl) (sv2,first2) (msv, p) bin_fun

applies bin_fun to corresponding pairs of elements of sv1[firstl,lastl) sv2[first2,n) and
and places the resulting sequence in msv[p, p+n) where n is lastl - firstl. Returns
(msv,p+n)

:replace_if (msvfirst last) unary_pred x

replace the elements of msv|first,last) that satistfy unary_pred with x

: replace_copy (sv,first,last) (msv,p) X y

same as replace (msv,firstlast) x y except that the modified sequence is placed in
msv[p,p+last-first)

:replace_copy_if (sv first,last) (msv,p) unary_pred x

same as replace_if except that the modified sequence is placed in msv|[p,p-+last-first)

: FA11 (msv,first,last) x

replace all elements in msvl[first,last) with x

1 Fillon (msv,first) n x

replace the elements of msvl[first,first+n) with x

:generate (msv,first,last) gen_fun

replace the elements in msvf[first last) with the sequence generated by successive calls
to gen_fun (), e.g.,

> let count = ref 0;
> g _ = n when n = get count + 1; put count n; end;

> let sv = mkstlvec 0 10;

442

12.7 STL Modifying Algorithms

Pure Language and Library Documentation, Release 0.59

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

stl:

> stl::generate sv g $$ members sv;
[1’2’3’4’516171819110]

:generate_n (msv first) n gen_fun

replace all elements in msv|first first+n) with the sequence generated by successive
calls to gen_fen

: remove (msv,first,last) x

same as remove_if (msv,first,last) (==x).

:remove_if (msv first,last) unary_pred

remove elements in msvl[first,last) that satisfy unary_pred. If n elements do not satisfy
unary_pred, they are moved to msv([first first+n), preserving their relative order. The
content of msv[first+n,svend) is undefined. Returns first+n, or stl::svend if first+n is
greater than the number of elements in msv

: remove_copy (sv,first,last) (msv,first) x

same as remove except that the purged sequence is copied to (msv,first) and sv[first,last)
is not changed

: remove_copy_if (sv first last) (msv,first) unary_pred

same as remove_ if except that the purged sequence is copied to (msvfirst) and
sv|[first,last) is not changed

:unique (msv, first last) bin_pred

eliminates consecutive duplicates from sv([first,last), using bin_pred to test for equality.
The purged sequence is moved to sv[first,first+n) preserving their relative order, where
n is the size of the purged sequence. Returns first+n or stl::svend if first+n is greater
than the number of elements in msv

:unique_copy (sv first,last) (msv,first) bin_pred

same as unique except that the purged sequence is copied to (msv,first) and sv([first,last)
is not changed

:reverse (msv,first,last)

Reverses the order of the elements in sv[first,last).

:reverse_copy (sv,first last) (msv,first)

same as reverse except that the reversed sequence is copied to (msv,first) and
sv|[first,last) is not changed.

:rotate (msv first,middle last)

rotates the elements of msv[first,middle,last] so that middle becomes the first element
of msv/[first,last].

:rotate_copy (msv,first,middle,last) (msv,first)

same as rotate except that the rotated sequence is copied to (msv,first) and sv|first,last)
is not changed.

:random_shuffle (msv,first,last) int::seed

randomly reorders the elements in msv/[first,last)

12.7.2 Operations 443

Pure Language and Library Documentation, Release 0.59

stl::partition (msv/firstlast) unary_pred
places the elements in msv]first,last) that satisfy unary_pred before those that don't.
Returns middle, where msv [first,middle) contains all of the elements that satisfy
unary_pre, and msv [middle, last) contains those that do not

stl::stable_partition (msv,firstlast) unary_pred
same as partition except that the relative positions of the elements in each group are
preserved

12.7.3 Examples

See ut_modifying.pure in the pure-stlvec/ut directory.

12.8 STL Sort Algorithms

The stlvec::sort module provides an interface to the STL’s sorting and binary search algo-
rithms.

12.8.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::sort;

All of the functions are in the stl namespace.

12.8.2 Operations

All of the functions in this module require the caller to supply an ordering function, comp.
The functions (<) and (>) are commonly passed as comp.

stl::sort (msv, first, last) comp
sorts msv/[first, last)

stl::stable_sort (msy, first, last) comp
sorts msvlfirst, last), preserving the relative order of equal members

stl::partial_sort (msy, first, middle, last) comp
fills msv[first, middle) with the elements of msv([first last) that would appear there if
msv|first,last) were sorted using comp and fills msv[middle,last) with the remaining
elements in unspecified order

stl::partial_sort_copy (sv, firstl, lastl) (msv, first2, last2) comp
let n be the number of elements in sv|firstl, lastl) and r be the number of elements
in msv|first2, last2). If r < n, partial_sort_copy fills msv[first2, last2) with the first
r elements of what sv[firstl, lastl) would be if it had been sorted. If r >= n, it fills

444 12.8 STL Sort Algorithms

Pure Language and Library Documentation, Release 0.59

msv[first2, first2+n) with the elements of sv[firstl, last1) in sorted order. sv[firstl,lastl)
is unchanged

stl::nth_element (msy, first, middle, last) comp
rearranges the elements of msvf[first, last) as follows. Let n be middle - first, and let x
be the nth smallest element of msv[first, last). After the function is called, svimiddle
will be x. All of the elements of msv]first, middle) will be less than x and all of the
elements of msv[middle+1, last) will be greater than x

The next four functions assume that sv([first, last) is ordered by comp.

stl::lower_bound (sv, first, last) x comp
returns an int designating the first position into which x can be inserted into svl[first,
last) while maintaining the sorted ordering

stl::upper_bound (sv, first, last) x comp
returns an int designating the last position into which x can be inserted into sv([first,
last) while maintaining the sorted ordering

stl::equal_range (sv, first, last) x comp
returns a pair of ints, (lower, upper) where lower and upper would have been returned
by separate calls to lower_bound and upper_bound.

stl::binary_search (sv, first, last) x comp
returns true if x is an element of sv|first, last)

12.8.3 Examples

See ut_sort.pure in the pure-stlvec/ut directory.

12.9 STL Merge Algorithms

The stlvec::merge module provides an interface to the STL's merge algorithms. These algo-
rithms operate on sorted ranges.

12.9.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::merge;

All of the functions are in the stl namespace.

12.8.3 Examples 445

Pure Language and Library Documentation, Release 0.59

12.9.2 Operations

All of the functions in this module require the caller to supply an ordering function, comp (as
for the Pure library sort function). They only work properly on input ranges that have been
previously sorted using comp. The set operations generally do not check for range overflow
because it is not generally possible to determine the length of the result of a set operation
until after it is completed. In most cases you will get a nasty segmentation fault if the result
is bigger than the target range. The best way to avoid this possibility it to use a back iterator
to specifify the target range.

See parameter naming conventions at ..

stl:

stl:

stl:

stl:

stl:

stl:

stl:

:merge (svl,firstl,lastl) (sv2,first2,last2) (msv,p) comp

merges the two sorted ranges into the sorted range msv[p,p+n) where n is the total
length of the merged sequence

:inplace_merge (msvfirst, middle, last) comp

merges msv|first, middle) and msv[middle,last) into the sorted range msv([first,last)

:includes (sv1 firstl lastl) (sv2,first2,last2) comp

returns true if every element of sv2[first2,last2) is an element of sv1[firstl,lastl)

:set_union (svl firstllastl) (sv2 first2,last2) (msv,p) comp

places the sorted union of sv1[firstl,lastl) and sv2[first2,last2) into msv[p,p+n) where
n is the number of elements in the sorted union, and returns the past-the-end position
of the sorted union

:set_intersection (svl,firstl,lastl) (sv2 first2,last2) (msv,p) comp

places the sorted intersection of sv1[firstl,lastl) and sv2[first2,last2) into msv[p,p+n)
where n is the number of elements in the sorted intersection, and returns p+n (or
stl::svend, if applicable)

:set_difference (svlfirstl lastl) (sv2,first2,last2) (msv,p) comp

places the sorted difference of svl1[firstl,lastl) and sv2[first2,last2) into msv[p,p+n)
where n is the number of elements in the sorted difference, and returns p+n (or
stl::svend, if applicable)

:set_symmetric_difference (svl firstl lastl) (sv2,first2,last2) (msv,p) comp

places the sorted symmetric_difference of svl1[firstl,lastl) and sv2[first2,last2) into
msv[p,p+n) where n is the number of elements in the sorted symmetric_difference,
and returns returns p+n (or stl::svend, if applicable)

12.9.3 Examples

See ut_merge.pure in the pure-stlvec/ut directory.

446

12.9 STL Merge Algorithms

Pure Language and Library Documentation, Release 0.59

12.10 STL Heap Algorithms

The stlvec::heap module provides an interface to the STL's heap operations.

12.10.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::heap;

All of the functions are in the stl namespace.

12.10.2 Operations

All of the functions in this module require the caller to supply an ordering function, comp
(as for the Pure library sort function). The functions (<) and (>) are commonly passed as
comp.

stl::make_heap (msv,first,last) comp
rearranges the elements of msv/[first last) so that they are a heap, i.e., after this msv!first
will be the largest element in msv([first,last), and push_heap and pop_heap will work

properly
stl::push_heap (msvfirst,last) comp
makes msv([first,last) a heap (assuming that msv|[first,last-1) was a heap)

stl::pop_heap (msv,first,last) comp
swaps msv!first with msv!(last-1), and makes msvl[first,last-1) a heap (assuming that
msv|first,last) was a heap)

stl::sort_heap (msv(first,last) comp
sorts the elements in msv/[first,last)

12.10.3 Examples

See ut_heap.pure in the pure-stlvec/ut directory.

12.11 Min/Max STL Algorithms

The stlvec::minmax module provides an interface to a few additional STL algorithms.

12.10 STL Heap Algorithms 447

Pure Language and Library Documentation, Release 0.59

12.11.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::minmax;

All of the functions are in the stl namespace.

12.11.2 Operations

All of the functions in this module require the caller to supply an ordering function, comp
(as for the Pure library sort function). The functions (<) and (>) are commonly passed as
comp.

stl::min_element (sv,firstlast) comp
returns the position of the minimal element of sv([first,last) under the ordering defined
by comp

stl::max_element (sv,firstlast) comp
returns the position of the maximal element of sv[first last) under the ordering defined
by comp

stl::lexicographical_compare (sv1firstl,lastl) (sv2first2,last2) comp
compares sv1[firstl lastl) and sv2[first2 last2) element by element according to the or-
dering defined by comp, and returns true if the first sequence is less than the second

Algorithms are provided for stepping through all the permutations the elements of a stlvec.
For these purposes, the first permutation has the elements of msv([first,last) sorted in ascend-
ing order and the last has the elements sorted in descending order.

stl::next_permutation (msvfirstlast) comp
rearranges msv/[first,last) to produce the next permutation, in the ordering imposed by
comp. If the elements of the next permutation is ordered (ascending or decending) by
comp, return false. Otherwise return true.

stl::prev_permutation (msv,firstlast) comp
next_permutation in reverse

12.11.3 Examples

See ut_minmax.pure in the pure-stlvec/ut directory.

12.12 STL Numeric Algorithms

The stlvec::numeric module provides an interface to the STL’s numeric algorithms.

448 12.12 STL Numeric Algorithms

Pure Language and Library Documentation, Release 0.59

12.12.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::numeric;

All of the functions are in the stl namespace.

12.12.2 Operations

stl::accumulate (sv,first last) x bin_fun
accumulate bin_fun over x and the members of sv|first,last), like foldl

stl::inner_product (sv1,firstl,lastl) (sv2,first2,last2) x bin_funl bin_fun2
initialize ret with x. Traverse pairs of elements of sv1[firstl,lastl) and sv2[first2,last2),
denoted by (el, e2), replacing ret with (bin_funl ret $ bin_fun2 el e2). The number
pairs traversed is equal to the size of sv1[firstl,lastl)

stl::partial_sum (sv,firstlast) (msv, p) bin_fun
accumulate bin_fun f over the elements of sv1[firstl, lastl), placing itermediate results
in msv[p,p+n), where n is last - first, and returns q where m is q - n and msv[m,q) is
the intermediate sequence

stl::adjacent_difference (sv firstlast) (msv, p) bin_fun
produce a sequence of new elements by applying bin_fun to adjacent elements of
svl[first,last), placing the new elements in msv[p,p+n), where n is last - first, with the
intermediate results, and returns q where m is q - n and msv[m,q) is the new sequence

12.12.3 Examples

See ut_numeric.pure in the pure-stlvec/ut directory.

12.13 Reference Counting

The following function, also in the stl namespace, is available if you want to observe how
pure-stlvec maintains reference counts for items in its containers.

stl::refcx
returns the x’s reference count (maintained by the Pure runtime for garbage collection
purposes)

12.14 Backward Compatibilty

This section documents changes in pure-stlvec that might have introduced backward com-
patiblity issues.

12.12.1 Imports 449

Pure Language and Library Documentation, Release 0.59

12.14.1 pure-stlvec-0.2

Bug fixes.

12.14.2 pure-stivec-0.3

Version 0.3 reflects some changes made to make pure-stlvec consistent with its sister package,
pure-stlmap.

The update function was deprecated. Please use replace instead.

The replace function was added to the stlvec module. This function is the same as update
except that “replace sv i x” returns x instead of sv.

The stl::replace function was removed from the stlvec/modifying module. You can use
“stl::replace_if (svfirstlast) (x==) y” instead of “stl::replace (svfirstlast) x y” to re-
place all instances of x in the specified range.

The function null was removed and stl::empty was added to replace it.
The function list was removed. You can use members instead.
The function stl:: random_shuffle was changed to take a seed as a second parameter.

All of the tracing functions were removed.

12.14.3 pure-stivec-0.4

Fixed (>) predicate operating on plain old data when passed to STL algorithms.

450 12.14 Backward Compatibilty

e 13

Gnumeric/Pure: A Pure Plugin for Gnumeric

Version 0.13, January 28, 2014
Albert Grif <aggraef@gmail.com>

Gnumeric/Pure is a Gnumeric extension which lets you use Pure functions in Gnumeric,
the Gnome spreadsheet. It offers better execution speed than the existing Perl and Python
plugins, and provides some powerful features not found in other Gnumeric scripting plug-
ins, such as asynchronous data sources created from Pure streams and OpenGL rendering in
Gnumeric frame widgets via Pure’s OpenGL module.

13.1 Introduction

This package provides a Gnumeric extension which gives you access to the Pure program-
ming language in Gnumeric. It works pretty much like the Perl and Python plugin loaders
which are distributed with Gnumeric, but Gnumeric/Pure offers some powerful features
which aren’t found in other Gnumeric scripting plugins:

* Pure is a functional programming language which fits the computational model of
spreadsheet programs very well.

* Pure is based on term rewriting and thus enables you to do symbolic computations in
addition to the usual numeric calculations.

¢ Pure has a built-in MATLAB/Octave-like matrix data structure which makes it easy to
deal with cell ranges in a spreadsheet in an efficient manner.

* Pure also provides a bridge to Octave so that you can call arbitrary Octave functions
using this extension.

* Gnumeric/Pure offers support for rendering OpenGL scenes in Gnumeric frame wid-
gets, via Pure’s own OpenGL interface.

451

mailto:aggraef@gmail.com
http://www.gnumeric.org/
http://purelang.bitbucket.org/
http://www.gnumeric.org/
http://purelang.bitbucket.org/
http://www.mathworks.com/
http://www.octave.org/
http://www.octave.org/
http://www.opengl.org/

Pure Language and Library Documentation, Release 0.59

¢ Pure also has built-in support for lazy data structures and thus allows you to han-
dle potentially infinite amounts of data such as the list of all prime numbers. Gnu-
meric/Pure lets you turn such lazy values into asynchronous data sources computed in
the background, which update the spreadsheet automatically as results become avail-
able.

¢ Last but not least, Pure is compiled to native code on the fly. This means that, while
startup times are a bit longer due to Pure’s JIT compiler kicking in (you'll notice this
if you open a spreadsheet with Pure functions), the resulting compiled code then typi-
cally executes much faster than equivalent interpreted Perl and Python code.

Once the plugin loader is installed and enabled, you can try the Pure functions in the pro-
vided examples and start adding your own plugin scripts. As of version 0.12, there’s a new
helper script pure-gnm which generates the required plugin.xml files to make this easy. Var-
ious examples can be found in the examples folder in the distribution, which should help
you to get started with Gnumeric/Pure fairly quickly.

For more advanced uses, Gnumeric/Pure also provides a programming interface which lets
you do various special tasks such as modifying entire ranges of cells with one Pure call, call-
ing Gnumeric functions from Pure, and setting up asynchronous data sources and OpenGL
frames. The manual explains all this in detail.

Note: This manual assumes that you're already familiar with Gnumeric as well as the Pure
language and its programming environment. If not then you should consult the correspond-
ing documentation to learn more about these.

13.2 Copying

Copyright (c) 2009-2013 by Albert Graef.

Gnumeric/Pure is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 2 of the License, or (at your option) any later version.

Gnumeric/Pure is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

13.3 Installation

Obviously, you need to have both Pure and Gnumeric installed. Pure 0.36 and Gnumeric
1.9.13 or later are known to work. The current version of this module (0.13, currently only

452 13.3 Installation

http://www.gnu.org/licenses/

Pure Language and Library Documentation, Release 0.59

available in Pure’s Mercurial repository) will work with the latest, GTK3-based versions of
Gnumeric (Gnumeric 1.11 and later, 1.12 has been tested). To obtain this version, clone the
Pure repository or download it as a zip file at https://bitbucket.org/purelang/pure-lang;
the module can be found in the gnumeric-pure subdirectory of the repository.

Unfortunately, the Gnumeric plugin interface changed in recent releases, so if you are still
running Gnumeric 1.10 or earlier then you should use version 0.12 of the module instead:

https:/ /bitbucket.org/purelang/pure-lang/downloads/gnumeric-pure-
0.12.tar.gz

In the 0.12 version of the module, the Makefile is set up to build Gnumeric/Pure with
OpenGL support, which requires that you have the OpenGL libraries as well as GtkGLExt
(the Gtk OpenGL extension) for GTK2 installed. These should be readily available on most
systems, but you can also disable this feature by invoking make as make GLDEPS=.

For the repository version, you'll need a GTK3-compatible version of GtkGLExt which can
be found at https://github.com/tdz/gtkglext. The OpenGL support under GTKS3 is still
under development and currently has some issues, however, so it is disabled by default. If
you want to give it a try then you’ll have to uncomment the GLDEPS line at the beginning of
the Makefile.

Run make to compile the software. You might have to adjust the settings at the beginning
of the Makefile to make this work. Once the compile goes through, you should now have a
pure_loader.so file in the pure-loader subdirectory. You can install the plugin and related
stuff with sudo make install in the global Gnumeric plugin directory, or if you prefer to
install it into your personal plugin directory then run make install-local instead. (The
latter is recommended if you plan to customize any of the sample plugin scripts included in
the distribution for your purposes.)

Typically, make install and make install-local will install the plugins into the following
directories by default (here and in the following <version> denotes the version of Gnumeric
you have installed):

¢ System-wide installations go into /usr/local/lib/gnumeric/<version>/plugins or
similar, depending on Gnumeric’s installation prefix (usually either /usr/local or
/usr).

¢ User-specific installations go into ~/.gnumeric/<version>/plugins.

The Makefile tries to guess the installation path and version number of Gnumeric on its
own. If it guesses wrong, you can change these using the Makefile variables prefix and
gnmversion, respectively. For instance:

$ make prefix=/usr gnmversion=1.12.4

In either case, make install also installs the pure-gnm helper script under the Pure instal-
lation prefix. (This is a little convenience script to generate the plugin.xml files used by
Gnumeric to load a plugin; see Defining Your Own Functions for details.)

If make install doesn’t work for some reason, you can also just copy the pure-func,
pure-glfunc and pure-loader directories manually to your Gnumeric plugin directory. You

13.3 Installation 453

https://bitbucket.org/purelang/pure-lang
https://bitbucket.org/purelang/pure-lang/downloads/gnumeric-pure-0.12.tar.gz
https://bitbucket.org/purelang/pure-lang/downloads/gnumeric-pure-0.12.tar.gz
http://gtkglext.sourceforge.net
https://github.com/tdz/gtkglext

Pure Language and Library Documentation, Release 0.59

can still run make install in the pure-gnm subdirectory to get the pure-gnm script installed
in this case.

13.4 Setup

Once Gnumeric/Pure has been properly installed, you should see it in Gnumeric’s
Tools/Plug-ins dialog. There are actually two main entries, one labelled “Pure functions”
and the other one labelled “Pure plugin loader”. You need to enable both before you can
start using Pure functions in your Gnumeric spreadsheets. There’s also a third entry labelled
“Pure OpenGL functions” which you might want to enable if you want to try the OpenGL
capabilities (this will only work if you built Gnumeric/Pure with OpenGL support and have
Pure’s OpenGL module installed; see OpenGL Interface for details).

Gnumeric doesn’t provide much in the way of GUI customization options right now, but at
least it’s possible for plugins to install and configure additional menu and toolbar options.
Gnumeric/Pure adds three additional options to the Tools menu which allow you to stop
asynchronous data sources, reload Pure scripts and edit them. After installation, the defi-
nitions of these items can be found in the pure-loader/pure-ui.xml file in your Gnumeric
plugin directory. Have a look at this file and edit is as desired. E.g., if you want to put the
Pure-related options into a submenu and enable toolbar buttons for these options, then your
pure-ui.xml file should look as follows:

<ui>
<menubar>
<menu name="Tools" action="MenuTools">
<separator/>

<menu name="Pure" action="PureMenu">
<menuitem action="PureStop"/>
<menuitem action="PureReload"/>
<menuitem action="PureEdit"/>
</menu>
</menu>
</menubar>
<toolbar name="StandardToolbar">
<separator/>
<toolitem action="PureStop"/>
<toolitem action="PureReload"/>
<toolitem action="PureEdit"/>
</toolbar>
</ui>

13.5 Basic Usage

With Pure/Gnumeric installed and enabled, you should be ready to join the fun now. Start
up Gnumeric, click on a cell and invoke the “f(x)” dialog. The Pure functions available for
use are shown in the “Pure” category. E.g., click on pure_hello. Now the Pure interpreter

454 13.5 Basic Usage

Pure Language and Library Documentation, Release 0.59

will be loaded and the function description displayed. Click “Ok” to select the pure_hello
function and then “Ok” again to actually insert the function call (without arguments) into the
current cell. You should now be able to read the friendly greeting returned by the function.

Of course, you can also enter the function call directly as a formula into a cell as usual. Click
on a cell, then enter the following:

=pure_hello(getenv("USER"))

The greeting should now be displayed with your login name in it.

Play around a bit with the other Pure functions. These functions are nothing special; they
are just ordinary Pure functions which are defined by the pure_func.pure script in the
pure-func subdirectory of your Gnumeric plugin directory. You can have a look at them
by invoking the “Edit Pure Scripts” option which gets added to the Tools/Pure menu once
the Pure plugin loader is enabled. (This will invoke the emacs editor by default, or the editor
named by the EDITOR environment variable. You can set this environment variable in your
shell’s startup files.) The Tools/Pure menu contains a second Pure-related option, “Reload
Pure Scripts” which can be used to quickly reload all loaded Pure scripts after edits; more
about that later.

Please note that most of the functions in pure_func.pure are rather useless, they are only
provided for illustrative purposes. However, there are some useful examples in there, too,
in particular:

* pure_eval lets you evaluate any Pure expression, given as a string in its first argument.
E.g., try something like =pure_eval("foldl (+) 0 (1..100)"). Additional parame-
ters are accessible as x!0, x!1, etc. For instance: =pure_eval("x!0+x!1",Al,B1).

* pure_echo just displays its arguments as a string in Pure syntax, as the interpreter sees
them. This is useful for debugging purposes. E.g., =pure_echo(A1:B10) shows the
given range as a Pure matrix.

* pure_shellis a variation of pure_eval which executes arbitrary Pure code and returns
the last evaluated expression (if any) as a string. This is mainly provided as a conve-
nience to create an “interactive Pure shell” which lets you evaluate Pure code inside
Gnumeric. To these ends, simply prepare a text cell for entering the code to be evalu-
ated, and then apply pure_shell on this text cell in another cell to display the result.

A spreadsheet showing most of the predefined functions in action can be found in
pure-examples.gnumeric example distributed with Gnumeric/Pure.

13.6 Interactive Pure Shell

The pure-examples.gnumeric spreadsheet also includes an instance of pure_shell which
lets you evaluate arbitrary Pure code in the same interpreter instance that executes Gnu-
meric/Pure functions. This is very helpful if you're developing new Pure functions to be
used in Gnumeric. It also lets you use Gnumeric as a kind of GUI frontend to the Pure inter-

13.6 Interactive Pure Shell 455

Pure Language and Library Documentation, Release 0.59

preter. You can try this now. Open the pure-examples spreadsheet in Gnumeric and enter
the following into the input cell of the Pure shell:

> scanl (+) 0 (1..20)
[0,1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210]

Note that here and in the following the prompt > indicates a Pure expression to be evaluated
in Gnumeric (rather than the standalone Pure interpreter), which is followed by another line
indicating the result (printed in the output cell below the input cell of the Pure shell). You
can find the Pure shell at the bottom of the first sheet in pure-examples, see the screenshot
below. For your convenience, there’s also a second, bigger one on the second sheet. You
might want to copy this over to a separate spreadsheet which you can use as a scratchpad
for experimentation purposes.

Interactive Pure Shell

Enter any Pure expression helow. (See the second sheet for a bigger command line.)
scanl () 0 (1..20)
[0,136,10,15 21 28 36 45 55 66 78 91,105 120,136,153,171 190 210]

v

Figure 13.1: The Pure shell.

Also note that this is in fact Pure code (not a Gnumeric formula) being evaluated there. You
can execute any Pure code, including Pure declarations, so you can type:

> using system; puts "Hello, world!";
14

This prints the string "Hello, world!" on standard output, visible in the terminal window
where you launched Gnumeric. Here is another example, showing how you can invoke any
function from the C library, by declaring it as a Pure extern function:

> extern int rand(); [rand | i = 1..5];
[1810821799,2106746672,1436605662,1363610028,695042099]

All functions in the Pure prelude are readily available in the Gnumeric Pure shell, as well
as the functions defined in pure_func.pure and its imports, including the programming
interface described in Advanced Features. For instance, here’s how you can retrieve a cell
value from the current sheet:

> get_cell "AIl"
"Gnumeric/Pure Examples"

Using call (see Calling Gnumeric from Pure), you can also invoke any Gnumeric function:

> call "product" (1..10)
3628800.0

456 13.6 Interactive Pure Shell

Pure Language and Library Documentation, Release 0.59

13.7 Defining Your Own Functions

After playing around with pure_func.pure and the interactive Pure shell for a while, of
course you will want to write your own functions, that’s what this extension is about after
all! This section shows you how to do this.

13.7.1 Creating a Simple Plugin

Let’s consider a simple example: the factorial function. In Pure this function can be imple-
mented as follows:

factorial [x] = foldl (%) 1 (1..x);

Note the list bracket around the argument x. You wouldn’t normally pass a single numeric
argument that way in Pure, but this is needed here since by default Gnumeric passes ar-
guments as a list to a Pure function. There are other ways to configure the call interface to
Pure functions, but these require that we tell Gnumeric about the number and types of argu-
ments, see Gnumeric/Pure Interface below. For the moment let’s stick to the default scheme,
however, in order to keep things simple.

Put the above definition into a script file, say, myplugin.pure. Next we need to create a
plugin.xml file to tell Gnumeric about our plugin and which functions it provides. While
these files can be written by hand, this is tedious and error-prone. Fortunately, recent Gnu-
meric/Pure versions provide the pure-gnm helper script which makes this quite easy. To use
pure-gnm with our plugin script, we have to add a special “hashbang” comment block to our
script which supplies the needed information. In our case, this might look as follows:

#! N: My Pure functions
#! C: Pure

#! D: My Pure functions.
#! F: factorial

You can add this comment block anywhere in your plugin script, but usually it is placed
near the beginning. The different fields have the following meaning;:

* N: the name of the plugin

¢ C: the function category

¢ D: a more detailed description of the plugin

* F:a whitespace-delimited list of Pure function names

The contents of the N and D fields (name and description) are visible in Gnumeric’s “Plugin
Manager” dialog. You should specify at least the name field (otherwise the plugin will be
displayed as “Unnamed” in the dialog), while the description is optional (if you don’t specify
one, the description of the plugin will be empty). The C field denotes the category under
which the functions listed in the F field will be shown in Gnumeric’s “f(x)” dialog; if you
don’t specify this, the functions will be in the “Unknown” category. The F field is the most
crucial part. It must contain all Pure functions defined in the plugin script or its imports that

13.7 Defining Your Own Functions 457

Pure Language and Library Documentation, Release 0.59

you want to be visible in Gnumeric, so you have to keep this in sync with the actual function
definitions in the script; if you don’t specify this, the plugin will provide no functions at all.

The D and F fields can also be split into multiple lines (each prefixed with the “hashbang”
comment marker and the corresponding field identifier) if necessary.

So our myplugin.pure script now looks like this:

#! N: My Pure functions

#! C: Pure
#! D: My Pure functions.
#! F: factorial

factorial [x] = foldl (%) 1 (1..x);

Once you've added the comment block, you can generate the plugin.xml file for the plugin
simply as follows:

$ pure-gnm myplugin.pure > plugin.xml

Note that by default pure-gnm writes the plugin.xml file to standard output which is useful
if you want to check the generated file first. To actually create the file, we simply redirect the
output to plugin.xml.

You'll have to redo this every time your plugin changes (i.e., you've added new functions or
deleted or renamed old ones, or changed the name or description of the plugin). It’s easy to
automate this step using make. E.g., the following Makefile will do the trick:

myplugin = myplugin.pure
all: plugin.xml

plugin.xml: $(myplugin)
pure-gnm $< > $@

clean:
rm -f plugin.xml

Now you can just run make in the plugin directory and it will rebuild the plugin.xml file as
needed.

13.7.2 The plugin.xml File

The plugin.xml file resulting from the previous step looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<plugin id="Gnumeric_myplugin">
<information>
<name>My Pure functions</name>
<description>My Pure functions.</description>
<require_explicit_enabling/>
</information>

458 13.7 Defining Your Own Functions

Pure Language and Library Documentation, Release 0.59

<loader type="Gnumeric_PurelLoader:pure">
<attribute name="module_name" value="myplugin.pure"/>
</loader>
<services>
<service type="function_group" id="myplugin">
<category>Pure</category>
<functions>
<function name="factorial"/>
</functions>
</service>
</services>
</plugin>

You can also edit this file by hand if you know what you're doing; in that case, please check
the Gnumeric documentation for details about the format of these files. The template used
by pure-gnm to generate these files can be found in the source distribution (see plugin.xml
in the pure-gnm folder) or under /usr/local/lib/pure-gnm after installation. You can edit
this file (carefully!) in order to implement global changes that you want to be in every
plugin.xml file generated by pure-gnm.

Two specific items that you might want to edit by hand are the
<require_explicit_enabling/> tag and the id properties of the <plugin> and <service>
tags:

* The <require_explicit_enabling/> tagindicates that Gnumeric shouldn’t enable the
new plugin until you explicitly tell it to. You can remove that line if you want Gnu-
meric to automatically enable new plugins as they are added to the system.

* The pure-gnm script automatically derives the id properties of the <plugin> and
<service> tags from the name of the plugin script, which is a sensible default in most
cases. However, you might have to change these identifiers if they happen to collide
with other Gnumeric plugins and services. This can be done by either editing the gen-
erated plugin.xml file or by renaming the plugin script accordingly.

Note that the only really Pure-specific part in the xml file is the loader description which also
names the Pure script implementing the plugin in the value of the module_name attribute. In
this case this is just "myplugin.pure". This path is taken relative to the directory containing
the plugin.xml file, but you can also specify an absolute path there if you want to keep
the plugin script elsewhere. To achieve this with pure-gnm, you can just invoke it with an
absolute path name, e.g.:

$ pure-gnm $PWD/myplugin.pure > plugin.xml
Now you can move the plugin.xml file whereever you like and still have Gnumeric find the

script file in its prescribed location. Again, this can be automatized using make fairly easily;
we’ll return to that in the following section.

13.7.2 The plugin.xml File 459

Pure Language and Library Documentation, Release 0.59

13.7.3 Loading the Plugin

We now have the plugin script myplugin.pure and the plugin.xml file in the same directory,
say, /some/path/myplugin. We still need to tell Gnumeric about the new plugin, though, so
that it can find it. Unfortunately, the mechanics of making a plugin known to Gnumeric are
somewhat involved, so we discuss the necessary steps in detail below. There are basically
three ways you can go about this:

¢ If you want to keep plugin script and the plugin.xml file where they are, you'll have to
change Gnumeric’s plugin path so that it includes the parent directory /some/path (not
/some/path/myplugin). This is done by adding the directory under the Directories tab
in Gnumeric’s Tools/Plug-ins dialog, after which you’ll have to restart Gnumeric so
that it picks up the changes in the plugin search path.

¢ Second, you can also move or copy the entire /some/path/myplugin directory to your
personal Gnumeric plugin folder (usually ~/.gnumeric/<version>/plugins). Gnu-
meric will always search this directory for new plugins by default, so modifying the
plugin search path is not necessary. However, keeping the plugin script in a hidden
location in your home directory may not be very convenient if you want to modify the
script later.

e Third, you can get the best of both previous methods by keeping the plugin script
where it is and copying just the plugin.xml file to your personal Gnumeric plugin
folder.

The third method tends to be the easiest, but note that it requires that the plugin script needs
to be specified as an absolute path (as sketched out previously). Fortunately, it’s fairly easy
to automate this with make. The following requires GNU make to work, and you'll also
need to have the Gnumeric development files installed, so that the Gnumeric version can
be determined easily with a shell command. These rules are to be added to the end of the
Makefile described previously under Creating a Simple Plugin.

gnmversion=$(shell pkg-config --modversion libspreadsheet-1.12)
plugindir=$(HOME)/.gnumeric/$(gnmversion)/plugins/myplugin

install: $(myplugin)
test -d $(plugindir) || mkdir -p $(plugindir)
pure-gnm $(CURDIR)/$< > $(plugindir)/plugin.xml

uninstall:
rm -rf $(plugindir)

Now you can just run make install to make the plugin known to Gnumeric. Note that we
also added a rule that allows you to uninstall the plugin if it isn’t needed any more.

In any case, once you fire up Gnumeric again, the new plugin should be listed as “My Pure
functions” on the Plugin List tab in the Tools/Plug-ins dialog. Check it to enable it. The
factorial function defined in the plugin should now be available and ready to be called
just like any other Gnumeric function. For instance, type this into a cell to have the factorial
of 10 computed:

460 13.7 Defining Your Own Functions

Pure Language and Library Documentation, Release 0.59

=factorial(10)

Also try saving the spreadsheet and loading it again after restarting Gnumeric. The plugin
will now be loaded automatically and the spreadsheet should display the proper value of
the factorial.

Note: Once you start playing around with your own Pure plugins, you may run into one
common mishap: You open an existing spreadsheet without having enabled the plugins it
uses. An easily visible symptom of that is that you'll see cells showing the #NAME? error. You
will then have to enable those plugins again and reload the spreadsheet afterwards, so that
everything is recalculated properly.

In contrast, just changing the body of a function in a plugin usually needs neither a restart
of Gnumeric nor a reloading of the spreadsheet. In this case it’s often sufficient to reload all
scripts with the “Reload Pure Scripts” option in the Tools/Pure menu, after which you can
use “Recalculate” (F9) to recompute the spreadsheet.

It is also worth mentioning here that the Pure loader can load multiple Pure plugins (and
of course each plugin can provide as many functions as you want). You only need to tell
Gnumeric about them after creating the scripts and plugin.xml files and placing them into
corresponding plugin directories. Just enable the ones that you want in Tools/Plug-ins. All
scripts are loaded in the same Pure interpreter (and thus are treated like one big script)
so that functions in one script can use the function and variable definitions in another. If
you need to access the definitions in the pure_func.pure “mother script”, you can also just
import it into your scripts with a using clause, i.e.: using pure_func;

Another important point is that a Pure plugin script is always loaded in the directory where
it is located, as indicated by the corresponding plugin.xml file, even if it is different from
the plugin directory. That is, the current working directory (which is normally the direc-
tory that Gnumeric was started in) is temporarily set to the directory holding the plugin
script while the script is being loaded. This enables the script to find imported scripts and
other files (such as media files or scripts written in other languages) that it may need at load
time. This wasn’t needed in this simple example, but you can find other examples in the
Gnumeric/Pure distribution which make good use of this feature.

13.7.4 Spicing It Up

Our plugin example is now essentially complete, but in order to make it really convenient
to use, we may want to add some information about how the factorial function is to be
called in Gnumeric. Gnumeric doesn’t keep this kind of information in the plugin.xml file,
but expects it to be provided by the plugin itself. In the Gnumeric/Pure interface this can
be done by adding a rule for the gnm_info function. In our example we tell Gnumeric that
factorial expects a single numeric argument. While we’re at it, we might as well add
some helpful documentation to be displayed in Gnumeric’s “f(x)” dialog. The details of this
are described in the following section, but to give you a sneak preview, here’s a beefed-up

13.7.4 Spicing It Up 461

Pure Language and Library Documentation, Release 0.59

version of our script which implements all this (you can also find this version of the example
along with a GNU Makefile in the Gnumeric/Pure distribution):

#! N: My Pure functions

#! C: Pure
#! D: My Pure functions.
#! F: factorial

factorial x = foldl (%) 1 (1..x);

using pure_func; // for the gnm_help function
gnm_info "factorial" = "f", gnm_help "factorial:factorial of a number"
["x:number"] "Computes the factorial of @{x}." []1 ["=factorial(10)"1 [1;

Fire up Gnumeric again, press the “f(x)” button and select factorial under the Pure cat-
egory. The “f(x)” dialog should now display the additional information we added above.
Also note that Gnumeric now knows that this function is supposed to be called with exactly
one f (numeric) argument. Therefore the list brackets around the argument of factorial
aren’t needed any more, so don’t forget to remove them, as shown in the above code sam-

ple.

This completes our little example. As an exercise, you're invited to add more functions on
your own. (Don’t forget to change the #! F line accordingly and rerun pure-gnm when you
do this, so that Gnumeric knows about the new functions.) It also pays off to take a look
at some of the other included examples, you can find these in the examples folder of the
distribution tarball.

13.8 Gnumeric/Pure Interface

We already explained in the previous section that, when a Pure function is called from Gnu-
meric, it receives its arguments in a list by default. However, it is possible to tell Gnumeric
about the expected arguments of the function and also specify a help text to be displayed in
the “f(x)” dialog, by giving a definition of the gnm_info function as explained below.

Note that gnm_info is really an ordinary Pure function. Thus, rather than hardcoding this
information as static text (such as the “docstrings” used in Gnumeric’s Python extension),
the function descriptions can also be constructed dynamically in corresponding Pure code.
This offers an opportunity for programmatic customizations. But note that the gnm_info
function will only be invoked when the plugin script is loaded, so once that is done the
function description remains the same for the entire Gnumeric session.

13.8.1 Function Descriptions
To describe a given function to Gnumeric, define gnm_info "<name>" (where <name> is the
name of the function) as a pair with the following elements:

* The first element, a string, gives the signature of the function. E.g., "" denotes a func-
tion without arguments, "f" a function taking a single float parameter, "fs" a function

462 13.8 Gnumeric/Pure Interface

Pure Language and Library Documentation, Release 0.59

taking a float and a string argument (in that order), etc. Optional parameters can be in-
dicated using |, asin "ff|s" (two non-optional floats, followed by an optional string).
See below for a complete list of the supported parameter types.

* The second element is a list of hash pairs key=>text which together make up the
help text shown in Gnumeric’s “f(x)” dialog. You should at least specify the func-
tion name along with a short synopsis here, e.g. GNM_FUNC_HELP_NAME => "frob:the
frob function". Parameter descriptions take the form GNM_FUNC_HELP_ARG =>
"x:integer". There are a number of other useful elements, see below for details.

Both the signature and the function description are optional. That is, gnm_info may return
either just a signature string, or a list of hash pairs with the function description, or both.
The signature defaults to a variadic function which takes any number of parameters of any
type (see below), and the description defaults to some boilerplate text which says that the
function hasn’t been documented yet.

Note that if no signature is given, then the function accepts any number of parameters of any
type. In that case, or if there are optional parameters, the function becomes variadic and the
(optional) parameters are passed as a Pure list (in addition to the non-optional parameters).

Here’s the list of valid parameter types, as they are documented in the Gnumeric sources:

f : float no errors, string conversion attempted

b : boolean identical to f

s : string no errors

S : scalar any non-error scalar

E : scalar any scalar, including errors

r : cell range content may not be evaluated yet

A : area array, range (as above), or scalar

? : anything any value (scalars, non-scalars, errors, whatever)

The keys used in the function description may be any of the following, along with sample
text for each type of field:

GNM_FUNC_HELP_NAME => "name:synopsis"
GNM_FUNC_HELP_ARG => "name:parameter description"
GNM_FUNC_HELP_DESCRIPTION => "Long description."
GNM_FUNC_HELP_NOTE => "Note."
GNM_FUNC_HELP_EXAMPLES => "=sample_formula()"
GNM_FUNC_HELP_SEEALSO => "foo,bar,..."

The following keys are only supported in the latest Gnumeric versions:

GNM_FUNC_HELP_EXTREF => "wiki:en:Trigonometric_functions"
GNM_FUNC_HELP_EXCEL => "Excel compatibility information."
GNM_FUNC_HELP_ODF => "OpenOffice compatibility information."

Note that inside the descriptions, the notation @{arg} (@arg in older Gnumeric versions) can
be used to refer to a parameter value. For instance, here’s a sample description for a binary
function which also includes a help text:

13.8.1 Function Descriptions 463

Pure Language and Library Documentation, Release 0.59

gnm_info "pure_max" = "ff",

[GNM_FUNC_HELP_NAME => "pure_max:maximum of two numbers",
GNM_FUNC_HELP_ARG => "x:number",

GNM_FUNC_HELP_ARG => "y:number",

GNM_FUNC_HELP_DESCRIPTION =>

"Computes the maximum of two numbers @{x} and @{y}.",
GNM_FUNC_HELP_EXAMPLES => "=pure_max(17,22)"1;

As you can see, the function descriptions are a bit unwieldy, so it’s convenient to construct
them using this little helper function defined in pure_func.pure:

gnm_help name::string args descr::string notes examples see_also =

[GNM_FUNC_HELP_NAME => name] +

[GNM_FUNC_HELP_ARG => x | x::string = args] +
[GNM_FUNC_HELP_DESCRIPTION => descr] +
[GNM_FUNC_HELP_NOTE => x | x::string = notes] +

[GNM_FUNC_HELP_EXAMPLES => X | x::string = examples] +
(if null see_also then [] else

[GNM_FUNC_HELP_SEEALSO => join "," see_alsol);

Now the description can be written simply as follows:

gnm_info "pure_max" = "ff", gnm_help "pure_max:maximum of two numbers"
["x:number", "y:number"]
"Computes the maximum of two numbers @{x} and @{y}."
[1 ["=pure_max(17,22)"1 [1;

Since this function only has fixed arguments, it will be called in curried form, i.e., as
pure_max x y. For instance, the actual definition of pure_max may look as follows:

pure_max X y = max X V;

Conversely, if no signature is given, then the function accepts any number of parameters of
any type, which are passed as a list. For instance:

gnm_info "pure_sum" = gnm_help "pure_sum:sum of a collection of numbers"
[1 "Computes the sum of a collection of numbers."
[1 ["=pure_sum(1,2,3,4,5,6)"]1 ["pure_sums"];

Here the function will be called as pure_sum [x1,x2,...], where x1, x2, etc. are the argu-
ments the function is invoked with. Note that in this case there may be any number of argu-
ments (including zero) of any type, so your function definition must be prepared to handle
this. If a function does not have a gnm_info description at all then it is treated in the same
fashion. The pure_func.pure script contains some examples showing how to write func-
tions which can deal with any numbers of scalars, arrays or ranges, see the pure_sum and
pure_sums examples. These employ the following ranges function to “flatten” a parameter
list to a list holding all denoted values:

ranges xs = cat [case x of _::matrix = list x; _ = [x] end | X = xs];

E.g., the pure_sum function can now be defined as follows:

464 13.8 Gnumeric/Pure Interface

Pure Language and Library Documentation, Release 0.59

pure_sum xs = foldl (+) 0 (ranges Xxs);

A function may also have both fixed and optional arguments (note that in what follows we're
going to omit the detailed function descriptions for brevity):

gnm_info "foo" = "ff|ff";

In this case the fixed arguments are passed in curried form as usual, while the optional

parameters are passed as a list. That is, foo may be called as foo x y [], foo x y [z] or
foo x y [z,t], depending on whether it is invoked with two, three or four arguments.

13.8.2 Conversions Between Pure and Gnumeric Values

The marshalling of types between Gnumeric and Pure is pretty straightforward; basically,
Pure numbers, strings and matrices map to Gnumeric numbers, strings and arrays, respec-
tively. The following table summarizes the available conversions:

Pure Gnumeric

gnm_error "#N/A" error

4711,4711L,4711.0 | scalar (number)

"Hello world" string

() empty

(1,2,3) array

[1,2,3] array

{1,2,3;4,5,6} array (or cell range)
"Al:B10" cell range ("r" conversion)

These conversions mostly work both ways. Note that on input, cell ranges are usually passed
as matrices to Pure functions (i.e., they are passed “by value”), unless the function signature
specifiesa "r" conversion in which case the cell ranges themselves are passed to the function
in string form. (Such values can also be passed on to Gnumeric functions which expect a cell
range ("r") parameter, see Calling Gnumeric from Pure below.)

Conversely, matrices, lists and tuples all become Gnumeric arrays on output, so usually
you’ll want to enter these as array functions (Ctrl-Shift-Enter in Gnumeric). As a special
case, the empty tuple can be used to denote empty cell values (but note that empty Gnumeric
values may become zeros when passed as float or array arguments to Pure functions).

Another special case is a term of the form gnm_error msg, where msg is a string value indi-
cating a Gnumeric error value such as "#N/A", "#NAME?", "#NULL!", etc. When returned by a
plugin function, the error text will be displayed in the corresponding Gnumeric cell.

If a Pure function returns a value that doesn’t match any of the above then it is converted
to a string in Pure expression syntax and that string is returned as the result of the function
invocation in Gnumeric. This makes it possible to return any kind of symbolic Pure value,
but note that if such a value is then fed into another Pure function, that function will have to
convert the string value back to the internal representation if needed; this can be done very
conveniently using Pure’s eval function, see the Pure documentation for details.

13.8.2 Conversions Between Pure and Gnumeric Values 465

Pure Language and Library Documentation, Release 0.59

13.9 Advanced Features

This section explains various additional features provided by the Gnumeric/Pure interface
that should be useful for writing your own functions. Note that for your convenience all
functions discussed in this section are declared in pure_func.pure.

13.9.1 Calling Gnumeric from Pure

It is possible to call Gnumeric functions from Pure using the call function which takes the
name of the function (a string) as its first, and the parameters as the second (list) argument.
For instance:

gnm_info "gnm_bitand" = "“ff";
gnm,bitand Xy = call "pbitand" [X,y];

Note that call is an external C function provided by Gnumeric/Pure. If you want to use it,
it must be declared in your Pure script as follows:

extern exprx pure_gnmcall(charx name, exprx args) = call;

However, pure_func.pure already contains the above declaration, so you don’t have to do
this yourself if you import pure_func.pure in your scripts.

Also note that call doesn’t do any of Gnumeric’s automatic conversions on the parameters,
so you have to pass the proper types of arguments as required by the function.

13.9.2 Accessing Spreadsheet Cells

Gnumeric/Pure provides the following functions to retrieve and modify the contents of
spreadsheet cells and ranges of such cells:

extern exprx pure_get_cell(charx s) = get_cell;

extern exprx pure_get_cell_text(charx s) = get_cell_text;

extern exprx pure_get_cell_format(charx s) = get_cell_format;

extern exprx pure_set_cell(char*x s, expr *x) = set_cell;

extern exprx pure_set_cell_text(charx s, expr *x) = set_cell_text;
extern exprx pure_set _cell_format(charx s, expr *xx) = set_cell format;
extern exprx pure_get_range(charx s) = get_range;

extern exprx pure_get_range_text(charx s) = get_range_text;

extern exprx pure_get_range_format(charx s) = get_range_format;