The IXTEX3 Sources

The BTEX3 Project™
Released 2018/03/05

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for BTEX commands, which
allow the BKTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of ¥TEX 2¢. In time,
a I¥TEX3 format will be produced based on this code. This allows the code to be
used in TEX 2¢ packages now while a stand-alone I¥TEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I Introduction to expl3 and this document

1

I1

II1

IV

Naming functions and variables

1.1 Terminological inexactitude

Documentation conventions
Formal language conventions which apply generally

TEX concepts not supported by BTEX3

The I13bootstrap package: Bootstrap code

Using the BTEX3 modules

1.1 Internal functions and variables.

The I13names package: Namespace for primitives

Setting up the B'TEX3 programming language

The I13basics package: Basic definitions
No operation functions
Grouping material

Control sequences and functions

3.1 Defining functionso oo
3.2 Defining new functions using parameter text
3.3 Defining new functions using the signature
3.4 Copying control sequences
3.5 Deleting control sequences
3.6 Showing control sequences L.
3.7 Converting to and from control sequences

Using or removing tokens and arguments

4.1 Selecting tokens from delimited arguments

Predicates and conditionals

5.1 Tests on control sequences
5.2 Primitive conditionals L L.

Internal kernel functions

The I3expan package: Argument expansion

ii

17
19

19
20
21

22

25

10

VI

10
11
12
13

14

Defining new variants

Methods for defining variants
Introducing the variants
Manipulating the first argument
Manipulating two arguments
Manipulating three arguments
Unbraced expansion

Preventing expansion
Controlled expansion

Internal functions and variables

The 13tl package: Token lists

Creating and initialising token list variables

Adding data to token list variables
Modifying token list variables
Reassigning token list category codes
Token list conditionals

Mapping to token lists

Using token lists

Working with the content of token lists
The first token from a token list
Using a single item

Viewing token lists

Constant token lists

Scratch token lists

Internal functions

VII The I3str package:Strings

iii

25
26
27
29
30
30
31
32
33

35

37
37
38
39
39
40
42
44
45
46
49
49
49
50

50

51

Building strings

Adding data to string variables

2.1 Modifying string variables
2.2 String conditionals L oL oo

Mapping to strings

Working with the content of strings
String manipulation

Viewing strings

Constant token lists

Scratch strings

8.1 Internal string functions oL oL

VIII The I13seq package: Sequences and stacks

1

2

10
11
12

13

IX

Creating and initialising sequences
Appending data to sequences
Recovering items from sequences
Recovering values from sequences with branching
Modifying sequences

Sequence conditionals

Mapping to sequences

Using the content of sequences directly
Sequences as stacks

Sequences as sets

Constant and scratch sequences
Viewing sequences

Internal sequence functions

The 13int package: Integers

Integer expressions

iv

51

52
93
93

55
57
60
61
62

62
62

64
64
65
65
66
68
68
69
70
71
72
73
74

74

75

75

10
11
12
13

14

XI

2

Creating and initialising integers
Setting and incrementing integers
Using integers

Integer expression conditionals
Integer expression loops

Integer step functions

Formatting integers

Converting from other formats to integers
Viewing integers

Constant integers

Scratch integers

Primitive conditionals

Internal functions

The 13intarray package: low-level arrays of small integers

13intarray documentation

1.1 Imternal functions L o
The 13flag package: expandable flags

Setting up flags

Expandable flag commands

XII The I3quark package: Quarks

1

Introduction to quarks and scan marks
1.1 Quarks

Defining quarks
Quark tests
Recursion

An example of recursion with quarks

76
77
77
78
79
81
81
83
84
85
85
86

87

88

88
88

89
89

90

91

91
91

91
92
92

93

6 Internal quark functions 94

7 Scan marks 94
XIII The 13prg package: Control structures 96
1 Defining a set of conditional functions 96
2 The boolean data type 98
3 Boolean expressions 100
4 Logical loops 102
5 Producing multiple copies 103
6 Detecting TEX’s mode 103
7 Primitive conditionals 103
8 Internal programming functions 104
XIV The I3clist package: Comma separated lists 105
1 Creating and initialising comma lists 105
2 Adding data to comma lists 106
3 Modifying comma lists 107
4 Comma list conditionals 108
5 Mapping to comma lists 108
6 Using the content of comma lists directly 110
7 Comma lists as stacks 111
8 Using a single item 112
9 Viewing comma lists 112
10 Constant and scratch comma lists 113
XV The I3token package: Token manipulation 114
1 Creating character tokens 114
2 Manipulating and interrogating character tokens 116

3 Generic tokens 119

vi

4 Converting tokens 119

5 Token conditionals 119
6 Peeking ahead at the next token 123
7 Decomposing a macro definition 125
8 Description of all possible tokens 126
9 Internal functions 128
XVI The I3prop package: Property lists 129
1 Creating and initialising property lists 129
2 Adding entries to property lists 130
3 Recovering values from property lists 130
4 Modifying property lists 131
5 Property list conditionals 131
6 Recovering values from property lists with branching 132
7 Mapping to property lists 132
8 Viewing property lists 133
9 Scratch property lists 134
10 Constants 134
11 Internal property list functions 134
XVII The I3msg package: Messages 136
1 Creating new messages 136
2 Contextual information for messages 137
3 Issuing messages 138
4 Redirecting messages 140
5 Low-level message functions 141
6 Kernel-specific functions 142

7 Expandable errors 144

vii

8 Internal I3msg functions 144
XVIII The I3file package: File and I/O operations 145
1 File operation functions 145

1.1 Input-output stream management 146

1.2 Reading from files Lo 148
2 Writing to files 150

2.1 Wrapping lines in output Lo 152

2.2 Constant input-output streams, and variables 153

2.3 Primitive conditionalso Lo 153

2.4 Internal file functions and variables 153

2.5 Internal input-output functions 154
XIX The I3skip package: Dimensions and skips 155
1 Creating and initialising dim variables 155
2 Setting dim variables 156
3 Utilities for dimension calculations 156
4 Dimension expression conditionals 157
5 Dimension expression loops 159
6 Dimension step functions 160
7 Using dim expressions and variables 161
8 Viewing dim variables 162
9 Constant dimensions 163
10 Scratch dimensions 163
11 Creating and initialising skip variables 163
12 Setting skip variables 164
13 Skip expression conditionals 165
14 Using skip expressions and variables 165
15 Viewing skip variables 165
16 Constant skips 166
17 Scratch skips 166

viii

18 Inserting skips into the output 166

19 Creating and initialising muskip variables 167
20 Setting muskip variables 167
21 Using muskip expressions and variables 168
22 Viewing muskip variables 168
23 Constant muskips 169
24 Scratch muskips 169
25 Primitive conditional 169
26 Internal functions 169
XX The I3keys package: Key—value interfaces 170
1 Creating keys 171
2 Sub-dividing keys 175
3 Choice and multiple choice keys 175
4 Setting keys 178
5 Handling of unknown keys 178
6 Selective key setting 179
7 Utility functions for keys 180
8 Low-level interface for parsing key—val lists 181
XXI The I3fp package: floating points 183
1 Creating and initialising floating point variables 184
2 Setting floating point variables 185
3 Using floating points 185
4 Floating point conditionals 187
5 Floating point expression loops 188
6 Some useful constants, and scratch variables 190

7 Floating point exceptions 191

ix

10

Viewing floating points

Floating point expressions

9.1 Input of floating point numberso
9.2 Precedence of operators oL L
9.3 Operations e

Disclaimer and roadmap

XXII The I3sort package: Sorting functions

1

Controlling sorting

XXIIT The I3tl-build package: building token lists

1

13tl-build documentation
1.1 Imternal functions

XXIV The I3tl-analysis package: analysing token lists

1

13tl-analysis documentation

XXV The I3regex package: regular expressions in TEX

1

Regular expressions

1.1 Syntax of regular expressions
1.2 Syntax of the replacement text L.
1.3 Pre-compiling regular expressions
1.4 Matching o
1.5 Submatch extractiono oo
1.6 Replacement
1.7 Constants and variables
1.8 Bugs, misfeatures, future work, and other possibilities

XXVI The I13box package: Boxes

Creating and initialising boxes

Using boxes

Measuring and setting box dimensions
Box conditionals

The last box inserted

Constant boxes

192

192
192
193
194

201

204

204

205

205
205

206

206

207

207
207
212
214
214
215
216
216
217

220
220
221
222
222
223

223

10

11

12

13

Scratch boxes

Viewing box contents
Boxes and color
Horizontal mode boxes
Vertical mode boxes
Affine transformations

Primitive box conditionals

XXVII The I3coffins package: Coffin code layer

1

2

Creating and initialising coffins
Setting coffin content and poles
Joining and using coffins
Measuring coffins

Coffin diagnostics

5.1 Constants and variables

XXVIII The I3color-base package: Color support

1

Color in boxes

1.1 Internal functions o

XXIX The 13sys package:System/runtime functions

1

2

3

4

XXX The I3deprecation package: Deprecation errors

1

The name of the job
Date and time
Engine

Output format

13deprecation documentation

223
223
224
224
225
227

229

231
231
231
232

233

237
237

238

239

239

XXXI The 13candidates package: Experimental additions to
I13kernel

Xi

240

1 Important notice 240

2 Additions to I3basics 241
3 Additions to 13box 242

3.1 Viewing partofabox oo 242
4 Additions to 13clist 242
5 Additions to 13coffins 243
6 Additions to 13expan 243
7 Additions to I3file 243
8 Additions to I3int 244
9 Additions to 13msg 244
10 Additions to I13prg 245
11 Additions to I3prop 246
12 Additions to I3seq 247
13 Additions to 13skip 248
14 Additions to I13sys 248
15 Additions to I3tl 249
16 Additions to I3token 254
XXXII The I3luatex package:LuaTeX-specific functions 255
1 Breaking out to Lua 255

1.1 TgX code interfaces 255

1.2 Luainterfaces L 256
XXXIII The I3drivers package: Drivers 257
1 Box clipping 257
2 Box rotation and scaling 258

3 Color support 258

xii

4 Drawing 258
4.1 Path construction Lo 259
4.2 Stroking and filling L Lo 260
4.3 Stroke options 261
4.4 Color e 261
4.5 Inserting TEX material L o oL 262
4.6 Coordinate system transformations. 262
XXXIV Implementation 262
1 13bootstrap implementation 262
1.1 Format-specific codeo 262
1.2 The \pdfstrcmp primitive in XgITEX 263
1.3 Loading support Luacode, 263
1.4 Engine requirements L Lo 264
1.5 Extending allocators o 265
1.6 Character data L 266
1.7 The BTEX3 code environment 268
2 I3names implementation 269
3 I3basics implementation 291
3.1 Renaming some TEX primitives (again) 292
3.2 Defining some constants oL oL L 294
3.3 Defining functions oL oL 294
3.4 Selecting tokenso L 295
3.5 Gobbling tokens from input 296
3.6 Debugging and patching later definitions 296
3.7 Conditional processing and definitions 304
3.8 Dissecting a control sequence oL 309
3.9 Existorfree 311
3.10 Preliminaries for new functions L oL 313
3.11 Defining new functions oL oL 314
3.12 Copying definitions oL o 315
3.13 Undefining functions L o o 316
3.14 Generating parameter text from argument count 316
3.15 Defining functions from a given number of arguments 317
3.16 Using the signature to define functions 318
3.17 Checking control sequence equality 320
3.18 Diagnostic functions Lo Lo 320
3.19 Doing nothing functions L Lo 322
3.20 Breaking out of mapping functions 322

xiii

13expan implementation

4.1 General expansion e
4.2 Hand-tuned definitions
4.3 Definitions with the automated technique
4.4 Last-unbraced versionso oo
4.5 Preventing expansiono
4.6 Controlled expansion e
4.7 Defining function variants oL oo oL
13tl implementation

5.1 Functions L
5.2 Constant token lists
5.3 Adding to token list variables oL
5.4 Reassigning token list category codes
5.5 Modifying token list variables Lo
5.6 Token list conditionals L L oL
5.7 Mapping to token lists Lo
5.8 Using token lists L o
5.9 Working with the contents of token lists
5.10 Token by token changes L.
5.11 The first token from a token list
5.12 Using a singleitem L o
5.13 Viewing token lists L o
5.14 Scratch token lists Lo
I13str implementation

6.1 Creating and setting string variables
6.2 Modifying string variables oo oL
6.3 String comparisonso Lol e e e
6.4 Mapping tostrings Lo
6.5 Accessing specific characters in a string
6.6 Counting characters
6.7 The first character inastring L oL
6.8 String manipulation Lo oo
6.9 Viewingstrings L
6.10 Unicode data for case changing
13seq implementation

7.1 Allocation and initialisation L 0.
7.2 Appending data to eitherend L.
7.3 Modifying sequences o
7.4 Sequence conditionals L L L o
7.5 Recovering data from sequences oL
7.6 Mapping to SeqUENCEso e
7.7 USING SEQUENCES . .« v v v v v v e e i e e e e e e e e e e
7.8 Sequence stacks e e e e
7.9 Viewing sequenceso e e e e e
7.10 Scratch sequenceso

Xiv

323
323
326
328
330
331
332
332

340
340
342
343
345
348
351
356
357
358
360
362
367
367
368

369
369
370
371
374
376
381
382
383
385
385

10

11

12

13

13int implementation

8.1 Integer expressionso e e e
8.2 Creating and initialising integers L.
8.3 Setting and incrementing integers oL
8.4 Usingintegerso
8.5 Integer expression conditionals oL
8.6 Integer expression loops o o
8.7 Imteger step functions
8.8 Formatting integers Lo L Lo
8.9 Converting from other formats to integers
8.10 Viewing integer
8.11 Constant integers L e
8.12 Scratch integerso
8.13 Deprecated

13intarray implementation
9.1 Allocating arrays oot e e e e e
9.2 Arrayitems

I13flag implementation
10.1 Non-expandable flag commands
10.2 Expandable flag commands oL oo

13quark implementation
11.1 Quarkso
11.2 Scan markso

13prg implementation

12.1 Primitive conditionals Lo
12.2 Defining a set of conditional functions
12.3 The boolean data type. Lo
12.4 Boolean expressionso e
12.5 Logical loops o o e
12.6 Producing multiple copies Lo Lo o
12.7 Detecting TEX’'s mode Lo
12.8 Internal programming functions

13clist implementation

13.1 Allocation and initialisation
13.2 Removing spaces around items Lo
13.3 Adding data to comma lists oL
13.4 Comma lists as stacks oL oo o
13.5 Modifying comma lists. o oo
13.6 Comma list conditionals L.
13.7 Mapping to comma listso L Lo
13.8 Using comma lists Lo L
13.9 Using a singleitem o
13.10Viewing comma listso oo
13.11Scratch comma lists

XV

404
405
407
409
410
411
414
416
417
423
426
426
427
428

428
428
429

430
430
431

432
432
435

436
436
436
436
438
443
444
445
446

14

15

16

17

13token implementation

14.1 Manipulating and interrogating character tokens
14.2 Creating character tokens L.
14.3 Generic tokens Lo
14.4 Token conditionals oL Lo
14.5 Peeking ahead at the next token L.
14.6 Decomposing a macro definition
14.7 Deprecated functions L Lo

13prop implementation

15.1 Allocation and initialisation L.
15.2 Accessing data in property lists oL
15.3 Property list conditionals L 0oL
15.4 Recovering values from property lists with branching
15.5 Mapping to property lists Lo
15.6 Viewing property lists L o

13msg implementation

16.1 Creating messages« v v v v v v v i
16.2 Messages: support functions and text
16.3 Showing messages: low level mechanism
16.4 Displaying messages oo e e
16.5 Kernel-specific functionso oL
16.6 Expandable errors oL Lo

13file implementation
17.1 File operations Lo
17.2 Input operations oL
17.2.1 Variables and constantso L.
17.2.2 Stream management Lo e
17.2.3 Reading input oL
17.3 Output operations L
17.3.1 Variables and constants
17.4 Stream management 0oL oo
17.4.1 Deferred writingo
17.4.2 Immediate writing L oo
17.4.3 Special characters for writing L.
17.4.4 Hard-wrapping lines to a character count
17.5 MeSsages o v v v i e e
17.6 Deprecated functions

XVi

462
462
464
468
469
477
482
483

483
484
486
490
491
491
492

18

19

20

13skip implementation

18.1 Length primitives renamed 0.
18.2 Creating and initialising dim variables

18.3 Setting dim variables . .

18.4 Utilities for dimension calculations
18.5 Dimension expression conditionals

18.6 Dimension expression loo
18.7 Dimension step functions

DS o v e e e e e e

18.8 Using dim expressions and variables

18.9 Viewing dim variables .
18.10Constant dimensions . .
18.11Scratch dimensions . . .

18.12Creating and initialising skip variables

18.13Setting skip variables .

18.14Skip expression conditionalso
18.15Using skip expressions and variables
18.16Inserting skips into the output Lo

18.17Viewing skip variables
18.18Constant skips
18.19Scratch skips

18.20Creating and initialising muskip variables

18.21Setting muskip variables

18.22Using muskip expressions and variables
18.23Viewing muskip variables 00000

18.24Constant muskips . . .
18.25Scratch muskips

13keys Implementation
19.1 Low-level interface . . .
19.2 Constants and variables

19.3 The key defining mechanism
19.4 Turning properties into actions L.,

19.5 Creating key properties
19.6 Setting keys
19.7 Utilities
19.8 Messages

13fp implementation

xvii

540
540
541
542
543
544
546
547
548
550
950
951
551
552
953
954
954
554
555
555
555
5956
557
558
558
958

558
558
562
564
566
571
575
580
582

583

21

22

23

24

13fp-aux implementation

21.1 Internal representation o L oo
21.2 Using arguments and semicolons
21.3 Constants, and structure of floating points
21.4 Overflow, underflow, and exact zero
21.5 Expanding after a floating point number
21.6 Other floating point types
21.7 Packing digits Lo
21.8 Decimate (dividing by a power of 10)
21.9 Functions for use within primitive conditional branches
21.10Integer floating pointso
21.11Small integer floating points Lo
21.12x-like expansion expandably L oL oo
21.13Name of a function from its I13fp-parse name
21.14MeSSages i e

13fp-traps Implementation

22.1 Flags . . . o o o o e e
22.2 Traps e
22.3 Errors L e e e
22.4 MESSAZES .« v v e e e e e e e e e e e e e e e e e

13fp-round implementation
23.1 Rounding tools L
23.2 The round function

13fp-parse implementation
24.1 Work plan oL L
24.1.1 Storing results
24.1.2 Precedence and infix operators
24.1.3 Prefix operators, parentheses, and functions
24.1.4 Numbers and reading tokens one by one
24.2 Main auxiliary functions o L oo
24.3 Helpers o e e
24.4 Parsing one number Lo Lo
24.4.1 Numbers: trimming leading zeros
24.4.2 Number: small significand
24.4.3 Number: large significand
24.4.4 Number: beyond 16 digits, rounding
24.4.5 Number: finding the exponent
24.5 Constants, functions and prefix operators
24.5.1 Prefix operators
24.5.2 Constants
24.5.3 Functions
24.6 Main functions Lo
24.7 Infix operators
24.7.1 Closing parentheses and commas
24.7.2 Usual infix operators L
24.7.3 Juxtapositiono
24.7.4 Multi-character cases L Lo oL

xXviii

583
o83
585
585
588
o988
589
592
595
097
998
999
599
600
600

600
601
601
604
605

25

26

27

28

24.7.5 Ternary operator Lo oo
24.7.6 CompariSOns v v v i e e e e e
24.8 Tools for functions
24.9 Candidate: defining new I3fp functions
24.10MeSsageso

13fp-assign implementation

25.1 Assigning values
25.2 Updating values L L
25.3 Showing values
25.4 Some useful constants and scratch variables

13fp-logic Implementation

26.1 Syntax of internal functions oL
26.2 Existence test L
26.3 Comparisono e e e
26.4 Floating point expression loops
26.5 Extrema oL e e
26.6 Boolean operations Lo L Lo
26.7 Ternary operatoro e e e e

13fp-basics Implementation
27.1 Addition and subtraction L Lo
27.1.1 Sign, exponent, and special numbers
27.1.2 Absolute addition e
27.1.3 Absolute subtractiono
27.2 Multiplication L
27.2.1 Signs, and special numbers oo
27.2.2 Absolute multiplication,
27.3 Division L e e
27.3.1 Signs, and special numbers00
2732 Workplan oL L
27.3.3 Implementing the significand division
27.4 SQUAre TOOL . . v v v v i e e e e e e e
27.5 About thesign L
27.6 Operationson tuples

13fp-extended implementation

28.1 Description of fixed point numbers
28.2 Helpers for numbers with extended precision
28.3 Multiplying a fixed point number by a short one
28.4 Dividing a fixed point number by a small integer
28.5 Adding and subtracting fixed points L oL
28.6 Multiplying fixed points oo
28.7 Combining product and sum of fixed points
28.8 Extended-precision floating point numbers
28.9 Dividing extended-precision numbers. oL oL
28.10Inverse square root of extended precision numbers
28.11Converting from fixed point to floating point

Xix

658
658
659
660
660

661
661
661
661
664
668
669
670

671
671
672
674
676
681
681
682
684
684
685
688
693
700
700

29

30

31

32

33

13fp-expo implementation

29.1

Logarithm

29.1.1 Workplan
29.1.2 Some constants
29.1.3 Sign, exponent, and special numberso
29.1.4 AbsoluteIn

29.2

Exponential

29.2.1 Sign, exponent, and special numbers

29.3

Power e

13fp-trig Implementation

30.1

Direct trigonometric functions o000

30.1.1 Filtering special cases
30.1.2 Distinguishing small and large arguments
30.1.3 Small arguments
30.1.4 Argument reduction in degrees,
30.1.5 Argument reduction in radians
30.1.6 Computing the power series

30.2

Inverse trigonometric functionso oo

30.2.1 Arctangent and arccotangent
30.2.2 Arcsine and arccosine
30.2.3 Arccosecant and arcsecant

13fp-convert implementation

31.1
31.2
31.3
314
31.5
31.6
31.7
31.8
31.9

Dealing with tuples o
Trimming trailing zeros L Lo
Scientific notationo
Decimal representation oo 0oL
Token list representation
Formatting e
Convert to dimension or integer
Convert from a dimension
Useand eval e

31.10Convert an array of floating points to a comma list

13fp-random Implementation

32.1
32.2
32.3

Engine supporto L
Random floating point L Lo L
Random integer

13sort implementation

33.1
33.2
33.3
33.4
33.5
33.6
33.7

Variables L
Finding available \toks registers
Protected user commandso oo
Merge sort L
Expandable sorting L Lo
MESSAZES '+ v v e e e e e e e e e e e e e e e e e
Deprecated functions e

719
719
719
720
720
720
728
728
732

738
739
739
742
743
743
744
750
753
754
759
761

762
762
763
763
764
766
768
768
769
769
770

771
771
773
773

34

35

36

13tl-build implementation
34.1 Variables and helper functions
34.2 Building the token list Lo

13tl-analysis implementation

35.1 Internal functions
35.2 Internal format e
35.3 Variables and helper functions
35.4 Planof attack L
35.5 Disabling active characters L.
35.6 First pass e
35.7 Second Pass i e e e
35.8 Mapping through the analysis
35.9 Showing the results L L o
35.10MeSSageS e e e e e e e e e e e e e

13regex implementation

36.1 Planof attack L

36.2 Helpers o e
36.2.1 Constants and variables
36.2.2 Testing characters oL
36.2.3 Character property tests L.
36.2.4 Simple character escape oL

36.3 Compiling
36.3.1 Variables used when compiling
36.3.2 Generic helpers used when compiling
36.3.3 Mode
36.3.4 Framework
36.3.5 Quantifiers oL
36.3.6 Raw characters L L.
36.3.7 Character properties
36.3.8 Anchoring and simple assertions
36.3.9 Character classes
36.3.10 Groups and alternations
36.3.11 Catcodes and csnameso e
36.3.12Raw token lists with \u
36.3.130ther
36.3.14 Showing regexes« v v vt vt e e e e

36.4 Building
36.4.1 Variables used while building
36.4.2 Framework oL L L
36.4.3 Helpers for building an NFA
36.4.4 Building classes L e
36.4.5 Building groups Lo
36.4.6 Others L

36.5 Matching
36.5.1 Variables used when matching
36.5.2 Matching: framework oL L.
36.5.3 Using states of the NFAo oL
36.5.4 Actions when matching,

XX1

37

38

39

40

41

36.6 Replacement L
36.6.1 Variables and helpers used in replacement
36.6.2 Query and brace balance 0L
36.6.3 Framework
36.6.4 Submatches
36.6.5 Csnames in replacement
36.6.6 Characters in replacement
36.6.7 Anerror e

36.7 User functions L
36.7.1 Variables and helpers for user functions
36.7.2 Matching
36.7.3 Extracting submatches Lo 0oL
36.7.4 Replacement L o
36.7.5 Storing and showing compiled patterns.

36.8 Messages

36.9 Code for tracing L

13box implementation

37.1 Creating and initialising boxes oL
37.2 Measuring and setting box dimensions
373 Using boxes o . e e
37.4 Box conditionals L L
37.5 The last box inserted
37.6 Constant boxes
37.7 Scratch boxes e e e
37.8 Viewing box contents L Lo
37.9 Horizontal mode boxes o o
37.10Vertical mode boxes L Lo
37.11Affine transformations
37.12Deprecated functions L oo

13coffins Implementation

38.1 Coffins: data structures and general variables
38.2 Basic coffin functions Lo
38.3 Measuring coffins Lo
38.4 Coffins: handle and pole management
38.5 Coffins: calculation of pole intersections
38.6 Aligning and typesetting of coffins
38.7 Coffin diagnostics L L
38.8 MeSSageS .« . . o u e e e e e

13color-base Implementation

I13sys implementation

40.1 The name of the job L o
40.2 Time and date L
40.3 Detecting the engine L Lo o
40.4 Detecting the output L oL

13deprecation implementation

xxii

937

938
938
938
938
939

940

42

43

44

13candidates Implementation 941

42.1 Additions to I3basics 941
42.2 Additions to I3box 942
42.2.1 Viewing partof abox o oL 942
42.3 Additions to I3clist 944
42.4 Additions to 13coffins 945
42.4.1 Rotating coffins 945
42.4.2 Resizing coffins oL o o 949
42.5 Additions to I3file 952
42.6 Additions to I3int. 953
42,7 Additions to I3msg oL 955
42.8 Additions to I3prg o 956
42.9 Additions to I3propo 956
42.10Additions to I3seq L 958
42 11Additions to I3skip 959
42.12Additions to I3syso 960
42.13Additions to I3tlo 962
42.13.1 Unicode case changing 965
42.13.20ther additions to 13t 986
42 14Additions to 13token 989
I13luatex implementation 991
43.1 Breakingout toLua L L oo 991
43.2 MesSageso 991
43.3 Lua functions for internal use L oL 992
43.4 Generic Lua and font support oL 994
13drivers Implementation 995
44.1 Color support oL e e 996
44.1.1 dvips-style oL o 996
44.1.2 pdfmode oL 997
44.2 dvips driver 999
4421 Basicso e e e 999
44.3 Driver-specific auxiliaries L oL oo 999
44.3.1 Boxoperations L Lo 1000
44.4 TMAZES + « v v v e e e e e e e e e e e e e e 1001
445 Drawingo 1001
44.6 pdfmode driver L 1006
44.6.1 Basics e e 1006
44.6.2 Box operations L Lo 1007
447 Tages o o o e e e e e e e 1008
44.8 dvipdfmx driver Lo 1010
44.8.1 Basics oo e 1010
44.8.2 Box operationso Lo 1011
449 TMages o o o e e e e 1012
44.10xdvipdfmx drivero Lo 1014
44.11Tmages oL e e e e e 1014
44.12Drawing commands: pdfmode and (x)dvipdfmx 1015
44.13Drawing L. 1016
44.14dvisvgm driver L L. oL 1021

xxiii

44.14.1 Basics 1021

44.15Driver-specific auxiliarieso 1022
44.15.1Box operationso e 1022
44.16Images oL L 1024
44.17Drawingo e e e e e e 1024
Index 1032

XXiv

Part 1
Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the IMTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

ETREX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are in
general not expandable, unless specifically noted.

f The f specifier stands for full expansion, and in contrast to x stops at the first non-
expandable item (reading the argument from left to right) without trying to expand
it. For example, when setting a token list variable (a macro used for storage), the
sequence

\tl_set:Nn \1_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1l_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some arbitrary string).

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

c Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module! name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bool Either true or false.
box Box register.
clist Comma separated list.

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations.

dim “Rigid” lengths.

fp floating-point values;

1The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

\ExplSyntaxOn
\ExplSyntax0ff

int Integer-valued count register.
prop Property list.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
stream An input or output stream (for reading from or writing to, respectively).

t1l Token list variables: placeholder for a token list.

1.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and a
“token list variable” are in truth one and the same. On the other hand, some “variables”
are actually registers that must be initialised and their values set and retrieved with
specific functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the

function takes no arguments and so the name of the function is simply reprinted.
For programming functions, which use _ and : in their name there are a few addi-

tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N \seq_new:N (sequence)

\Sm‘ﬂ When a number of variants are described, the arguments are usually illustrated only for

the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type argument (in plain TEX terms, inside an \edef), as well
as within an f-type argument. These fully expandable functions are indicated in the
documentation by a star:

\cs_to_str:N * \cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN 3 \seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF x \sys_if_engine_xetex:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that \sys_if_engine_xetex:T, \sys_if_engine_xetex:F
and \sys_if_engine_xetex:TF are all available. Usually, the illustration will use the TF
variant, and so both (true code) and (false code) will be shown. The two variant forms
T and F take only (true code) and (false code), respectively. Here, the star also shows
that this function is expandable. With some minor exceptions, all conditional functions

in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

\1_tmpa_tl A short piece of text will describe the variable: there is no syntax illustration in this case.
In some cases, the function is similar to one in I#TEX 2¢ or plain TEX. In these cases,
the text will include an extra “TgpXhackers note” section:

\token_to_str:N x \token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or TEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way unless they impact on the
expected behaviour.

3 Formal language conventions which apply generally

As this is a formal reference guide for ITEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left

in the input stream: this will typically be part of a larger logical construct.

4 TEX concepts not supported by IBXTEX3

The TeX concept of an “\outer” macro is not supported at all by ITEX3. As such, the
functions provided here may break when used on top of IXTEX 2¢ if \outer tokens are
used in the arguments.

\ExplSyntax0On
\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2017-03-19

\GetIdInfo

Updated: 2012-06-04

Part 11
The I13bootstrap package
Bootstrap code

1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2¢ and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the IXTEX3 format, but work in
this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code régime in which spaces are
ignored and in which the colon (:) and underscore (_) are treated as “letters”, thus
allowing access to the names of code functions and variables. Within this environment,
~ is used to input a space. The \ExplSyntax0ff reverts to the document category code
régime.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
KTEX 2 provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/{month)/(day). If the (version) is given then
it will be prefixed with v in the package identifier line.

\RequirePackage{13bootstrap}
\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion

for version and \ExplFileDescription for the description.
To summarize: Every single package using this syntax should identify itself using

one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual IXTEX 2¢ category codes and the
I¥TREX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

1.1 Internal functions and variables

\1__kernel_expl bool A boolean which records the current code syntax status: true if currently inside a code
environment. This variable should only be set by \ExplSyntaxOn/\ExplSyntax0ff.

Part 111
The I13names package
Namespace for primitives

1 Setting up the KTEX3 programming language

This module is at the core of the M TEX3 programming language. It performs the following
tasks:

o defines new names for all TEX primitives;
o switches to the category code régime for programming;
e provides support settings for building the code as a TEX format.

This module is entirely dedicated to primitives, which should not be used directly
within ITEX3 code (outside of “kernel-level” code). As such, the primitives are not
documented here: The TpXbook, TgX by Topic and the manuals for pdfTEX, X#TEX and
LuaTgX should be consulted for details of the primitives. These are named based on the
engine which first introduced them:

\tex_... Introduced by TEX itself;
\etex_... Introduced by the e-TEX extensions;
\pdftex_... Introduced by pdfTEX;
\xetex_... Introduced by XHTEX;
\luatex_... Introduced by LuaTgX;
\utex_... Introduced by X#TEX and LuaTlgX;
\ptex_... Introduced by pTEX;
\uptex_. .. Introduced by upTEX.

\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

\group_insert_after:N

Part IV
The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted is empty at the beginning of a group: multiple applications
of \group_insert_after:N may be used to build the inserted list one (token) at a time.
The current group level may be closed by a \group_end: function or by a token with
category code 2 (close-group), namely a } if standard category codes apply.

3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an x expansion. In
contrast, “protected” functions are not expanded within x expansions.

3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type expansion.

Finally, the functions in Subsections 3.2 and 3.3 are primarily meant to define base
functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 2.

10

\cs_new:Npn
\cs_new:cpn
\cs_new:Npx
\cs_new:cpx

\cs_new_nopar:Npn
\cs_new_nopar:cpn
\cs_new_nopar : Npx
\cs_new_nopar:cpx

\cs_new_protected:Npn
\cs_new_protected:cpn
\cs_new_protected:Npx
\cs_new_protected:cpx

3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {({code)}
\cs_new_protected_nopar:cpn

\cs_new_protected_nopar:Npx

\cs_new_protected_nopar:cpx

\cs_set:Npn
\cs_set:cpn
\cs_set:Npx
\cs_set:cpx

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npx
\cs_set_protected:cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error results
if the (function) is already defined.

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type argument.

11

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {{code)}
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

\cs_gset:Npn
\cs_gset:cpn
\cs_gset :Npx
\cs_gset:cpx

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npx
\cs_gset_protected:cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {{code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

\cs_new:Nn
\cs_new:(cn|Nx|cx)

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

12

\cs_new_nopar:Nn
\cs_new_nopar: (cn|Nx|cx)

\cs_new_protected:Nn
\cs_new_protected: (cn|Nx|cx)

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {<code>}
\cs_new_protected_nopar:(cn|Nx|cx)

\cs_set:Nn
\cs_set:(cn|Nx|cx)

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Nx|cx)

\cs_set_protected:Nn
\cs_set_protected:(cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error results
if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is restricted to the current TEX group level.

13

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {(code)}
\cs_set_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type argument. The assignment of a meaning to the (function) is
restricted to the current TEX group level.

\cs_gset:Nn \cs_gset:Nn (function) {(code)}
\cs_gset:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

\cs_gset_nopar:Nn \cs_gset_nopar:Nn (function) {(code)}
\cs_gset_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
\cs_gset_protected: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {(code)}
\cs_gset_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type argument. The assignment of a meaning to the (function) is
global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator) {(number)}
\cs_generate_from_arg_count:(cNnn|Ncnn) {(code)}

Updated: 2012-01-14

Uses the (creator) function (which should have signature Npn, for example \cs_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

14

\cs_new_eq:NN
\cs_new_eq:(Nc|cN|cc)

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|cc)

\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

\cs_meaning:N *
\cs_meaning:c *

Updated: 2011-12-22

3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)
\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

\cs_set_eq:NN (cs1) (cs2)
\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (cs1) (cs2)
\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

3.6 Showing control sequences

\cs_meaning:N (control sequence)

This function expands to the meaning of the (control sequence) control sequence. For a
macro, this includes the (replacement text).

TEXhackers note: This is TEX’s \meaning primitive. The c variant correctly reports
undefined arguments.

15

\cs_show:N
\cs_show:c

Updated: 2017-02-14

\cs_log:N
\cs_log:c

New: 2014-08-22
Updated: 2017-02-14

\use:c *

\cs_if_exist_use:N «
\cs_if_exist_use:c *
\cs_if_exist_use:NTF *
\cs_if_exist_use:cTF x

New: 2012-11-10

\cs:w *
\cs_end: «*

\cs_show:N (control sequence)

Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the (control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Converts the given (control sequence name) into a single control sequence token. This
process requires two expansions. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically of category

code 10 (space), 11 (letter) or 12 (other), or a mixture of these.
As an example of the \use:c function, both

\use:c { abc }
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1._my_tl { abc }
\use:c { \tl_use:N \1_my_tl }

would be equivalent to
\abc

after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it is
inserts the (control sequence) into the input stream followed by the (true code). Otherwise
the (false code) is used.

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for {control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically of category
code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

As an example of the \cs:w and \cs_end: functions, both

16

\cs_to_str:N «%

\use:n
\use:nn
\use:nnn

*
*
*
\use:nnnn *

\cs:w a b ¢ \cs_end:
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The result does not include the current escape
token, contrarily to \token_to_str:N. Full expansion of this function requires exactly
2 expansion steps, and so an x-type expansion, or two o-type expansions are required to
convert the (control sequence) to a sequence of characters in the input stream. In most
cases, an f-expansion is correct as well, but this loses a space at the start of the result.

4 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n {(group1)
\use:nn {(group:)
\use:nnn {(group:)
\use:nnnn {(group:)

(groups)} {(groups)}

}

} {{group2)}
A

} {{group:)} {(groups)} {(groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }
results in the input stream containing
abc { def }

i.e. only the outer braces are removed.

17

\use_i:nn *
\use_ii:nn *
\use_i:nnn %
\use_ii:nnn *
\use_iii:nnn *
\use_i:nnnn *
\use_ii:nnnn
\use_iii:nnnn *
\use_iv:nnnn *
\use_i_ii:nnn *
\use_none:n *
\use_none:nn *
\use_none:nnn *
\use_none:nnnn *
\use_none:nnnnn *
\use_none:nnnnnn *
\use_none:nnnnnnn = *
\use_none:nnnnnnnn *
\use_none:nnnnnnnnn *

\use_i:nn {(argi)} {(argz)}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens is also fixed (if it
has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

\use_i:nnn {(argi)} {(arg:)} {(args)}

These functions absorb three arguments from the input stream. The function \use_i:nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content
of second or third arguments in the input stream, respectively. The category code of
these tokens is also fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the functions to take
effect.

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }
i.e. the outer braces are removed and the third group is removed.

\use_none:n {(group:)}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

18

\use:x \use:x {(expandable tokens)}

Updated: 2011-12-31 Fully

expands the (expandable tokens) and inserts the result into the input stream at the

current location. Any hash characters (#) in the argument must be doubled.

4.1

Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w * \use_none_delimit_by_q_nil:w (balanced text) \q_nil

\use_none_delimit_by_q_stop

W * \use_none_delimit_by_q_stop:w (balanced text) \gq_stop

\use_none_delimit_by_q_recursion_stop:w * \use_none_delimit_by_q_recursion_stop:w (balanced text)

\q_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw

% \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text)
* \q_nil

\use_i_delimit_by_q_recursion_stop:nw * \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

5

Predicates and conditionals

I¥TEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abcl} {(true code)} {(false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (true code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

19

\c_true_bool

\c_false_boo

1

\Cs_if_eq_p:NN
\cs_if_eq:NNTF

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

b I S

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_ free:cTF

* ok ot

Predicates “Predicates” are functions that return a special type of boolean value which
can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and BTEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

Constants that represent true and false, respectively. Used to implement predicates.

5.1 Tests on control sequences

\cs_if_eq_p:NN (cs1) (cs2)
\cs_if_eq:NNTF (csi) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any definition of (control sequence) other than \relax evaluates
as true.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test is false if
the (control sequence) currently exists (as defined by \cs_if_exist:N).

20

\if_true: *
\if_false: *
\else: *
\fi: *
\reverse_if:N *

\if _meaning:w *

\if:w *
\if_charcode:w
\if_catcode:w *

*

*

\if_cs_exist:N
\if_cs_exist:w *

\if_mode_horizontal:
\if _mode_vertical:
\if_mode_math:
\if_mode_inner:

5.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if _.

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in 13int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless

\if_meaning:w (argi) (arge) (true code) \else: (false code) \fi:

\if_meaning:w executes (true code) when (arg;) and (arge) are the same, otherwise it
executes (false code). (arg;) and (arge) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

\if:w (tokeni) (tokenz) (true code) \else: (false code) \fi:
\if _catcode:w (token;) (tokens) (true code) \else: (false code) \fi:

These conditionals expand any following tokens until two unexpandable tokens are left.
If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if_catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if _cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

21

__chk_if_free_cs:N
__chk_if_free_cs:c

__cs_count_signature:N *
__Cs_count_signature:c *
__cs_split_function:NN *

6 Internal kernel functions

\

This function checks that (cs) is free according to the criteria for \cs_if_free_p:N, and
if not raises a kernel-level error.

chk_if_free_cs:N (cs)

__cs_count_signature:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (number) of tokens in the (signature) is then left in the input
stream. If there was no (signature) then the result is the marker value —1.

\

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream after the
(processor) function in three parts: the (name), the (signature) and a logic token indi-
cating if a colon was found (to differentiate variables from function names). The (name)
does not include the escape character, and both the (name) and (signature) are made
up of tokens with category code 12 (other). The (processor) should be a function with
argument specification :nnN (plus any trailing arguments needed).

cs_split_function:NN (function) (processor)

\

cs_get_function_name:N x \

cs_get_function_name:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (name) is then left in the input stream without the escape
character present made up of tokens with category code 12 (other).

\

cs_get_function_signature:N x \

cs_get_function_signature:N (function)

__cs_tmp:w

__kernel_debug:TF

__kernel_chk_cs_exist:N
__kernel_chk_cs_exist:c

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (signature) is then left in the input stream made up of tokens
with category code 12 (other).

Function used for various short-term usages, for instance defining functions whose defini-
tion involves tokens which are hard to insert normally (spaces, characters with category
other).

__kernel_debug:TF {(true code)} {(false code)}

Runs the (true code) if debugging is enabled, namely only in I¥TEX 2¢ package mode with
one of the options check-declarations, enable-debug, or log-functions. Otherwise
runs the (false code). The T and F variants are not provided for this low-level conditional.

__kernel_chk_cs_exist:N (cs)

This function is only created if debugging is enabled. It checks that (cs) exists according
to the criteria for \cs_if_exist_p:N, and if not raises a kernel-level error.

22

__kernel_chk_expr:nNnN

__kernel_chk_var_exist:N

__kernel_chk_var_scope:NN

__kernel_chk_var_local:N
__kernel_chk_var_global:N

__kernel_debug_log:x

__kernel_patch:nnNNpn

__kernel_chk_expr:nNnN {(expr)} (eval) {(convert)} (caller)

This function is only created if debugging is enabled. By default it is equivalent to
\use_i:nnnn. When expression checking is enabled, it leaves in the input stream the
result of \tex_the:D (eval) (expr) \tex_relax:D after checking that no token was left
over. If any token was not taken as part of the expression, there is an error message
displaying the result of the evaluation as well as the (caller). For instance (eval) can
be __int_eval:w and (caller) can be \int_eval:n or \int_set:Nn. The argument
(convert) is empty except for mu expressions where it is \etex_mutoglue:D, used for
internal purposes.

__kernel_chk_var_exist:N (var)

This function is only created if debugging is enabled. It checks that (var) is defined
according to the criteria for \cs_if_exist_p:N, and if not raises a kernel-level error.

__kernel_chk_var_scope:NN (scope) (var)

Checks the (var) has the correct (scope), and if not raises a kernel-level error. This
function is only created if debugging is enabled. The (scope) is a single letter 1, g, c
denoting local variables, global variables, or constants. More precisely, if the variable
name starts with a letter and an underscore (normal expl3 convention) the function
checks that this single letter matches the (scope). Otherwise the function cannot know
the scope (var) the first time: instead, it defines __debug_chk_/{var name) to store
that information for the next call. Thus, if a given (var) is subject to assignments of
different scopes a kernel error will result.

__kernel_chk_var_local:N (var)
__kernel_chk_var_global:N (var)

Applies __kernel_chk_var_exist:N (var), then __kernel_chk_var_scope:NN (scope)
(var), where (scope) is 1 or g.

__kernel_debug_log:x {(message text)}

If the log-functions option is active, this function writes the (message text) to the log
file using \iow_log:x. Otherwise, the (message text) is ignored using \use_none:n. This
function is only created if debugging is enabled.

__kernel_patch:nnNNpn {(before)} {(after)}
(definition) (function) (parameters) {{code)}

If debugging is not enabled, this function ignores the (before) and (after) code and per-
forms the (definition) with no patching. Otherwise it replaces (code) by (before) (code)
(after) (which can involve #1 and so on) in the (definition) that follows. The (definition)
must start with \cs_new:Npn or \cs_set:Npn or \cs_gset:Npn or their _protected
counterparts. Other cases can be added as needed.

__kernel_patch_conditional:nNNpnn __kernel_patch_conditional:nNNpnn {(before)}

(definition) (conditional) (parameters) {(type)} {(code)}

Similar to __kernel_patch:nnNNpn for conditionals, namely (definition) must be
\prg_new_conditional:Npnn or its _protected counterpart. There is no (after) code
because that would interfere with the action of the conditional.

23

__kernel_patch_args:nNNpn __kernel_patch_args:nNNpn {(arguments)}
__kernel_patch_conditional_args:nNNpnn (definition) (function) (parameters) {(code)}

Like __kernel_patch:nnNNpn, this tweaks the following definition, but from the “inside
out” (and if debugging is not enabled, the (arguments) are ignored). It replaces #1, #2
and so on in the (code) of the definition as indicated by the {arguments). More precisely,
a temporary function is defined using the (definition) with the (parameters) and (code),
then the result of expanding that function once in front of the (arguments) is used instead
of the (code) when defining the actual function. For instance,

__kernel_patch_args:nNNpn { { (#1) } }
\cs_new:Npn \int_eval:n #1
{ __int_value:w __int_eval:w #1 __int_eval_end: }

would replace #1 by (#1) in the definition of \int_eval:n when debugging is enabled.
This fails if the (code) contains ##. The __kernel_patch_conditional_args:nNNpnn
function is for use before \prg_new_conditional:Npnn or its _protected counterpart.

__kernel_patch_args:nnnNNpn __kernel_patch_args:nnnNNpn {(before)} {(after)}
__kernel_patch_conditional_args:nnnNNpnn {(arguments)}

__kernel_check_defined:NT

__kernel _register_show:N
__kernel_register_show:c

__kernel_register_log:N
__kernel_register_log:c

Updated: 2015-08-03

__prg_case_end:nw *

(definition) (function) (parameters) {{code)}

A combination of __kernel_patch:nnNNpn and __kernel_patch_args:nNNpn.

__kernel_check_defined:NT (variable) {(true code)}

If (variable) is not defined (according to \cs_if_exist:NTF), this triggers an error,
otherwise the (true code) is run.

__kernel _register_show:N (register)

Used to show the contents of a TEX register at the terminal, formatted such that internal
parts of the mechanism are not visible.

__kernel _register_log:N (register)

Used to write the contents of a TEX register to the log file in a form similar to __-
kernel_register_show:N.

__prg_case_end:nw {(code)} (tokens) \q_mark {(true code)} \q_mark {(false code)}
\q_stop

Used to terminate case statements (\int_case:nnTF, etc.) by removing trailing (tokens)
and the end marker \q_stop, inserting the (code) for the successful case (if one is found)
and either the true code or false code for the over all outcome, as appropriate.

24

Part V
The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the I¥TEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions from the \exp_ mod-
ule. They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \1_tmpa_t1 }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }
results in the definition of \seq_gpush:No
\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

25

2 Methods for defining variants

We recall the set of available argument specifiers.

e N is used for single-token arguments while ¢ constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

o Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, f expands fully the first token, x expands fully all tokens at
the price of being non-expandable.

e A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

26

\cs_generate_variant:Nn
\cs_generate_variant :cn

Updated: 2017-11-28

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for IXTEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the (original argument specifier)
if these are not already defined. For each (variant) given, a function is created that
expands its arguments as detailed and passes them to the (parent control sequence). So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function can only be applied if the (parent control sequence) is already de-
fined. If the (parent control sequence) is protected or if the (variant) involves x arguments,
then the (variant control sequence) is also protected. The (variant) is created globally,
as is any \exp_args:N(variant) function needed to carry out the expansion.

Only n and N arguments can be changed to other types. The only allowed changes
are

e c variant of an N parent;
e 0,V, v, f, or x variant of an n parent;
e N,n, T, F, or p argument unchanged.

This means the (parent) of a (variant) form is always unambiguous, even in cases where
both an n-type parent and an N-type parent exist, such as for \t1l_count:n and \tl_-
count:N.

For backward compatibility it is currently possible to make n, o, V, v, £, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

3 Introducing the variants

It is usually best to follow the following guidelines when defining new functions that are
supposed to come with variant forms.

o Arguments that need full expansion (i.e., are denoted with x) should be avoided if
possible as they can not be processed expandably, ¢.e., functions of this type cannot
work correctly in arguments that are themselves subject to x expansion.

27

When speed is essential (for functions that do very little work and are used numerous
times in a document) the following applies because internal functions for argument ex-
pansion come in two flavours, some faster than others.

e Arguments that might need expansion should come first in the list of arguments.

e Arguments that should consist of single tokens N, c, V, or v should come first among
these.

e Arguments that appear after the first multi-token argument n, £ or o require slightly
slower special processing to be expanded. Therefore it is best to use the optimized
functions, namely those that contain only N, ¢, V, and v, and, in the last position,
o, £, with possible trailing N or n or T or F, which are not expanded.

The V type returns the value of a register, which can be one of t1, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Ounly
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands as much as can be done in such contexts.
For instance, say that we want to evaluate the integer expression 344 and pass the result
7 as an argument to an expandable function \example:n. For this, one should define a
variant using \cs_generate_variant:Nn \example:n { f }, then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }

results in the call \example:n { 3 , \int_eval:n { 3 + 4 } } while using \example:x
instead results in \example:n { 3 , 7 } at the cost of being protected. If you use this
type of expansion in conditional processing then you should stick to using TF type func-
tions only as the expansion does not finish any \if... \fi: itself!

It is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

28

\exp_args:Nc *
\exp_args:cc *

\exp_args:No *

\exp_args:NV *

\exp_args:Nv *

\exp_args:Nf *

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }
and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_t1 } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.

4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

\exp_args:Nc (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a control
sequence. (An internal error occurs if non-characters remain, as the conversion is not
possible.) The result is inserted into the input stream after reinsertion of the (function).
Thus the (function) may take more than one argument: all others are left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error occurs if non-characters remain, as the conversion is
not possible.) This control sequence should be the name of a (variable). The content of
the (variable) are recovered and placed inside braces into the input stream after reinser-
tion of the (function). Thus the (function) may take more than one argument: all others
are left unchanged.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after rein-
sertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

29

\exp_args:Nx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNc
NNo
NNV
NNv
NNf
Ncc
Nco
NcV
Ncv
Ncf
NVV

X X X X > b oF o ot

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

Nnc
Nno
NnV
Nnv
Nnf
Noc
Noo
Nof
NVo
Nfo
Nff

X X X > o b oF o ot

Updated: 20

12-01-14

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
Nccce
NcNc
NcNo
Ncco

* ot ot X X

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

5 Manipulating two arguments

\exp_args:NNc (token;) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokenss)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need slower processing.

\exp_args:NNx (tokeni) (tokens) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

6 Manipulating three arguments

\exp_args:NNNo (tokeni) (tokenz) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

30

\exp_args:NNcf
\exp_args:NNno
\exp_args:NNnV
\exp_args:NNoo
\exp_args:NNVV
\exp_args:Ncno
\exp_args:NcnV
\exp_args:Ncoo
\exp_args:NcVV
\exp_args:Nnnc
\exp_args:Nnno
\exp_args:Nnnf
\exp_args:Nnff
\exp_args:Nooo
\exp_args:Noof
\exp_args:Nffo

Xt X X X F b b o X X X X > ok ot

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

New: 2015-

NNNx
NNnx
NNox
Ncex
Ncnx
Nnnx
Nnox
Noox

08-12

\exp_args:NNoo (tokeni) (tokenz) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need slower processing.

\exp_args:NNnx (token:) (tokens) {(tokensi)} {(tokensi)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

7 Unbraced expansion

\exp_last_unbraced:No

\exp_last_unbraced:

\exp_last_unbraced:NNo

\exp_last_unbraced:

\exp_last_unbraced:Nno

\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:

(NV|Nv|NE)
(NNV|Nco|NcV)

(Noo|Nfo)
NNNo
NNNV
NnNo
NNNNo

\exp_last_unbraced:Nno (token) {(tokensi)} {(tokensz)}

ot Ot O X X X >k b b

Updated: 2012-02-12

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \g_stop leads to an infinite loop, as the quark is f-
expanded.

31

\exp_last_unbraced:Nx

\exp_last_unbraced:Nx (function) {(tokens)}

This function fully expands the (tokens) and leaves the result in the input stream after
reinsertion of the (function). This function is not expandable.

\exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo (token) {(tokensi)} {(tokenss)}

\exp_after:wN =*

\exp_not:N *

\exp_not:c *

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (tokem) (tokens)

Carries out a single expansion of (tokeny) (which may consume arguments) prior to the
expansion of (tokeny). If (tokeny) has no expansion (for example, if it is a character) then
it is left unchanged. It is important to notice that (token;) may be any single token, in-
cluding group-opening and -closing tokens ({ or } assuming normal TEX category codes).
Unless specifically required this should be avoided: expansion should be carried out using
an appropriate argument specifier variant or the appropriate \exp_arg:N function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N (token)

Prevents expansion of the (token) in a context where it would otherwise be expanded,
for example an x-type argument or the first token in an o or £ argument.

TEXhackers note: This is the TEX \noexpand primitive. It only prevents expansion.
At the beginning of an f-type argument, a space (token) is removed despite \exp_not:N. In
an x-expanding definition (\cs_new:Npx) a macro parameter (token) (normally #) denotes an
argument despite \exp_not:N (see \exp_not:n).

\exp_not:c {(tokens)}

Expands the (tokens) until only characters remain, and then converts this into a control
sequence. (An internal error occurs if non-characters remain, as the conversion is not
possible.) Further expansion of this control sequence is then inhibited using \exp_not:N.

32

\exp_not:n *

\exp_not:o *

*

\exp_not:V

\exp_not:v *

\exp_not:f *

\exp_stop_£f: «*

Updated: 2011-06-03

\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in an x-type argument. In other cases (input stream
or o or £ arguments) the (tokens) continue being expanded.

TEXhackers note: This is the e-TEX \unexpanded primitive. Hence its argument must
be surrounded by braces. In an x-expanding definition (\cs_new:Npx), \exp_not:n {#} inserts
a macro parameter character in the replacement text.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in x-type arguments
using \exp_not:n.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in x-type
arguments using \exp_not:n.

\exp_not:v {(tokens)}

Expands the (tokens) until only characters remains, and then converts this into a control
sequence which should be a (variable) name. (An internal error occurs if non-characters
remain, as the conversion is not possible.) The content of the (variable) is recovered, and
further expansion in x-type arguments is prevented using \exp_not:n.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found (if it is a space it is
removed). Expansion then stops, and the result of the expansion (including any tokens
which were not expanded) is protected from further expansion in x-type arguments using
\exp_not:n.

\foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop_f: terminates the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type expansion, it retains its form, but when typeset it
produces the underlying space ().

9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be

33

little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens are
encountered in that place!

\exp:w * \exp:w (expandable-tokens) \exp_end:

w Expands (expandable-tokens) until reaching \exp_end: at which point expansion stops.

New: 2015-08-23 T'he full expansion of (expandable-tokens) has to be empty. If any token in (ezpandable-tokens)
or any token generated by expanding the tokens therein is not expandable the expansion
will end prematurely and as a result \exp_end: will be misinterpreted later on.>

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
(expandable-tokens) rather than being on the same expansion level than \exp:w, e.g., you
may see code such as

\exp:w \@@_case:NnTF #1 {#2} { } { }

where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

2Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!

34

\exp:w *
\exp_end_continue_f:w *

New: 2015-08-23

\exp:w *
\exp_end_continue_f:nw *

New: 2015-08-23

\1__exp_internal_tl

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (ezpandable-tokens) until reaching \exp_end_continue_f :w at which point ex-
pansion continues as an f-type expansion expanding (further-tokens) until an unexpand-
able token is encountered (or the f-type expansion is explicitly terminated by \exp_-
stop_£f:). As with all £-type expansions a space ending the expansion gets removed.

The full expansion of (expandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not ex-
pandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.?

In typical use cases {expandable-tokens) contains no tokens at all, e.g., you will see
code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_£f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

The difference to \exp_end_continue_f :w is that we first we pick up an argument which
is then returned to the input stream. If (further-tokens) starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

10 Internal functions and variables

The \exp_ module has its private variable to temporarily store the result of x-type argu-
ment expansion. This is done to avoid interference with other functions using temporary
variables.

31In this particular case you may get a character into the output as well as an error message.

35

PP A g G 4
S <d Mmoo ow =B

\cs_set:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
XTREX3 approach as this makes them more readily visible in the log and so forth.

36

\tl_new:N
\tl_new:c

\tl_const:Nn
\tl_const:(Nx|cn|cx)

\tl_clear:N

\tl_clear:c
\tl_gclear:N

\tl_gclear:c

Part VI
The 13tl package
Token lists

TEX works with tokens, and ITEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix t1: a token
list variable can also be used as the argument to a function, for example

\foo:N \1_some_tl

In both cases, functions are available to test and manipulate the lists of tokens, and these
have the module prefix t1. In many cases, functions which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or , {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, },), w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

1 Creating and initialising token list variables

\tl_new:N (tl var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (¢l var) is initially empty.

\tl_const:Nn (t1 var) {(token list)}

Creates a new constant (¢l var) or raises an error if the name is already taken. The value
of the (tl var) is set globally to the (token list).

\tl_clear:N (tl var)

Clears all entries from the (t var).

37

\tl_clear_new:N \tl_clear_new:N (tl var)
\tl_clear_new:c

\tl_gclear_new:N
\tl_gclear_new:c

Ensures that the (¢l var) exists globally by applying \t1_new:N if necessary, then applies
\tl_(g)clear:N to leave the (¢ var) empty.

\tl_set_eq:NN \tl_set_eq:NN (tl1 var;) (tl vars)
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN

\tl_gset_eq:(cN|Nc|cc)

Sets the content of (¢l var;) equal to that of (tl vars).

\tl_concat:NNN \tl_concat:NNN (t1 vari) (tl vars) (tl vars)
\tl_concat:ccc

\tl_gconcat :NNN
\tl_gconcat:ccc

Concatenates the content of (tl vary) and (¢l vars) together and saves the result in
(tl vary). The (#l vary) is placed at the left side of the new token list.

New: 2012-05-18

\tl_if_exist_p:N (tl var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (tl var) is currently defined. This does not check that the (¢ var)
really is a token list variable.

\tl_if_exist_p:N «*
\tl_if_exist_p:c *
\tl_if exist:NTF *
\tl_if_exist:cTF %

New: 2012-03-03

2 Adding data to token list variables

\tl_set:Nn \tl_set:Nn (t1 var) {(tokens)}
\tl_set:(NV|Nv|No|Nf|Nx|cn|cV|cv|co|ct|cx)

\tl_gset:Nn

\tl_gset: (NV|Nv|No|Nf|Nx|cn|cV|cv|co|cf|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn \tl_put_left:Nn (tl1 var) {(tokens)}
\tl_put_left:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_left:Nn

\tl_gput_left:(NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the left side of the current content of (¢ var).

\tl_put_right:Nn \tl_put_right:Nn (tl1 var) {(tokens)}
\tl_put_right:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_right:Nn

\tl_gput_right:(NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the right side of the current content of (¢ var).

38

\tl_replace_once:Nnn
\tl_replace_once:cnn
\tl_greplace_once:Nnn
\tl_greplace_once:cnn

Updated: 2011-08-11

\tl_replace_all:Nnn
\tl_replace_all:cnn
\tl_greplace_all:Nnn
\tl_greplace_all:cnn

Updated: 2011-08-11

\tl_remove_once:Nn
\tl_remove_once:cn
\tl_gremove_once:Nn
\tl_gremove_once:cn

Updated: 2011-08-11

\tl_remove_all:Nn
\tl_remove_all:cn
\tl_gremove_all:Nn
\tl_gremove_all:cn

Updated: 2011-08-11

3 Modifying token list variables

\tl_replace_once:Nnn (tl1 var) {(old tokens)} {(new tokens)}

Replaces the first (leftmost) occurrence of (old tokens) in the (tl var) with (new tokens).
(Old tokens) cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces all occurrences of (old tokens) in the (] var) with (new tokens). (Old tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (old tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

\tl_remove_once:Nn (t1 var) {(tokens)}

Removes the first (leftmost) occurrence of (tokens) from the (¢ var). (Tokens) cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn (tl1 var) {(tokens)}

Removes all occurrences of (tokens) from the (¢ var). (Tokens) cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_t1l {abbccd} \tl_remove_all:Nn \1_tmpa_t1l {bc}

results in \1_tmpa_t1 containing abcd.

4 Reassigning token list category codes

These functions allow the rescanning of tokens: re-apply TEX'’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token
lists token-by-token with intervening category code changes).

39

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (t1 var) {(setup)} {(tokens)}

\tl_set_rescan:(Nno|Nnx|cnn|cno|cnx)

\tl_gset_rescan:Nnn

\tl_gset_rescan:(Nno|Nnx|cnn|cno|cnx)

Updated: 2015-08-11

\tl_rescan:nn

Updated: 2015-08-11

\tl_if_blank_p:n
\tl_if_blank_p:(V]o)
\tl_if_blank:nTF
\tl_if_blank:(V|o)TF

*
*
*
*

Sets (tl var) to contain (tokens), applying the category code régime specified in the (setup)
before carrying out the assignment. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \t1l_set_rescan:Nnn.)
This allows the (# var) to contain material with category codes other than those that
apply when (tokens) are absorbed. The (setup) is run within a group and may contain
any valid input, although only changes in category codes are relevant. See also \tl_-
rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file. Only the case of a single line is supported in LuaTgX because
of a bug in this engine.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \tl_rescan:nn.) The
(setup) is run within a group and may contain any valid input, although only changes in
category codes are relevant. See also \t1l_set_rescan:Nnn, which is more robust than
using \t1l_set:Nn in the (tokens) argument of \t1_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \t1l_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file. Only the case of a single line is supported in LuaTEX because
of a bug in this engine.

5 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test is
true if (token list) is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

40

\tl_if_empty_p:N =%
\tl_if_empty_p:c *
\tl_if_empty:NTF x
\tl_if_empty:cTF *
\tl_if_empty_p:n *
\tl_if_empty_p:(V|o) =
\tl_if_empty:nTF *
\tl_if_empty:(V|o)TF *

New: 2012-05-24
Updated: 2012-06-05

\tl_if_eq_p:NN
\tl_if_eq_p:(Nc|cN|cc)
\tl_if_eq:NNTF
\tl_if_eq:(Nc|cN|cc)TF

b S S

\tl_if_eq:nnTF

\tl_if_in:NnTF
\tl_if_in:cnTF

\tl_if_in:nnTF
\tl_if_in:(Vn|on|no)TF

\tl_if_novalue_p:n *
\tl_if_novalue:nTF *

New: 2017-11-14

\tl_if_empty_p:N (t1 var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN (tl1 var;) (tl varp)
\tl_if_eq:NNTF (t1 vari) (tl vars) {(true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Nx \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_tl \1_tmpb_tl { true } { false }

yields false.

\tl_if_eq:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token list;) and (token listy) contain the same list of tokens, both in respect of
character codes and category codes.

\tl_if_in:NnTF (t1 var) {(token list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (¢l var). The (token list) cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token listy) is found inside (token list;). The (token listy) cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_if_novalue_p:n {(token list)}
\tl_if_novalue:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is exactly equal to the special \c_novalue_t1 marker. This
function is intended to allow construction of flexible document interface structures in
which missing optional arguments are detected.

41

\tl_if_single_p:N
\tl_if_single_p:c
\tl_if_single:NTF
\tl_if_single:cTF

* o ot

Updated: 2011-08-13

\tl_if_single_p:n *
\tl_if_single:nTF *

Updated: 2011-08-13

\tl_case:Nn *
\tl case:cn %
\tl_case:NnTF *
\tl_case:cnTF *

New: 2013-07-24

\t1l_map_function:NN 5*
\tl_map_function:cN w

Updated: 2012-06-29

\tl_map_function:nN 3¢

Updated: 2012-06-29

\tl_map_inline:Nn
\tl_map_inline:cn

Updated: 2012-06-29

\tl_if_single_p:N (tl1 var)

\tl_if_single:NTF (t1 var) {(true code)} {(false code)}

Tests if the content of the (¢l var) consists of a single item, i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \tl_count:N.

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) has exactly one item, i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_case:NnTF (test token list variable)
{
(token list variable casei) {(code case:)}
(token list variable cases) {({code casez)}

(token list variable case,) {(code case,)}

}
{(true code)}
{(false code)}

This function compares the (test token list variable) in turn with each of the (token
list variable cases). If the two are equal (as described for \t1_if_eq:NNTF) then the
associated (code) is left in the input stream and other cases are discarded. If any of
the cases are matched, the (true code) is also inserted into the input stream (after the
code for the appropriate case), while if none match then the (false code) is inserted. The
function \t1l_case:Nn, which does nothing if there is no match, is also available.

6 Mapping to token lists

\tl_map_function:NN (tl var) (function)

Applies (function) to every (item) in the (¢l var). The (function) receives one argument
for each iteration. This may be a number of tokens if the (itemn) was stored within
braces. Hence the (function) should anticipate receiving n-type arguments. See also
\tl_map_function:nN.

\tl_map_function:nN {(token list)} (function)

Applies (function) to every (item) in the (token list), The (function) receives one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1_map_function:NN.

\tl_map_inline:Nn (t1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (¢l wvar). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:NN.

42

\tl_map_inline:nn

Updated: 2012-06-29

\t1l_map_variable:NNn
\tl_map_variable:cNn

Updated: 2012-06-29

\tl_map_variable:nNn

Updated: 2012-06-29

\tl_map_break: ¥

Updated: 2012-06-29

\tl_map_inline:nn {(token list)} {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:nN.

\tl_map_variable:NNn (tl var) (variable) {{code)}

Stores each (item) of the (¢l var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. See also \t1_map_inline:Nn.

\tl_map_variable:nNn {(token list)} (variable) {(code)}

Stores each (item) of the (token list) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. See also \t1_map_inline:nn.

\t1l_map_break:

Used to terminate a \t1l_map_... function before all entries in the (token list variable)
have been processed. This normally takes place within a conditional statement, for
example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \t1l_map_... scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (tokens) are inserted into the input stream. This depends on the design of the mapping
function.

43

\tl_map_break:n w

Updated: 2012-06-29

\tl_to_str:n *
\tl_to_str:V x

\tl_to_str:N =%
\tl_to_str:c x

\tl_map_break:n {(code)}

Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed, inserting the (code) after the mapping has ended. This normally
takes place within a conditional statement, for example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <code> } }
% Do something useful

}
Use outside of a \t1_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

7 Using token lists

\tl_to_str:n {(token list)}

Converts the (token list) to a (string), leaving the resulting character tokens in the input
stream. A (string) is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space).

TEXhackers note: Converting a (token list) to a (string) yields a concatenation of the
string representations of every token in the (token list). The string representation of a control
sequence is

e an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

e the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \t1l_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:N (tl var)

Converts the content of the (¢ var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream. For low-level details, see the notes given for \t1l_to_-
str:n.

44

\tl_use:N *
\tl_use:c x*

\tl_count:n *
\tl_count:(V|o) =*

New: 2012-05-13

\tl_count:N *
\tl_count:c =%

New: 2012-05-13

\tl_reverse:n *

\tl_reverse:(V|o) *

Updated: 2012-01-08

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

Updated: 2012-01-08

\tl_reverse_items:n *

New: 2012-01-08

\tl_use:N (tl1 var)

Recovers the content of a (tl var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(tl var) directly without an accessor function.

8 Working with the content of token lists

\tl_count:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...}). This process
ignores any unprotected spaces within (tokens). See also \tl_count:N. This function
requires three expansions, giving an (integer denotation).

\tl_count:N (tl var)

Counts the number of token groups in the (¢l var) and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({...}).
This process ignores any unprotected spaces within the (¢ var). See also \t1l_count:n.
This function requires three expansions, giving an (integer denotation).

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token list), so that (items)(itemz)(items)
... (item,) becomes (item,,). .. (itemg)(items)(item;). This process preserves unprotected
space within the (token list). Tokens are not reversed within braced token groups, which
keep their outer set of braces. In situations where performance is important, consider
\tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type argument expansion.

\tl_reverse:N (tl1 var)

Reverses the order of the (items) stored in (tl war), so that (itemy)(items) (items)
... (itemy,) becomes (item,,). .. (itemgs)(items)(item;). This process preserves unprotected
spaces within the (token list variable). Braced token groups are copied without reversing
the order of tokens, but keep the outer set of braces. See also \t1l_reverse:n, and, for
improved performance, \tl_reverse_items:n.

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (¢l var), so that {(item;)}{(items)H{ (items)}
... {(itemy,)} becomes {(item,)} ... {{items)}{(items)}{(item;)}. This process removes
any unprotected space within the (token list). Braced token groups are copied without
reversing the order of tokens, and keep the outer set of braces. Items which are initially
not braced are copied with braces in the result. In cases where preserving spaces is
important, consider the slower function \t1l_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type argument expansion.

45

\tl_trim_spaces:n *

New: 2011-07-09
Updated: 2012-06-25

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

New: 2011-07-09

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn

New: 2017-02-06

\tl_sort:nN =%

New: 2017-02-06

\tl_trim_spaces:n {(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces:N (tl1 var)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the content of the (tl var). Note that this therefore
resets the content of the variable.

\tl_sort:Nn (tl1 var) {(comparison code)}

Sorts the items in the (¢ var) according to the {(comparison code), and assigns the result
to (¢l var). The details of sorting comparison are described in Section 1.

\tl_sort:nN {(token 1list)} (conditional)

Sorts the items in the (token list), using the (conditional) to compare items, and leaves
the result in the input stream. The (conditional) should have signature :nnTF, and return
true if the two items being compared should be left in the same order, and false if the
items should be swapped. The details of sorting comparison are described in Section 1.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type argument expansion.

9 The first token from a token list

Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

46

\tl_head:N *
\tl_head:n *
\tl_head:(V|v|f) *

Updated: 2012-09-09

\tl_head:w *

\tl_tail:N *
\tl_tail:n *
\tl_tail:(V|v|f) =

Updated: 2012-09-01

\tl_head:n {(token list)}

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces are removed, and so

\tl_head:n { ~ { ~ab } c }

yields ab. A blank (token list) (see \t1_if_blank:nTF) results in \t1_head:n leaving
nothing in the input stream.

TgXhackers note: The result is returned within \exp_not :n, which means that the token
list does not expand further when appearing in an x-type argument expansion.

\tl_head:w (token list) { } \q_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded. A blank (token list) (which consists only of space
characters) results in a low-level TEX error, which may be avoided by the inclusion of an
empty group in the input (as shown), without the need for an explicit test. Alternatively,
\tl_if_blank:nF may be used to avoid using the function with a “blank” argument. This
function requires only a single expansion, and thus is suitable for use within an o-type
expansion. In general, \t1l_head:n should be preferred if the number of expansions is
not critical.

\tl_tail:n {(token list)}

Discards all leading explicit space characters (explicit tokens with character code 32 and
category code 10) and the first (item) in the (token list), and leaves the remaining tokens
in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }
and
\tl_tail:n { ~ a ~ {bc} d }

both leave _{bc}d in the input stream. A blank (token list) (see \t1l_if_blank:nTF)
results in \t1_tail:n leaving nothing in the input stream.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type argument expansion.

47

\tl_if_head_eq_catcode_p:nN x \tl_if_head_eq_catcode_p:nN {(token list)
\tl_if_head_eq_catcode:nNTF + \tl_if_head_eq_catcode:nNTF {(token list)

(test token)

}
} (test token)

Updated: 2012-07-09

{(true code)} {(false code)}

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN *

\tl_if_head_eq_charcode_p:fN «x

\tl_if_head_eq_charcode:nNTF x {(true code)} {(false code)}
*

\tl_if_head_eq_charcode_p:nN {(token list)
\tl_if_head_eq_charcode:nNTF {(token list)

(test token)

}
} (test token)

\tl_if_head_eq_charcode:fNTF

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN * \tl_if_head_eq_meaning_p:nN {(token list)
\tl_if_head_eq_meaning:nNTF x \tl_if_head_eq_meaning:nNTF {(token list)

(test token)

}
} (test token)

Updated: 2012-07-09

{(true code)} {(false code)}

\tl_if_head_is_group_p:n *
\tl_if_head_is_group:nTF x

New: 2012-07-08

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, the test is always false.

\tl_if_head_is_group_p:n {(token list)}

\tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

\tl_if_head_is_N_type_p:n * \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF * \tl_if_head_is_N_type:nTF {(token list)} {(true code)} {(false code)}

New: 2012-07-08

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF *

Updated: 2012-07-08

Tests if the first (token) in the (token list) is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a “normal” first token. This
function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_space_p:n {(token list)}

\tl_if_head_is_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (explicit token
with character code 12 and category code 10). In particular, the test is false if the
(token list) starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

48

\tl_item:nn *
\tl_item:Nn *
\tl_item:cn *

New: 2014-07-17

\tl_show:N
\t1l_show:c

Updated: 2015-08-01

\tl_show:n

Updated: 2015-08-07

\tl_log:N
\tl_log:c

New: 2014-08-22

Updated: 2015-08-01

\tl_log:n

New: 2014-08-22

Updated: 2015-08-07

\c_empty_t1

10 Using a single item

\tl_item:nn {(token list)} {(integer expression)}

Indexing items in the (token list) from 1 on the left, this function evaluates the (integer
expression) and leaves the appropriate item from the (token list) in the input stream.
If the (integer expression) is negative, indexing occurs from the right of the token list,
starting at —1 for the right-most item. If the index is out of bounds, then the function
expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

11 Viewing token lists

\tl_show:N (tl1 var)

Displays the content of the (¢ var) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:n {(token list)}

Displays the (token list) on the terminal.

TEXhackers note: This is similar to the e-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_log:N (tl1 var)

Writes the content of the (¢l var) in the log file. See also \t1_show:N which displays the
result in the terminal.

\tl_log:n {(token list)}

Writes the (token list) in the log file. See also \t1l_show:n which displays the result in
the terminal.

12 Constant token lists

Constant that is always empty.

49

\c_novalue_t1l

New: 2017-11-14

\c_space_tl

\1_tmpa_t1l
\1_tmpb_t1l

\g_tmpa_t1l
\g_tmpb_t1l

__tl_trim_spaces:nn

A marker for the absence of an argument. This constant t1 can safely be typeset
(¢f. \q_nil), with the result being -NoValue-. It is important to note that \c_novalue_-
t1 is constructed such that it will not match the simple text input -NoValue-, i.e. that

\tl_if_eq:VnTF \c_novalue_tl { -NoValue- }

is logically false. The \c_novalue_t1l marker is intended for use in creating document-
level interfaces, where it serves as an indicator that an (optional) argument was omitted.
In particular, it is distinct from a simple empty t1.

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

13 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

14 Internal functions

__tl_trim_spaces:nn { \q_mark (token list) } {(continuation)}

This function removes all leading and trailing explicit space characters from the (token
list), and expands to the (continuation), followed by a brace group containing \use_-
none:n \q_mark (trimmed token list). For instance, \t1_trim_spaces:n is implemented
by taking the (continuation) to be \exp_not:o, and the o-type expansion removes the
\q_mark. This function is also used in 13clist and I3candidates.

50

\str_new:N
\str_new:c

New: 2015-09-18

\str_const:Nn
\str_const:(Nx|cn|cx)

New: 2015-09-18

Part VII
The 13str package
Strings

TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TgX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialised token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \t1_to_-
str:n for internal processing, and do not treat a token list or the corresponding string
representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when
one should be used over the other. Use a string variable for data that isn’t primarily
intended for typesetting and for which a level of protection from unwanted expansion is
suitable. This data type simplifies comparison of variables since there are no concerns
about expansion of their contents.

The functions \cs_to_str:N, \tl_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) generate strings from the appropriate input: these are documented in
I3basics, 13tl and 13token, respectively.

Most expandable functions in this module come in three flavours:

e \str_...:N, which expect a token list or string variable as their argument;
e \str_...:n, taking any token list (or string) as an argument;
e \str_..._ignore_spaces:n, which ignores any space encountered during the op-

eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

1 Building strings

\str_new:N (str var)

Creates a new (str var) or raises an error if the name is already taken. The declaration
is global. The (str var) is initially empty.

\str_const:Nn (str var) {(token list)}

Creates a new constant (str var) or raises an error if the name is already taken. The
value of the (str var) is set globally to the (token list), converted to a string.

o1

\str_clear:N
\str_clear:c
\str_gclear:N
\str_gclear:c

New: 2015-09-18

\str_clear_new:N
\str_clear_new:c

New: 2015-09-18

\str_set_eq:NN
\str_set_eq:(cN|Nc|cc)
\str_gset_eq:NN
\str_gset_eq:(cN|Nc|cc)

New: 2015-09-18

\str_concat : NNN
\str_concat:ccc
\str_gconcat :NNN
\str_gconcat:ccc

New: 2017-10-08

\str_set:Nn
\str_set:(Nx|cn|cx)
\str_gset:Nn
\str_gset:(Nx|cn|cx)

New: 2015-09-18

\str_put_left:Nn
\str_put_left:(Nx|cn|cx)
\str_gput_left:Nn
\str_gput_left:(Nx|cn|cx)

New: 2015-09-18

\str_put_right:Nn
\str_put_right:(Nx|cn|cx)
\str_gput_right:Nn
\str_gput_right:(Nx|cn|cx)

New: 2015-09-18

\str_clear:N (str var)

Clears the content of the (str var).

\str_clear_new:N (str var)

Ensures that the (str var) exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the (str var) empty.

\str_set_eq:NN (str vari) (str vars)

Sets the content of (str var) equal to that of (str vars).

\str_concat:NNN (str vari) (str vars) (str vars)

Concatenates the content of (str vare) and (str vars) together and saves the result in
(str vary). The (str vary) is placed at the left side of the new string variable. The
(str vary) and (str vars) must indeed be strings, as this function does not convert their
contents to a string.

2 Adding data to string variables

\str_set:Nn (str var) {(token list)}

Converts the (token list) to a (string), and stores the result in (str var).

\str_put_left:Nn (str var) {(token list)}

Converts the (token list) to a (string), and prepends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

\str_put_right:Nn (str var) {(token list)}

Converts the (token list) to a (string), and appends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

52

\str_replace_once:Nnn
\str_replace_once:cnn
\str_greplace_once:Nnn
\str_greplace_once:cnn

New: 2017-10-08

\str_replace_all:Nnn
\str_replace_all:cnn
\str_greplace_all:Nnn
\str_greplace_all:cnn

New: 2017-10-08

\str_remove_once:Nn
\str_remove_once:cn
\str_gremove_once:Nn
\str_gremove_once:cn

New: 2017-10-08

\str_remove_all:Nn
\str_remove_all:cn
\str_gremove_all:Nn
\str_gremove_all:cn

New: 2017-10-08

\str_if_exist_p:N *
\str_if_exist_p:c =
\str_if_exist:NTF «*
\str_if_ exist:cTF x

New: 2015-09-18

\str_if_empty_p:N x
\str_if_empty_p:c «*
\str_if_empty:NTF *
\str_if_empty:cTF x

New: 2015-09-18

2.1 Modifying string variables

\str_replace_once:Nnn (str var) {(old)} {(new)}

Converts the (old) and (new) token lists to strings, then replaces the first (leftmost)
occurrence of (old string) in the (str var) with (new string).

\str_replace_all:Nnn (str var) {({old)} {(new)}

Converts the (old) and (new) token lists to strings, then replaces all occurrences of (old
string) in the (str var) with (new string). As this function operates from left to right,
the pattern (old string) may remain after the replacement (see \str_remove_all:Nn for
an example).

\str_remove_once:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes the first (leftmost) occurrence of
(string) from the (str var).

\str_remove_all:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes all occurrences of (string) from the
(str var). As this function operates from left to right, the pattern (string) may remain
after the removal, for instance,

\str_set:Nn \1_tmpa_str {abbccd} \str_remove_all:Nn \1l_tmpa_str
{bc}

results in \1_tmpa_str containing abcd.

2.2 String conditionals

\str_if_exist_p:N (str var)
\str_if_exist:NTF (str var) {(true code)} {(false code)}

Tests whether the (str var) is currently defined. This does not check that the (str var)
really is a string.

\str_if_empty_p:N (str var)
\str_if_empty:NTF (str var) {(true code)} {(false code)}

Tests if the (string variable) is entirely empty (i.e. contains no characters at all).

53

\str_if_eq_p:NN
\str_if_eq_p:(N¢|cN|cc)
\str_if_eq:NNTF
\str_if_eq:(Nc|cN|cc)TF

* o ot

New: 2015-09-18

\str_if_eq_p:NN (str vari) (str vars)
\str_if_eq:NNTF (str vari) (str varz) {(true code)} {(false code)}

Compares the content of two (str variables) and is logically true if the two contain the
same characters in the same order.

\str_if_eq_p:nn

\str_if_eq_p:(Vn|on|no|nV|VV)

\str_if_eq:nnTF

\str_if_eq:(Vn|on|no|nV|VV)TF

\str_if_eq_p:nn {(tl;)
\str_if_eq:nnTF {(t1:)

(t12)}

o
¥ {(t12)} {(true code)} {(false code)}

*
*
*
*

\str_if_eq_x_p:nn *
\str_if_eq_x:nnTF *

New: 2012-06-05

\str_if_in:NnTF
\str_if_in:cnTF

New: 2017-10-08

\str_if_in:nnTF

New: 2017-10-08

Compares the two (token lists) on a character by character basis (namely after converting
them to strings), and is true if the two (strings) contain the same characters in the same
order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }
is logically true.

\str_if_eq_x_p:nn {(t1:1)} {(tl2)}
\str_if_eq_x:nnTF {(t1:)} {(tl2)} {(true code)} {(false code)}

Fully expands the two (token lists) and converts them to (strings), then compares these on
a character by character basis: it is true if the two (strings) contain the same characters
in the same order. Thus for example

\str_if_eq_x_p:nn { abc } { \tl_to_str:n { abc } }

is logically true.

\str_if_in:NnTF (str var) {(token list)} {(true code)} {(false code)}

Converts the (token list) to a (string) and tests if that (string) is found in the content of
the (str var).

\str_if_in:nnTF (t1;) {(t12)} {(true code)} {(false code)}

Converts both (token lists) to (strings) and tests whether (strings) is found inside
(string;).

54

\str_case:

\str_case
\str_case
\str_case

nn

:nnTF

*
:(on[nVijnv) *
*
:(on[nV|nv)TF *

New: 2013-07-24

Updated: 2015-02-28

\str_case_x:nn *
\str_case_x:nnTF *

New: 2013-07-24

\str_map_function:NN 3
\str_map_function:cN W%

New: 2017-11-14

\str_map_function:nN

New: 2017-11-14

\str_case:nnTF {(test string)}
{
{(string casei)} {{code case:i)}
{(string cases)} {{code cases)}

%(.s.tring case,)} {(code case,)}
}
{(true code)}
{(false code)}

Compares the (test string) in turn with each of the (string cases) (all token lists are
converted to strings). If the two are equal (as described for \str_if_eq:nnTF) then the
associated (code) is left in the input stream and other cases are discarded. If any of
the cases are matched, the (true code) is also inserted into the input stream (after the
code for the appropriate case), while if none match then the (false code) is inserted. The
function \str_case:nn, which does nothing if there is no match, is also available.

\str_case_x:nnTF {(test string)}
{

{(string case1)

{(string cases)

(code case1)}
(code casez)}

}{
L

-.{<.s.tring casen)} {(code case,)}
}
{{true code)}
{(false code)}

Compares the full expansion of the (test string) in turn with the full expansion of the
(string cases) (all token lists are converted to strings). If the two full expansions are
equal (as described for \str_if_eq:nnTF) then the associated (code) is left in the input
stream and other cases are discarded. If any of the cases are matched, the (true code)
is also inserted into the input stream (after the code for the appropriate case), while
if none match then the (false code) is inserted. The function \str_case_x:nn, which
does nothing if there is no match, is also available. The (test string) is expanded in each
comparison, and must always yield the same result: for example, random numbers must
not be used within this string.

3 Mapping to strings

\str_map_function:NN (str var) (function)

Applies (function) to every (character) in the (str var) including spaces. See also \str_-
map_function:nN.

\str_map_function:nN {(token list)} (function)

Converts the (token list) to a (string) then applies (function) to every (character) in the
(string) including spaces. See also \str_map_function:NN.

55

\str_map_inline:Nn
\str_map_inline:cn

New: 2017-11-14

\str_map_inline:nn

New: 2017-11-14

\str_map_variable:NNn
\str_map_variable:cNn

New: 2017-11-14

\str_map_variable:nNn

New: 2017-11-14

\str_map_break: w

New: 2017-10-08

\str_map_inline:Nn (str var) {(inline function)}

Applies the (inline function) to every (character) in the (str var) including spaces. The
(inline function) should consist of code which receives the (character) as #1. See also
\str_map_function:NN.

\str_map_inline:nn {(token list)} {(inline function)}

Converts the (token list) to a (string) then applies the (inline function) to every
(character) in the (string) including spaces. The (inline function) should consist of
code which receives the (character) as #1. See also \str_map_function:NN.

\str_map_variable:NNn (str var) (variable) {(code)}

Stores each (character) of the (string) (including spaces) in turn in the (string or token
list) (variable) and applies the (code). The {code) will usually make use of the (variable),
but this is not enforced. The assignments to the (variable) are local. See also \str_-
map_inline:Nn.

\str_map_variable:nNn {(token list)} (variable) {{code)}

Converts the (token list) to a (string) then stores each (character) in the (string) (in-
cluding spaces) in turn in the (string or token list) (variable) and applies the (code). The
(code) will usually make use of the (variable), but this is not enforced. The assignments
to the (variable) are local. See also \str_map_inline:Nn.

\str_map_break:

Used to terminate a \str_map_... function before all characters in the (string) have
been processed. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \1_my_str
{
\str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
% Do something useful

}

See also \str_map_break:n. Use outside of a \str_map_. .. scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
continuing with the code that follows the loop. This depends on the design of the mapping
function.

56

\str_map_break:n 5

New: 2017-10-08

\str_use:N *
\str_use:c x*

New: 2015-09-18

\str_map_break:n {({code)}

Used to terminate a \str_map_... function before all characters in the (string) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\str_map_inline:Nn \1l_my_str
{
\str_if_eq:nnT { #1 } { bingo }
{ \str_map_break:n { <code> } }
% Do something useful

}
Use outside of a \str_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

4 Working with the content of strings

\str_use:N (str var)

Recovers the content of a (str var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(str) directly without an accessor function.

\str_count:N
\str_count:c
\str_count:n

\str_count_ignore_spaces:n

\str_count:n {(token list)}

*
*
*
*

New: 2015-09-18

\str_count_spaces:N x
\str_count_spaces:c *
\str_count_spaces:n *

New: 2015-09-18

Leaves in the input stream the number of characters in the string representation of (token
list), as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.
The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:n {(token list)}

Leaves in the input stream the number of space characters in the string representation of
(token list), as an integer denotation. Of course, this function has no _ignore_spaces
variant.

57

\str_head:N
\str_head:c
\str_head:n
\str_head_ignore_spaces:n

\str_head:n {(token list)}

*
*
*
*

New: 2015-09-18

Converts the (token list) into a (string). The first character in the (string) is then left in
the input stream, with category code “other”. The functions differ if the first character is a
space: \str_head:N and \str_head:n return a space token with category code 10 (blank
space), while the \str_head_ignore_spaces:n function ignores this space character and
leaves the first non-space character in the input stream. If the (string) is empty (or only
contains spaces in the case of the _ignore_spaces function), then nothing is left on the
input stream.

\str_tail:N *
\str_tail:c *
\str_tail:n *
\str_tail_ignore_spaces:n *

\str_tail:n {(token list)}

New: 2015-09-18

Converts the (token list) to a (string), removes the first character, and leaves the remain-
ing characters (if any) in the input stream, with category codes 12 and 10 (for spaces).
The functions differ in the case where the first character is a space: \str_tail:N and
\str_tail:n only trim that space, while \str_tail_ignore_spaces:n removes the first
non-space character and any space before it. If the (token list) is empty (or blank in the
case of the _ignore_spaces variant), then nothing is left on the input stream.

\str_item:Nn * \str_item:nn {(token list)} {(integer expression)}
\str_item:nn *
\str_item_ignore_spaces:nn *

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the character
in position (integer expression) of the (string), starting at 1 for the first (left-most)
character. In the case of \str_item:Nn and \str_item:nn, all characters including
spaces are taken into account. The \str_item_ignore_spaces:nn function skips spaces
when counting characters. If the (integer expression) is negative, characters are counted
from the end of the (string). Hence, —1 is the right-most character, etc.

58

\str_range:
\str_range:
\str_range:

\str_range

Non * \str_range:nnn {(token list)} {(start index)} {(end index)}
cnn *
nnn *

*

_ignore_spaces:nnn

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the characters from
the (start indez) to the (end indez) inclusive. Positive (indices) are counted from the
start of the string, 1 being the first character, and negative (indices) are counted from
the end of the string, —1 being the last character. If either of (start index) or (end index)
is 0, the result is empty. For instance,

\iow_term:x { \str_range:nnn { abcdef } { 2} {5 } }

\iow_term:x { \str_range:nnn { abcdef } { -4} { -113}}
\iow_term:x { \str_range:nnn { abcdef } { -2 } { -1 } }
\iow_term:x { \str_range:nnn { abcdef } { 0 } { -1 } }

prints becde, cdef, ef, and an empty line to the terminal. The (start index) must always
be smaller than or equal to the (end index): if this is not the case then no output is
generated. Thus

\iow_term:x { \str_range:nnn { abcdef } { 5} {2} }
\iow_term:x { \str_range:nnn { abcdef } { -1 } { -4 } }

both yield empty strings.

59

\str_lower_case:n
\str_lower_case:f
\str_upper_case:n
\str_upper_case:f

* ok ot

New: 2015-03-01

5 String manipulation

\str_lower_case:n {(tokens)}
\str_upper_case:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \tl_to_-
str:n, and then to the lower or upper case representation using a one-to-one mapping
as described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2

{
\cs_set_protected:cpn
{
user
\str_upper_case:f { \tl_head:n {#1} }
\str_lower_case:f { \tl_tail:n {#1} }
¥
{#2 7
}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

o Caseless comparisons: use \str_fold_case:n for this situation (case folding is
distinct from lower casing).

e Case changing text for typesetting: see the \tl_lower_case:n(n), \tl_upper_-
case:n(n) and \tl_mixed_case:n(n) functions which correctly deal with context-
dependence and other factors appropriate to text case changing.

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with UTF-8. As such, when used with
pdfTEX only the Latin alphabet characters A-Z are case-folded (i.e. the ASCII range which
coincides with UTF-8). Full UTF-8 support is available with both X#TEX and LuaTgX, subject
only to the fact that XqIEX in particular has issues with characters of code above hexadecimal
0xFFFF when interacting with \t1l_to_str:n.

60

\str_fold_case:n *
\str_fold_case:V x

New: 2014-06-19
Updated: 2016-03-07

\str_show:N
\str_show:c
\str_show:n

New: 2015-09-18

\str_fold_case:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \t1_to_str:n,
and then folds the case of the resulting (string) to remove case information. The result
of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_fold_case:n follows the mappings provided by the Uni-
code Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_fold_case:n follows the “full” scheme de-
fined by the Unicode Consortium (e.g. SSfolds to SS). As case-folding is a language-
insensitive process, there is no special treatment of Turkic input (i.e. I always folds to i
and not to 1).

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with UTF-8. As such, when used with
pdfTEX only the Latin alphabet characters A-Z are case-folded (i.e. the AscCIl range which
coincides with UTF-8). Full UTF-8 support is available with both X#TEX and LuaTgX, subject
only to the fact that XfTEX in particular has issues with characters of code above hexadecimal
0xFFFF when interacting with \t1l_to_str:n.

6 Viewing strings

\str_show:N (str var)

Displays the content of the (str var) on the terminal.

61

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/faq/casemap_charprop.html#2

\c_ampersand_str
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str

New: 2015-09-19

\1_tmpa_str
\1_tmpb_str

\g_tmpa_str
\g_tmpb_str

__str_if_eq_x:nn *

__str_if_eq_x_return:nn

__str_to_other:n *

7 Constant token lists

Constant strings, containing a single character token, with category code 12.

8 Scratch strings

Scratch strings for local assignment. These are never used by the kernel code, and so
are safe for use with any IXTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch strings for global assignment. These are never used by the kernel code, and so
are safe for use with any TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

8.1 Internal string functions

__str_if_eq_x:nn {(t1:)} {(tl2)}

Compares the full expansion of two (token lists) on a character by character basis, and
is true if the two lists contain the same characters in the same order. Leaves 0 in the
input stream if the condition is true, and +1 or -1 otherwise.

__str_if_eq_x_return:nn {(t11)} {(tl2)}

Compares the full expansion of two (token lists) on a character by character basis, and
is true if the two lists contain the same characters in the same order. Either \prg_-
return_true: or \prg_return_false: is then left in the input stream. This is a version
of \str_if_eq_x:nnTF coded for speed.

__str_to_other:n {(token list)}

Converts the (token list) to a (other string), where spaces have category code “other”.
This function can be f-expanded without fear of losing a leading space, since spaces do
not have category code 10 in its result. It takes a time quadratic in the character count
of the string.

62

__str_to_other_fast:n ¥

__str_count:n «*

__str_range:nnn x

__str_to_other_fast:n {(token list)}

Same behaviour __str_to_other:n but only restricted-expandable. It takes a time
linear in the character count of the string. It is used for \iow_wrap:nnnN.

__str_count:n {({other string)}

This function expects an argument that is entirely made of characters with category
“other”, as produced by __str_to_other:n. It leaves in the input stream the number of
character tokens in the (other string), faster than the analogous \str_count :n function.

__str_range:nnn {(other string)} {(start index)} {(end index)}

Identical to \str_range:nnn except that the first argument is expected to be entirely
made of characters with category “other”, as produced by __str_to_other:n, and the
result is also an (other string).

63

\seq_new:N
\seq_new:c

\seq_clear:N

\seq_clear:c
\seq_gclear:N

\seq_gclear:c

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

\seq_set_eq:NN
\seq_set_eq:(cN|Nc|cc)
\seq_gset_eq:NN
\seq_gset_eq:(cN|Nc|cc)

Part VIII
The 13seq package
Sequences and stacks

ETREX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any (balanced text). It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in IXTEX3. This is achieved
using a number of dedicated stack functions.

1 Creating and initialising sequences

\seq_new:N (sequence)

Creates a new (sequence) or raises an error if the name is already taken. The declaration
is global. The (sequence) initially contains no items.

\seq_clear:N (sequence)

Clears all items from the (sequence).

\seq_clear_new:N (sequence)

Ensures that the (sequence) exists globally by applying \seq_new:N if necessary, then
applies \seq_(g) clear:N to leave the (sequence) empty.

\seq_set_eq:NN (sequence;) (sequences)

Sets the content of (sequence;) equal to that of (sequences).

\seq_set_from_clist:NN

\seq_set_from_clist:NN (sequence) (comma-list)

\seq_set_from_clist:(cN|Nc|ec)

\seq_set_from_clist:Nn
\seq_set_from_clist:cn

\seq_gset_from_clist:NN
\seq_gset_from_clist:(cN|Nc|cc)
\seq_gset_from_clist:Nn
\seq_gset_from_clist:cn

New: 2014-07-17

Converts the data in the (comma list) into a (sequence): the original (comma list) is
unchanged.

64

\seq_set_split:Nnn
\seq_set_split:NnV
\seq_gset_split:Nnn
\seq_gset_split:NnV

New: 2011-08-15
Updated: 2012-07-02

\seq_concat :NNN
\seq_concat:ccc
\seq_gconcat :NNN
\seq_gconcat:ccc

\seq_if_exist_p:N *
\seq_if_exist_p:c *
\seq_if_exist:NTF *
\seq_if_exist:cITF *

New: 2012-03-03

\seq_set_split:Nnn (sequence) {(delimiter)} {(token list)}

Splits the (token list) into (items) separated by (delimiter), and assigns the result to the
(sequence). Spaces on both sides of each (item) are ignored, then one set of outer braces
is removed (if any); this space trimming behaviour is identical to that of 13clist functions.
Empty (items) are preserved by \seq_set_split:Nnn, and can be removed afterwards
using \seq_remove_all:Nn (sequence) {()}. The (delimiter) may not contain {, } or #
(assuming TEX’s normal category code régime). If the (delimiter) is empty, the (token
list) is split into (items) as a (token list).

\seq_concat:NNN (sequence:) (sequences) (sequences)

Concatenates the content of (sequences) and (sequences) together and saves the result in
(sequencer). The items in (sequences) are placed at the left side of the new sequence.

\seq_if_exist_p:N (sequence)
\seq_if_exist:NTF (sequence) {(true code)} {(false code)}

Tests whether the (sequence) is currently defined. This does not check that the (sequence)
really is a sequence variable.

2 Appending data to sequences

\seq_put_left:Nn

\seq_put_left:Nn (sequence) {(item)}

\seq_put_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_left:Nn

\seq_gput_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the (item) to the left of the (sequence).

\seq_put_right:Nn

\seq_put_right:Nn (sequence) {(item)}

\seq_put_right:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_right:Nn

\seq_gput_right: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_get_left:NN
\seq_get_left:cN

Updated: 2012-05-14

Appends the (item) to the right of the (sequence).

3 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementa-
tion reasons, the actions at the left of the sequence are faster than those acting on the
right. These functions all assign the recovered material locally, i.e. setting the (token list
variable) used with \t1l_set:Nn and never \tl_gset:Nn.

\seq_get_left:NN (sequence) (token list variable)

Stores the left-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) is set to the special marker \q_no_value.

65

\seq_get_right:NN
\seq_get_right:cN

Updated: 2012-05-19

\seq_pop_left:NN
\seq_pop_left:cN

Updated: 2012-05-14

\seq_gpop_left:NN
\seq_gpop_left:cN

Updated: 2012-05-14

\seq_pop_right:NN
\seq_pop_right:cN

Updated: 2012-05-19

\seq_gpop_right:NN
\seq_gpop_right:cN

Updated: 2012-05-19

\seq_item:Nn *
\seq_item:cn %

New: 2014-07-17

\seq_get_right:NN (sequence) (token list variable)

Stores the right-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_pop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty the (token list variable) is set to the special
marker \q_no_value.

\seq_gpop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty the (token list variable) is set to the special marker \q_no_value.

\seq_pop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty the (token list variable) is set to the special
marker \q_no_value.

\seq_gpop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty the (token list variable) is set to the special marker \q_no_value.

\seq_item:Nn (sequence) {(integer expression)}

Indexing items in the (sequence) from 1 at the top (left), this function evaluates the
(integer expression) and leaves the appropriate item from the sequence in the input
stream. If the (integer expression) is negative, indexing occurs from the bottom (right)
of the sequence. If the (integer expression) is larger than the number of items in the
(sequence) (as calculated by \seq_count:N) then the function expands to nothing.

TgEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

4 Recovering values from sequences with branching
The functions in this section combine tests for non-empty sequences with recovery of an

item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

66

\seq_get_left:NNTF
\seq_get_left:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_get_right :NNTF
\seq_get_right:cNTF

New: 2012-05-19

\seq_pop_left :NNTF
\seq_pop_left:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_gpop_left:NNTF
\seq_gpop_left:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_pop_right:NNTF
\seq_pop_right:cNTF

New: 2012-05-19

\seq_gpop_right :NNTF
\seq_gpop_right:cNTF

New: 2012-05-19

\seq_get_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the left-most item from the (sequence) in the (token list
variable) without removing it from the (sequence), then leaves the (true code) in the
input stream. The (token list variable) is assigned locally.

\seq_get_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the right-most item from the (sequence) in the (token
list variable) without removing it from the (sequence), then leaves the (true code) in the
input stream. The (token list variable) is assigned locally.

\seq_pop_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the left-most item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence), then leaves the (true code) in the
input stream. Both the (sequence) and the (token list variable) are assigned locally.

\seq_gpop_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the left-most item from the (sequence) in the (token
list variable), i.e. removes the item from the (sequence), then leaves the (true code) in
the input stream. The (sequence) is modified globally, while the (token list variable) is
assigned locally.

\seq_pop_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the right-most item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence), then leaves the (true code) in the
input stream. Both the (sequence) and the (token list variable) are assigned locally.

\seq_gpop_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the right-most item from the (sequence) in the (token
list variable), i.e. removes the item from the (sequence), then leaves the (true code) in
the input stream. The (sequence) is modified globally, while the (token list variable) is
assigned locally.

67

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

\seq_remove_all:Nn
\seq_remove_all:cn
\seq_gremove_all:Nn
\seq_gremove_all:cn

\seq_reverse:N
\seq_reverse:c
\seq_greverse:N
\seq_greverse:c

New: 2014-07-18

\seq_sort:Nn
\seq_sort:cn
\seq_gsort:Nn
\seq_gsort:cn

New: 2017-02-06

\seq_if_empty_p:N
\seq_if_empty_p:c
\seq_if_empty:NTF
\seq_if_empty:cIF

b S S

5 Modifying sequences

While sequences are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

\seq_remove_duplicates:N (sequence)

Removes duplicate items from the (sequence), leaving the left most copy of each item
in the (sequence). The (item) comparison takes place on a token basis, as for \t1_if_-
eq:nnTF.

TgXhackers note: This function iterates through every item in the (sequence) and does a
comparison with the (items) already checked. It is therefore relatively slow with large sequences.

\seq_remove_all:Nn (sequence) {(item)}

Removes every occurrence of (item) from the (sequence). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nnTF.

\seq_reverse:N (sequence)

Reverses the order of the items stored in the (sequence).

\seq_sort:Nn (sequence) {(comparison code)}

Sorts the items in the (sequence) according to the (comparison code), and assigns the
result to (sequence). The details of sorting comparison are described in Section 1.

6 Sequence conditionals

\seq_if_empty_p:N (sequence)
\seq_if_empty:NTF (sequence) {(true code)} {(false code)}

Tests if the (sequence) is empty (containing no items).

\seq_if_in:NnTF

\seq_if_in:NnTF (sequence) {(item)} {(true code)} {(false code)}

\seq_if_in:(NV|Nv|No|Nx|cn|cV|cv|co|cx)TF

Tests if the (item) is present in the (sequence).

68

7 Mapping to sequences

\seq_map_function:NN 3 \seq_map_function:NN (sequence) <function>

\seq_map_function:cN Applies (function) to every (item) stored in the (sequence). The (function) will receive

Updated: 2012-06-29 one argument for each iteration. The (items) are returned from left to right. The function
\seq_map_inline:Nn is faster than \seq_map_function:NN for sequences with more
than about 10 items.

\seq_map_inline:Nn \seq_map_inline:Nn (sequence) {(inline function)}

\seq_map_inline:cn Applies (inline function) to every (item) stored within the (sequence). The (inline

Updated: 2012-06-29 fynction) should consist of code which will receive the (item) as #1. The (items) are
returned from left to right.

\seq_map_variable:NNn \seq_map_variable:NNn (sequence) (variable) {(code)}
\seq_map_variable:(Ncn|cNn|ccn)

Updated: 2012-06-29

Stores each (item) of the (sequence) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. The (items) are returned from left to right.

\seq_map_break: w \seq_map_break:

Updated: 2012-06-29 Used to terminate a \seq_map_. .. function before all entries in the (sequence) have been
processed. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \1l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break: }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

69

\seq_map_break:n

Updated: 2012-06-29

\seq_count:N *
\seq_count:c *

New: 2012-07-13

\seq_use:Nnnn *
\seq_use:cnnn *

New: 2013-05-26

\seq_map_break:n {({code)}

Used to terminate a \seq_map_. .. function before all entries in the (sequence) have been
processed, inserting the (code) after the mapping has ended. This normally takes place
within a conditional statement, for example

\seq_map_inline:Nn \1_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\seq_count:N (sequence)

Leaves the number of items in the (sequence) in the input stream as an (integer
denotation). The total number of items in a (sequence) includes those which are empty
and duplicates, i.e. every item in a (sequence) is unique.

8 Using the content of sequences directly

\seq_use:Nnnn (seq var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the (seq var) in the input stream, with the appropriate (separator)
between the items. Namely, if the sequence has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which
the (separator between final two) is used. If the sequence has exactly two items, then they
are placed in the input stream separated by the (separator between two). If the sequence
has a single item, it is placed in the input stream, and an empty sequence produces no
output. An error is raised if the variable does not exist or if it is invalid.
For example,

\seq_set_split:Nnn \1_tmpa_seq { | } {a | b | c | {de} | £}
\seq_use:Nnnn \1_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, ¢, de, and f” in the input stream. The first separator argument is not
used in this case because the sequence has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type argument
expansion.

70

\seq_use:Nn *
\seq_use:cn *

New: 2013-05-26

\seq_get :NN
\seq_get:cN

Updated: 2012-05-14

\seq_pop:NN

\seq_pop:cN

Updated: 2012-05-14

\seq_gpop: NN

\seq_gpop:cN

Updated: 2012-05-14

\seq_get :NNTF
\seq_get:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_use:Nn (seq var) {(separator)}

Places the contents of the (seq var) in the input stream, with the (separator) between
the items. If the sequence has a single item, it is placed in the input stream with no
(separator), and an empty sequence produces no output. An error is raised if the variable
does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \1l_tmpa_seq { | } {a | b | c | {de} | £}
\seq_use:Nn \1_tmpa_seq { ~and~ }

inserts “a and b and ¢ and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type argument
expansion.

9 Sequences as stacks

Sequences can be used as stacks, where data is pushed to and popped from the top of
the sequence. (The left of a sequence is the top, for performance reasons.) The stack
functions for sequences are not intended to be mixed with the general ordered data
functions detailed in the previous section: a sequence should either be used as an ordered
data type or as a stack, but not in both ways.

\seq_get:NN (sequence) (token list variable)

Reads the top item from a (sequence) into the (token list variable) without removing it
from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_pop:NN (sequence) (token list variable)

Pops the top item from a (sequence) into the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty the (token list variable) is set to the special
marker \q_no_value.

\seq_gpop:NN (sequence) (token list variable)

Pops the top item from a (sequence) into the (token list variable). The (sequence) is
modified globally, while the (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_get :NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the top item from a (sequence) in the (token list variable)
without removing it from the (sequence). The (token list variable) is assigned locally.

71

\seq_pop:NNTF

\seq_pop:cNTF
New: 2012-05-14

Updated: 2012-05-19

\seq_gpop:NNTF
\seq_gpop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_pop:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the top item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence). Both the (sequence) and the (token
list variable) are assigned locally.

\seq_gpop:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the top item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence). The (sequence) is modified globally,
while the (token list variable) is assigned locally.

\seq_push:Nn

\seq_push:Nn (sequence) {(item)}

\seq_push: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gpush:Nn

\seq_gpush: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Adds the {(item)} to the top of the (sequence).

10 Sequences as sets

Sequences can also be used as sets, such that all of their items are distinct. Usage of
sequences as sets is not currently widespread, hence no specific set function is provided.
Instead, it is explained here how common set operations can be performed by combining
several functions described in earlier sections. When using sequences to implement sets,
one should be careful not to rely on the order of items in the sequence representing the
set.

Sets should not contain several occurrences of a given item. To make sure that a
(sequence variable) only has distinct items, use \seq_remove_duplicates:N (sequence
variable). This function is relatively slow, and to avoid performance issues one should
only use it when necessary.

Some operations on a set (seq var) are straightforward. For instance, \seq_count:N
(seq var) expands to the number of items, while \seq_if_in:NnTF (seq var) {{item)}
tests if the (item) is in the set.

Adding an (item) to a set (seq var) can be done by appending it to the (seq var) if
it is not already in the (seq var):

\seq_if_in:NnF (seq var) {(item)}
{ \seq_put_right:Nn (seq var) {(item)} }

Removing an (item) from a set (seq var) can be done using \seq_remove_all:Nn,
\seq_remove_all:Nn (seq var) {(item)}

The intersection of two sets (seq var;) and (seq varz) can be stored into (seq vars)
by collecting items of (seq vary) which are in (seq vars).

72

\seq_clear:N (seq vars)
\seq_map_inline:Nn (seq vari)

{

\seq_if_in:NnT (seq vary) {#1}

{ \seq_put_right:Nn (seq vars) {#1} }
}

The code as written here only works if (seq vars) is different from the other two se-
quence variables. To cover all cases, items should first be collected in a sequence
\1__(pkg)_internal_seq, then (seq vars) should be set equal to this internal sequence.
The same remark applies to other set functions.

The union of two sets (seq vary) and (seq vary) can be stored into (seq vars) through

\seq_concat:NNN (seq vars) (seq var;) (seq vars)
\seq_remove_duplicates:N (seq vars)

or by adding items to (a copy of) (seq var;) one by one

\seq_set_eq:NN (seq vars) (seq varp)
\seq_map_inline:Nn (seq vars)

{

\seq_if_in:NnF (seq vars) {#1}

{ \seq_put_right:Nn (seq vars) {#1} }
}

The second approach is faster than the first when the (seq vary) is short compared to
(seq vary).

The difference of two sets (seq vary) and (seq vars) can be stored into (seq vars) by
removing items of the (seq vary) from (a copy of) the (seq var,) one by one.

\seq_set_eq:NN (seq vars) (seq vari)
\seq_map_inline:Nn (seq vars)
{ \seq_remove_all:Nn (seq vars) {#1} }

The symmetric difference of two sets (seq var;) and (seq vars) can be stored into
(seq vars) by computing the difference between (seq var;) and (seq vary) and storing the
result as \1__(pkg)_internal_seq, then the difference between (seq vary) and (seq var,),
and finally concatenating the two differences to get the symmetric differences.

\seq_set_eq:NN \1__(pkg)_internal_seq (seq varj)
\seq_map_inline:Nn (seq vars)

{ \seq_remove_all:Nn \1__(pkg)_internal_seq {#1} }
\seq_set_eq:NN (seq vars) (seq vars)

\seq_map_inline:Nn (seq vari)

{ \seq_remove_all:Nn (seq vars) {#1} }

\seq_concat:NNN (seq vars) (seq vars) \1__(pkg)_internal_seq

11 Constant and scratch sequences

\c_empty_seq Constant that is always empty.

New: 2012-07-02

73

\1_tmpa_seq
\1_tmpb_seq

New: 2012-04-26

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

\seq_show:N
\seq_show:c

Updated: 2015-08-01

\seq_log:N
\seq_log:c

New: 2014-08-12
Updated: 2015-08-01

\s

__Seq

__seq_item:n *

\

seq_push_item_def:n
__seq_push_item_def:x

\

seq_pop_item_def:

Scratch sequences for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch sequences for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

12 Viewing sequences

\seq_show:N (sequence)

Displays the entries in the (sequence) in the terminal.

\seq_log:N (sequence)

Writes the entries in the (sequence) in the log file.

13 Internal sequence functions

This scan mark (equal to \scan_stop:) marks the beginning of a sequence variable.

__seq_item:n {(item)}

The internal token used to begin each sequence entry. If expanded outside of a mapping
or manipulation function, an error is raised. The definition should always be set globally.

\

Saves the definition of __seq_item:n and redefines it to accept one parameter and
expand to (code). This function should always be balanced by use of __seq_pop_-
item_def:.

seq_push_item_def:n {(code)}

\

Restores the definition of __seq_item:n most recently saved by __seq_push_item_-
def:n. This function should always be used in a balanced pair with __seq_push_-
item_def :n.

seq_pop_item_def:

74

\int_eval:n *

\int_abs:n *

Updated: 2012-09-26

\int_div_round:nn «*

Updated: 2012-09-26

Part IX
The 13int package
Integers

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators
+, -, / and * and parentheses can be used within such expressions to carry arithmetic
operations. This module carries out these functions on integer expressions (“intexpr”).

1 Integer expressions

\int_eval:n {(integer expression)}

Evaluates the (integer expression), expanding any integer and token list variables within
the (expression) to their content (without requiring \int_use:N/\t1l_use:N) and apply-
ing the standard mathematical rules. For example both

\int_eval:n { 5+ 4 *x3 - (3+4x%5)}
and

\tl_new:N \1l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \l_my_int

\int_set:Nn \1_my_int { 4 }

\int_eval:n { \1_my_tl1 + \l_my_int * 3 - (3 +4 x5) }

both evaluate to —6. The {(integer expression)} may contain the operators +, -, * and /,
along with parenthesis (and). Any functions within the expressions should expand to
an (integer denotation): a sequence of a sign and digits matching the regex \-7[0-9]+).
After expansion \int_eval:n yields an (integer denotation) which is left in the input
stream.

TgXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an (internal integer), and therefore requires suitable termination if used in a TEX-
style integer assignment.

\int_abs:n {(integer expression)}

Evaluates the (integer expression) as described for \int_eval:n and leaves the absolute
value of the result in the input stream as an (integer denotation) after two expansions.

\int_div_round:nn {(intexpri)} {{intexprs)}

Evaluates the two (integer expressions) as described earlier, then divides the first value
by the second, and rounds the result to the closest integer. Ties are rounded away from
zero. Note that this is identical to using / directly in an (integer expression). The result
is left in the input stream as an (integer denotation) after two expansions.

0]

\int_div_truncate:nn *

Updated: 2012-02-09

\int_max:nn x
\int_min:nn *

Updated: 2012-09-26

\int_mod:nn x

Updated: 2012-09-26

\int_new:N
\int_new:c

\int_const:Nn
\int_const:cn

Updated: 2011-10-22

\int_zero:N
\int_zero:c
\int_gzero:N
\int_gzero:c

\int_zero_new:N
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c

New: 2011-12-13

\int_set_eq:NN
\int_set_eq:(cN|Nc|cc)
\int_gset_eq:NN
\int_gset_eq:(cN|Nc|cc)

\int_div_truncate:nn {(intexpr:)} {(intexpr:)}

Evaluates the two (integer expressions) as described earlier, then divides the first value by
the second, and rounds the result towards zero. Note that division using / rounds to the
closest integer instead. The result is left in the input stream as an (integer denotation)
after two expansions.

\int_max:nn {(intexpr:)} {(intexprs)}
\int_min:nn {(intexpr:)} {(intexprs)}

Evaluates the (integer expressions) as described for \int_eval:n and leaves either the
larger or smaller value in the input stream as an (integer denotation) after two expansions.

\int_mod:nn {(intexpr:)} {(intexprs)}

Evaluates the two (integer expressions) as described earlier, then calculates the integer
remainder of dividing the first expression by the second. This is obtained by subtract-
ing \int_div_truncate:nn {(intezpry)} {(intexprs)} times (intexprs) from (intexpr:).
Thus, the result has the same sign as (intezpr;) and its absolute value is strictly less than
that of (intexprs). The result is left in the input stream as an (integer denotation) after
two expansions.

2 Creating and initialising integers

\int_new:N (integer)

Creates a new (integer) or raises an error if the name is already taken. The declaration
is global. The (integer) is initially equal to 0.

\int_const:Nn (integer) {(integer expression)}

Creates a new constant (integer) or raises an error if the name is already taken. The
value of the (integer) is set globally to the (integer expression).

\int_zero:N (integer)

Sets (integer) to 0.

\int_zero_new:N (integer)

Ensures that the (integer) exists globally by applying \int_new:N if necessary, then
applies \int_(g)zero:N to leave the (integer) set to zero.

\int_set_eq:NN (integeri) (integers)

Sets the content of (integer;) equal to that of (integers).

76

\int_if_exist_p:N (int)
\int_if_exist:NTF (int) {(true code)} {(false code)}

Tests whether the (int) is currently defined. This does not check that the (int) really is

\int_if_exist_p:N
\int_if_exist_p:c
\int_if_exist:NTF
\int_if_exist:cTF

* o ot

New: 2012-03-03

\int_add:Nn
\int_add:cn
\int_gadd:Nn
\int_gadd:cn

Updated: 2011-10-22

\int_decr:N
\int_decr:c
\int_gdecr:N
\int_gdecr:c

\int_incr:N
\int_incr:c
\int_gincr:N
\int_gincr:c

\int_set:Nn
\int_set:cn
\int_gset:Nn
\int_gset:cn

Updated: 2011-10-22

\int_sub:Nn
\int_sub:cn
\int_gsub:Nn
\int_gsub:cn

Updated: 2011-10-22

\int_use:N *
\int_use:c *

Updated: 2011-10-22

an integer variable.

3 Setting and incrementing integers

\int_add:Nn (integer) {(integer expression)}

Adds the result of the (integer expression) to the current content of the (integer).

\int_decr:N (integer)

Decreases the value stored in (integer) by 1.

\int_incr:N (integer)

Increases the value stored in (integer) by 1.

\int_set:Nn (integer) {(integer expression)}

Sets (integer) to the value of (integer expression), which must evaluate to an integer (as
described for \int_eval:n).

\int_sub:Nn (integer) {(integer expression)}

Subtracts the result of the (integer expression) from the current content of the (integer).

4 Using integers

\int_use:N (integer)

Recovers the content of an (integer) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Can be omitted in places where an
(integer) is required (such as in the first and third arguments of \int_compare :nNnTF).

TgXhackers note: \int_use:N is the TEX primitive \the: this is one of several ITEX3
names for this primitive.

7

\int_compare_p:nNn *
\int_compare:nNnTF *

\int_compare_p:n *
\int_compare:nTF x*

Updated: 2013-01-13

5 Integer expression conditionals

\int_compare_p:nNn {(intexpri)} (relation) {(intexprs)}
\int_compare :nNnTF

{(intexpri)} (relation) {(intexpr:)}

{(true code)} {(false code)}

This function first evaluates each of the (integer expressions) as described for \int_-
eval:n. The two results are then compared using the (relation):

Equal
Greater than
Less than

ANV

\int_compare_p:n
{

intexpri relation;
P

(intexpry) (relationy)

(intexpry41)
}
\int_compare:nTF
{

(intexpri) (relation;)

(intexpry) (relationn)
(intexpry41)

}

{(true code)} {(false code)}

This function evaluates the (integer expressions) as described for \int_eval:n and com-
pares consecutive result using the corresponding (relation), namely it compares (intexpr)
and (intexprs) using the (relation,), then (intezprs) and (intexprs) using the (relations),
until finally comparing (intezpry) and (intezpry 1) using the (relationy). The test yields
true if all comparisons are true. Each (integer expression) is evaluated only once, and
the evaluation is lazy, in the sense that if one comparison is false, then no other (integer
expression) is evaluated and no other comparison is performed. The (relations) can be
any of the following:

Equal = or ==
Greater than or equal to >=
Greater than >

Less than or equal to <=
Less than <

Not equal 1=

78

\int_case:nn * \int_case:nnTF {(test integer expression)}
\int_case:nnTF x {

Now: 2013-07-24 {({intexpr casel); E(code caser)}

{(intexpr case2)} {(code cases)}

%&intexpr case,)} {(code casen)}
}
{(true code)}
{(false code)}

This function evaluates the (test integer expression) and compares this in turn to each
of the (integer expression cases). If the two are equal then the associated (code) is left
in the input stream and other cases are discarded. If any of the cases are matched, the
(true code) is also inserted into the input stream (after the code for the appropriate case),
while if none match then the (false code) is inserted. The function \int_case:nn, which
does nothing if there is no match, is also available. For example

\int_case:nnF

{25}
{
{5} { Small }
{4+63} { Medium }
{ -2 * 10 } { Negative }
}
{ No idea! }

leaves “Medium” in the input stream.

\int_if_even_p:n x \int_if_odd_p:n {(integer expression)}
\int_if_even:nTF % \int_if_odd:nTF {(integer expression)}
\int_if_odd_p:n «* {(true code)} {(false code)}

Mnt_if odd:nTF * Tyig function first evaluates the (integer expression) as described for \int_eval:n. It

then evaluates if this is odd or even, as appropriate.

6 Integer expression loops

\int_do_until:nNnn % \int_do_until:nNnn {(intexpr:)} (relation) {(intexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (integer expressions) as described for \int_compare:nNnTF. If the
test is false then the (code) is inserted into the input stream again and a loop occurs
until the (relation) is true.

“
Xp

\int_do_while:nNnn \int_do_while:nNnn {(intexpri)} (relation) {(intexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (integer expressions) as described for \int_compare :nNnTF. If
the test is true then the (code) is inserted into the input stream again and a loop occurs
until the (relation) is false.

79

\int_until_do:nNnn 3

\int_while_do:nNnn 3

\int_do_until:nn

Updated: 2013-01-13

\int_do_while:nn 3

Updated: 2013-01-13

\int_until_do:nn 5

Updated: 2013-01-13

\int_while_do:nn ¥

Updated: 2013-01-13

\int_until_do:nNnn {(intexpri)} (relation) {(intexpr:)} {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare :nNnTF, and then places the (code) in the input stream if the (relation) is false.
After the (code) has been processed by TEX the test is repeated, and a loop occurs until
the test is true.

\int_while_do:nNnn {(intexpri)} (relatiomn) {(intexpr:)} {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nNnTF, and then places the (code) in the input stream if the (relation) is true.
After the (code) has been processed by TEX the test is repeated, and a loop occurs until
the test is false.

\int_do_until:nn {({integer relation)} {(code)}

Places the {code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is false then the (code) is
inserted into the input stream again and a loop occurs until the (relation) is true.

\int_do_while:nn {({integer relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is true then the (code) is
inserted into the input stream again and a loop occurs until the (relation) is false.

\int_until_do:nn {(integer relation)} {{code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is false. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is true.

\int_while_do:nn {(integer relation)} {{code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is false.

80

\int_step_function:nnnN 3¢

New: 2012-06-04
Updated: 2014-05-30

\int_step_inline:nnnn

New: 2012-06-04
Updated: 2014-05-30

\int_step_variable:nnnNn

New: 2012-06-04
Updated: 2014-05-30

\int_to_arabic:n *

Updated: 2011-10-22

7 Integer step functions

\int_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and (final value), all of which should
be integer expressions. The (function) is then placed in front of each (wvalue) from the
(initial value) to the (final value) in turn (using (step) between each (value)). The (step)
must be non-zero. If the (step) is positive, the loop stops when the (value) becomes larger
than the (final value). If the (step) is negative, the loop stops when the (value) becomes
smaller than the (final value). The (function) should absorb one numerical argument.
For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\int_step_function:nnnN { 1 } { 1 } { 5 } \my_func:n

would print

[saw 1] [Isaw 2] [Isaw 3] [Isaw 4] [Isaw 5]

\int_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. Then for each (value) from the (initial value) to the (final
value) in turn (using (step) between each (value)), the (code) is inserted into the input
stream with #1 replaced by the current (value). Thus the (code) should define a function
of one argument (#1).

\int_step_variable:nnnNn
{(initial value)} {(step)} {(final value)} (t1 var) {{code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. Then for each (value) from the (initial value) to the (final
value) in turn (using (step) between each (wvalue)), the (code) is inserted into the input
stream, with the (¢ var) defined as the current (value). Thus the {code) should make
use of the (¢l var).

8 Formatting integers

Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

\int_to_arabic:n {(integer expression)}

Places the value of the (integer expression) in the input stream as digits, with category
code 12 (other).

81

\int_to_alph:n * \int_to_alph:n {(integer expression)}

\int_to_Alph:n Evaluates the (integer expression) and converts the result into a series of letters, which

Updated: 2011-09-17 are then left in the input stream. The conversion rule uses the 26 letters of the English
alphabet, in order, adding letters when necessary to increase the total possible range of
representable numbers. Thus

\int_to_alph:n { 1 }
places a in the input stream,

\int_to_alph:n { 26 }
is represented as z and

\int_to_alph:n { 27 }

is converted to aa. For conversions using other alphabets, use \int_to_symbols:nnn to
define an alphabet-specific function. The basic \int_to_alph:n and \int_to_Alph:n
functions should not be modified. The resulting tokens are digits with category code 12
(other) and letters with category code 11 (letter).

\int_to_symbols:nnn * \int_to_symbols:nnn
{(integer expression)} {(total symbols)}
{{value to symbol mapping)}

Updated: 2011-09-17

This is the low-level function for conversion of an (integer expression) into a symbolic form
(often letters). The (total symbols) available should be given as an integer expression.
Values are actually converted to symbols according to the (value to symbol mapping).
This should be given as (total symbols) pairs of entries, a number and the appropriate
symbol. Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1

{
\int_to_symbols:nnn {#1} { 26 }
{
{ 13{a?
{ 23{v?}
{26 {z1?}
}
}

\int_to_bin:n * \int_to_bin:n {(integer expression)}

New: 2014-02-11 Calculates the value of the (integer expression) and places the binary representation of
the result in the input stream.

82

\int_to_hex:n *
\int_to_Hex:n *

New: 2014-02-11

\int_to_oct:n *

New: 2014-02-11

\int_to_base:nn *
\int_to_Base:nn x

Updated: 2014-02-11

\int_to_roman:n
\int_to_Roman:n ¥

Updated: 2011-10-22

\int_from_alph:n *

Updated: 2014-08-25

\int_from_bin:n *

New: 2014-02-11
Updated: 2014-08-25

\int_to_hex:n {(integer expression)}

Calculates the value of the (integer expression) and places the hexadecimal (base 16)
representation of the result in the input stream. Letters are used for digits beyond 9:
lower case letters for \int_to_hex:n and upper case ones for \int_to_Hex:n. The
resulting tokens are digits with category code 12 (other) and letters with category code
11 (letter).

\int_to_oct:n {(integer expression)}

Calculates the value of the (integer expression) and places the octal (base 8) representa-
tion of the result in the input stream. The resulting tokens are digits with category code
12 (other) and letters with category code 11 (letter).

\int_to_base:nn {(integer expression)} {(base)}

Calculates the value of the (integer expression) and converts it into the appropriate
representation in the (base); the later may be given as an integer expression. For bases
greater than 10 the higher “digits” are represented by letters from the English alphabet:
lower case letters for \int_to_base:n and upper case ones for \int_to_Base:n. The
maximum (base) value is 36. The resulting tokens are digits with category code 12 (other)
and letters with category code 11 (letter).

TEXhackers note: This is a generic version of \int_to_bin:n, etc.

\int_to_roman:n {(integer expression)}

Places the value of the (integer expression) in the input stream as Roman numerals,
either lower case (\int_to_roman:n) or upper case (\int_to_Roman:n). The Roman
numerals are letters with category code 11 (letter).

9 Converting from other formats to integers

\int_from_alph:n {(letters)}

Converts the (letters) into the integer (base 10) representation and leaves this in the
input stream. The (letters) are first converted to a string, with no expansion. Lower and
upper case letters from the English alphabet may be used, with “a” equal to 1 through
to “z” equal to 26. The function also accepts a leading sign, made of + and -. This is

the inverse function of \int_to_alph:n and \int_to_Alph:n.

\int_from_bin:n {(binary number)}

Converts the (binary number) into the integer (base 10) representation and leaves this in
the input stream. The (binary number) is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by binary digits. This is
the inverse function of \int_to_bin:n.

83

\int_from_hex:n x

New: 2014-02-11
Updated: 2014-08-25

\int_from_oct:n *

New: 2014-02-11
Updated: 2014-08-25

\int_from_roman:n *

Updated: 2014-08-25

\int_from_base:nn *

Updated: 2014-08-25

\int_show:N
\int_show:c

\int_show:n

New: 2011-11-22
Updated: 2015-08-07

\int_log:N
\int_log:c

New: 2014-08-22

Updated: 2015-08-03

\int_log:n

New: 2014-08-22

Updated: 2015-08-07

\int_from_hex:n {(hexadecimal number)}

Converts the (hezadecimal number) into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the (hezadecimal
number) by upper or lower case letters. The (hezadecimal number) is first converted to
a string, with no expansion. The function also accepts a leading sign, made of + and -.
This is the inverse function of \int_to_hex:n and \int_to_Hex:n.

\int_from_oct:n {(octal number)}

Converts the (octal number) into the integer (base 10) representation and leaves this in
the input stream. The (octal number) is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by octal digits. This is
the inverse function of \int_to_oct:n.

\int_from_roman:n {(roman numeral)}

Converts the (roman numeral) into the integer (base 10) representation and leaves this in
the input stream. The (roman numeral) is first converted to a string, with no expansion.
The (roman numeral) may be in upper or lower case; if the numeral contains characters
besides mdclxvi or MDCLXVI then the resulting value is —1. This is the inverse function
of \int_to_roman:n and \int_to_Roman:n.

\int_from_base:nn {(number)} {(base)}

Converts the (number) expressed in (base) into the appropriate value in base 10. The
(number) is first converted to a string, with no expansion. The (number) should consist
of digits and letters (either lower or upper case), plus optionally a leading sign. The
maximum (base) value is 36. This is the inverse function of \int_to_base:nn and \int_-
to_Base:nn.

10 Viewing integers

\int_show:N (integer)

Displays the value of the (integer) on the terminal.
\int_show:n {(integer expression)}

Displays the result of evaluating the (integer expression) on the terminal.

\int_log:N (integer)
Writes the value of the (integer) in the log file.

\int_log:n {(integer expression)}

Writes the result of evaluating the (integer ezpression) in the log file.

84

\c_zero

\c_one

\c_two

\c_three
\c_four

\c_five

\c_six

\c_seven
\c_eight
\c_nine

\c_ten
\c_eleven
\c_twelve
\c_thirteen
\c_fourteen
\c_fifteen
\c_sixteen
\c_thirty_two
\c_one_hundred
\c_two_hundred_fifty_five
\c_two_hundred_fifty_six
\c_one_thousand
\c_ten_thousand

\c_max_int

\c_max_register_int

\c_max_char_int

\1_tmpa_int
\1_tmpb_int

\g_tmpa_int
\g_tmpb_int

11 Constant integers

Integer values used with primitive tests and assignments: self-terminating nature makes
these more convenient and faster than literal numbers.

The maximum value that can be stored as an integer.

Maximum number of registers.

Maximum character code completely supported by the engine.

12 Scratch integers

Scratch integer for local assignment. These are never used by the kernel code, and so

are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch integer for global assignment. These are never used by the kernel code, and so
are safe for use with any TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

85

\if_int_compare:w =

\if_case:w «*
\or: *

\if_int_odd:w «*

13 Primitive conditionals

\if_int_compare:w (integer:) (relation) (integers)
(true code)
\else:
(false code)
\fi:
Compare two integers using (relation), which must be one of =, < or > with category code
12. The \else: branch is optional.

TEXhackers note: These are both names for the TEX primitive \ifnum.

\if_case:w (integer) (caseo)

\or: (casei)

\or:

\else: (default)
\fi:
Selects a case to execute based on the value of the (integer). The first case ({casep)) is
executed if (integer) is 0, the second ((case;)) if the (integer) is 1, etc. The (integer)
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

\if_int_odd:w (tokens) (optional space)
(true code)
\else:
(true code)
\fi:
Expands (tokens) until a non-numeric token or a space is found, and tests whether the
resulting (integer) is odd. If so, (true code) is executed. The \else: branch is optional.

TgXhackers note: This is the TEX primitive \ifodd.

86

__int_value:w x

__int_to_roman:w *

__int_eval:w *
__int_eval_end: ~*

__int_eval:n *

__prg_compare_error:
__prg_compare_error:Nw

14 Internal functions

__int_value:w (integer)

__int_value:w (integer demotation) (optional space)

Expands the following tokens until an (integer) is formed, and leaves a normalized form
(no leading sign except for negative numbers, no leading digit 0 except for zero) in the
input stream as category code 12 (other) characters. The (integer) can consist of any
number of signs (with intervening spaces) followed by

 an integer variable (in fact, any TEX register except \toks) or
e __int_eval:w (intexpr) __int_eval_end: (or another e-TEX expression) or
o explicit digits (or by ’{octal digits) or "(hexadecimal digits) or ‘(character)

In this last case expansion stops once a non-digit is found; if that is a space it is removed
as in f-expansion. Note that protected functions are expanded by this process

TEXhackers note: This is the TEX primitive \number.

__int_to_roman:w (integer)

__int_to_roman:w (integer denotation) (optional space)

Converts an (integer) to lower case Roman representation. The (integer) is found as in
__int_value:w by expanding what follows exhaustively. One (optional) space is lost
if the (integer) is given by explicit digits. Note that this function produces a string of
letters with category code 12. Negative (integer) values result in no output, although
the function does not terminate expansion until a suitable endpoint is found in the same
way as for positive numbers.

TEXhackers note: This is the TEX primitive \romannumeral renamed.

__int_eval:w (intexpr) __int_eval_end:

Evaluates (integer expression) as described for \int_eval:n. The evaluation stops when
an unexpandable token which is not a valid part of an integer is read or when __int_-
eval_end: is reached. The latter is gobbled by the scanner mechanism: __int_eval_-
end: itself is unexpandable but used correctly the entire construct is expandable.

TEXhackers note: This is the e-TEX primitive \numexpr.

__int_eval:n {(intexpr)}

By default this expands to __int_eval:w (intexpr) __int_eval_end: but when debug-
ging is enabled this expands to a more complicated construction that evaluates (intexpr)
with parentheses and within a brace group to detect early termination.

__prg_compare_error:
__prg_compare_error:Nw (token)

These are used within \int_compare:nTF, \dim_compare:nTF and so on to recover cor-
rectly if the n-type argument does not contain a properly-formed relation.

87

__intarray_new:Nn

\

intarray_count:N *

__intarray_gset:Nnn
__intarray_gset_fast:Nnn

__intarray_item:Nn *
__intarray_item_fast:Nn =

Part X
The I3intarray package: low-level
arrays of small integers

1 I3intarray documentation

This module provides no user function: at present it is meant for kernel use only.

It is a wrapper around the \fontdimen primitive, used to store arrays of integers
(with a restricted range: absolute value at most 23° — 1). In contrast to I3seq sequences
the access to individual entries is done in constant time rather than linear time, but only
integers can be stored. More precisely, the primitive \fontdimen stores dimensions but
the I3intarray package transparently converts these from/to integers. Assignments are
always global.

While LuaTgX’s memory is extensible, other engines can “only” deal with a bit less
than 4 x 10% entries in all \fontdimen arrays combined (with default TEXLive settings).

1.1 Internal functions

__intarray_new:Nn (intarray var) {(size)}

Evaluates the integer expression (size) and allocates an (integer array variable) with that
number of (zero) entries.

__intarray_count:N (intarray var)

Expands to the number of entries in the (integer array variable). Contrarily to \seq_-
count: N this is performed in constant time.

__intarray_gset:Nnn (intarray var) {(position)} {(value)}
__intarray_gset_fast:Nnn (intarray var) {(position)} {(value)}

Stores the result of evaluating the integer expression (wvalue) into the (integer array
variable) at the (integer expression) (position). While __intarray_gset:Nnn checks
that the (position) is between 1 and the __intarray_count:N and that the (value)’s
absolute value is at most 230 — 1, the “fast” function performs no such bound check.
Assignments are always global.

__intarray_item:Nn (intarray var) {(position)}
__intarray_item_fast:Nn (intarray var) {(position)}

Expands to the integer entry stored at the (integer expression) (position) in the (integer
array variable). While __intarray_item:Nn checks that the (position) is between 1
and the __intarray_count:N, the “fast” function performs no such bound check.

88

\flag_new:

\flag_clear:

\flag_clear_new:

\flag_show:

\flag_log:

Part XI
The 13flag package: expandable flags

Flags are the only data-type that can be modified in expansion-only contexts. This
module is meant mostly for kernel use: in almost all cases, booleans or integers should
be preferred to flags because they are very significantly faster.

A flag can hold any non-negative value, which we call its (height). In expansion-
only contexts, a flag can only be “raised”: this increases the (height) by 1. The (height)
can also be queried expandably. However, decreasing it, or setting it to zero requires
non-expandable assignments.

Flag variables are always local. They are referenced by a (flag name) such as str_-
missing. The (flag name) is used as part of \use:c constructions hence is expanded at
point of use. It must expand to character tokens only, with no spaces.

A typical use case of flags would be to keep track of whether an exceptional condition
has occurred during expandable processing, and produce a meaningful (non-expandable)
message after the end of the expandable processing. This is exemplified by I3str-convert,
which for performance reasons performs conversions of individual characters expandably
and for readability reasons produces a single error message describing incorrect inputs
that were encountered.

Flags should not be used without carefully considering the fact that raising a flag
takes a time and memory proportional to its height. Flags should not be used unless
unavoidable.

1 Setting up flags

\flag_new:n {(flag name)}

Creates a new flag with a name given by (flag name), or raises an error if the name is
already taken. The (flag name) may not contain spaces. The declaration is global, but
flags are always local variables. The (flag) initially has zero height.

\flag_clear:n {(flag name)}
The (flag)’s height is set to zero. The assignment is local.

\flag_clear_new:n {(flag name)}

Ensures that the (flag) exists globally by applying \flag_new:n if necessary, then applies
\flag_clear:n, setting the height to zero locally.

\flag_show:n {(flag name)}
Displays the (flag)’s height in the terminal.

\flag_log:n {(flag name)}
Writes the (flag)’s height to the log file.

89

2 Expandable flag commands

*

\flag_if_exist_p:n \flag_if_exist:n {(flag name)}

\flag if exist:nlF * This function returns true if the (flag name) references a flag that has been defined

previously, and false otherwise.

*

\flag_if_raised_p:n \flag_if_raised:n {(flag name)}

\flag_if_raised:nTF *

This function returns true if the (flag) has non-zero height, and false if the (flag) has
zero height.

\flag_height:n

*

\flag_height:n {(flag name)}

Expands to the height of the (flag) as an integer denotation.

\flag_raise:n * \flag_raise:n {(flag name)}

The (flag)’s height is increased by 1 locally.

90

\quark_new:N

Part XII
The 13quark package
Quarks

1 Introduction to quarks and scan marks

Two special types of constants in IATEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \g_, and scan marks start with \s_. Scan
marks are for internal use by the kernel: they are not intended for more general use.

1.1 Quarks

Quarks are control sequences that expand to themselves and should therefore never be
executed directly in the code. This would result in an endless loop!

They are meant to be used as delimiter in weird functions, the most common use
case being the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981}
one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \g_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \q_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get :NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\gq_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \t1l_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster. An example of the quark testing functions and their use in recursion can
be seen in the implementation of \clist_map_function:NN.

2 Defining quarks

\quark_new:N (quark)

Creates a new (quark) which expands only to (quark). The (quark) is defined globally,
and an error message is raised if the name was already taken.

91

\g_stop

\q_mark

\q_nil

\q_no_value

*

\quark_if_nil_p:N
\quark_if_nil:NTF *

\quark_if_nil_p:n
\quark_if _nil_p:(o|V)
\quark_if _nil:nTF
\quark_if _nil:(o|V)TF

b S S

\quark_if_no_value_p:N
\quark_if_no_value_p:c
\quark_if_no_value:NTF
\quark_if_no_value:cTF

b S S

\quark_if_no_value_p:n
\quark_if_no_value:nTF *

*

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

Used as a marker for delimited arguments when \q_stop is already in use.

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself need to be tested (in contrast to \q_stop, which is only ever used
as a delimiter).

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get :NnN if there is no
data to return.

3 Quark tests

The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The latter should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N (token)
\quark_if_nil:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_nil.

\quark_if_nil_p:n {(token list)}
\quark_if_nil:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_nil (distinct from (token list) being empty or
containing \g_nil plus one or more other tokens).

\quark_if_no_value_p:N (token)
\quark_if_no_value:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_no_value.

\quark_if_no_value_p:n {(token list)}
\quark_if_no_value:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_no_value (distinct from (token list) being empty
or containing \q_no_value plus one or more other tokens).

4 Recursion
This module provides a uniform interface to intercepting and terminating loops as when

one is doing tail recursion. The building blocks follow below and an example is shown in
Section 5.

92

\q_recursion_tail This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

\q_recursion_stop This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N \quark_if_recursion_tail_stop:N <token>

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n \quark_if_recursion_tail_stop:n {(token list)}
\quark_if_recursion_tail_stop:o

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop_do:Nn \quark_if_recursion_tail_stop_do:Nn (token) {(insertion)}

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn \quark_if_recursion_tail_stop_do:nn {(token list)} {(insertiom)}
\quark_if_recursion_tail_stop_do:on

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

5 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]~} would produce “[-a-b-] [-c-d-] ". Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

93

Here’s the definition of \my_map_dbl:nn. First of all, define the function that does
the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \gq_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.

\cs_new:Npn \my_map_dbl:nn #1#2

{
\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
__my_map_dbl:nn #1 \q_recursion_tail \g_recursion_tail
\gq_recursion_stop

}

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.

\cs_new:Nn __my_map_dbl:nn

{
\quark_if_recursion_tail_stop:n {#1}
\quark_if_recursion_tail_stop:n {#2}
__my_map_dbl_fn:nn {#1} {#2}

Finally, recurse:

__my_map_dbl:nn
¥

Note that contrarily to I¥TEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map would overwrite the definition of __my_map_dbl_fn:nn.

6 Internal quark functions

__quark_if_recursion_tail_break:NN __quark_if_recursion_tail_break:nN {(token list)}
__quark_if_recursion_tail_break:nN \(type)_map_break:

Tests if (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion using \(type)_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \(type)_map_break:.

7 Scan marks

Scan marks are control sequences set equal to \scan_stop:, hence never expand in an
expansion context and are (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see 13regex).

94

The scan marks system is only for internal use by the kernel team in a small number
of very specific places. These functions should not be used more generally.

__scan_new:N __scan_new:N (scan mark)

Creates a new (scan mark) which is set equal to \scan_stop:. The (scan mark) is defined
globally, and an error message is raised if the name was already taken by another scan
mark.

\s

stop Used at the end of a set of instructions, as a marker that can be jumped to using __-
use_none_delimit_by_s__stop:w.

__use_none_delimit_by_s__stop:w __use_none_delimit_by_s__stop:w <tokens> \s__stop

Removes the (tokens) and \s__stop from the input stream. This leads to a low-level
TEX error if \s__stop is absent.

95

\prg_new_conditional:Npnn
\prg_set_conditional:Npnn
\prg_new_conditional:Nnn
\prg_set_conditional:Nnn

Updated: 2012-02-06

Part XIII
The 13prg package
Control structures

Conditional processing in IXTEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are (true) and (false).

TEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean (true) or (false).
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean (true) or (false) values to be used in
testing with \if_predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

1 Defining a set of conditional functions

\prg_new_conditional:Npnn \(name):(arg spec) (parameters) {(conditions)} {(code)}
\prg_new_conditional:Nnn \(name):({arg spec) {(conditions)} {(code)}

These functions create a family of conditionals using the same {(code)} to perform the
test created. Those conditionals are expandable if (code) is. The new versions check for
existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas the set
versions do no check and perform assignments locally (cf. \cs_set:Npn). The condition-
als created are dependent on the comma-separated list of (conditions), which should be
one or more of p, T, F and TF.

\prg_new_protected_conditional:Npnn \prg_new_protected_conditional:Npnn \(name):(arg spec) (parameters)
\prg_set_protected_conditional:Npnn {(conditions)} {(code)}

\prg_new_protected_conditional:Nnn \prg_new_protected_conditional:Nnn \(name):{(arg spec)
\prg_set_protected_conditional:Nnn {(conditions)} {(code)}

Updated: 2012-02-06

These functions create a family of protected conditionals using the same {(code)} to
perform the test created. The (code) does not need to be expandable. The new version
check for existing definitions and perform assignments globally (¢f. \cs_new:Npn) whereas
the set version do not (¢f. \cs_set:Npn). The conditionals created are depended on the
comma-separated list of {conditions), which should be one or more of T, F and TF (not

P)-
The conditionals are defined by \prg_new_conditional:Npnn and friends as:

96

o \(name)_p:(arg spec) — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

o \(name):(arg spec)T — a function with one more argument than the original (arg
spec) demands. The (true branch) code in this additional argument will be left on
the input stream only if the test is true.

o \(name):(arg spec)F — a function with one more argument than the original {(arg
spec) demands. The (false branch) code in this additional argument will be left on
the input stream only if the test is false.

e \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument will
be left on the input stream if the test is true, while the (false branch) code in the
second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to \prg_-
set_conditional:Npnn: this should match the (argument specification) but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, etc.). Within the (code), the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if _meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if_meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the (conditions) list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

\prg_new_eq_conditional:NNn \prg_new_eq_conditional:NNn \(name:):(arg speci) \(name:):(arg specs)
\prg_set_eq_conditional:NNn {(conditions)}

These functions copy a family of conditionals. The new version checks for existing defini-
tions (¢f. \cs_new_eq:NN) whereas the set version does not (cf. \cs_set_eq:NN). The
conditionals copied are depended on the comma-separated list of (conditions), which
should be one or more of p, T, F and TF.

97

\prg_return_true: *
\prg_return_false: x

\bool_new:N

\bool_new:c

\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c

\prg_return_true:

\prg_return_false:

These “return” functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions ezactly once.

The return functions trigger what is internally an f-expansion process to com-
plete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_-
return_false: there must be no non-expandable material in the input stream for the
remainder of the expansion of the conditional code. This includes other instances of
either of these functions.

2 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if _false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which generally means being constructed from predicate
functions and booleans, possibly nested).

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, I¥TEX 2¢ and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N (boolean)

Creates a new (boolean) or raises an error if the name is already taken. The declaration
is global. The (boolean) is initially false.

\bool_set_false:N (boolean)

Sets (boolean) logically false.

\bool_set_true:N (boolean)

Sets (boolean) logically true.

98

\bool_set_eq:NN
\bool_set_eq:(cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

Updated: 2017-07-15

\bool_if_p:N =«
\bool_if_p:c =*
\bool_if:NTF x
\bool_if:cTF x

Updated: 2017-07-15

\bool_show:N
\bool_show:c

New: 2012-02-09
Updated: 2015-08-01

\bool_show:n

New: 2012-02-09
Updated: 2017-07-15

\bool_log:N
\bool_log:c

New: 2014-08-22
Updated: 2015-08-03

\bool_log:n

New: 2014-08-22
Updated: 2017-07-15

\bool_if_exist_p:N
\bool_if_exist_p:c
\bool_if_exist:NTF
\bool_if_exist:cTF

* ok A

New: 2012-03-03

\1_tmpa_bool
\1_tmpb_bool

\bool_set_eq:NN (boolean;) (booleany)

Sets (boolean) to the current value of (booleansy).

\bool_set:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if :nTF, and sets the (boolean)
variable to the logical truth of this evaluation.

\bool_if_p:N (boolean)
\bool_if:NTF (boolean) {(true code)} {(false code)}

Tests the current truth of (boolean), and continues expansion based on this result.

\bool_show:N (boolean)

Displays the logical truth of the (boolean) on the terminal.

\bool_show:n {(boolean expression)}

Displays the logical truth of the (boolean expression) on the terminal.

\bool_log:N (boolean)
Writes the logical truth of the (boolean) in the log file.

\bool_log:n {(boolean expression)}

Writes the logical truth of the (boolean expression) in the log file.

\bool_if_exist_p:N (boolean)
\bool_if_exist:NTF (boolean) {(true code)} {(false code)}

Tests whether the (boolean) is currently defined. This does not check that the {(boolean)
really is a boolean variable.

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any I#TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

99

\g_tmpa_bool
\g_tmpb_bool

A scratch boolean for global assignment. It is never used by the kernel code, and so is
safe for use with any I¥TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true) or (false)
values, it seems only fitting that we also provide a parser for (boolean expressions).

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean (true) or (false). It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than []). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 =1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }
) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.

Contrarily to some other programming languages, the operators && and || evaluate
both operands in all cases, even when the first operand is enough to determine the result.
This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_-
... functions.

TEXhackers note: The eager evaluation of boolean expressions is unfortunately necessary
in TgX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced)
arguments of some predicates. For instance, the innocuous-looking expression below would break
(in a lazy parser) if #1 were a closing parenthesis and \1_tmpa_bool were true.

(\1_tmpa_bool || \token_if_eq_meaning_ p:NN X #1)

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_-
all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

\bool_lazy_and_p:nn

{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 =3 } }
{ \int_compare_p:n { 4 <=4 } }
{ \int_compare_p:n { 1 = \error } } J skipped
}
}

{ ! \int_compare_p:n { 2 =4} }

100

\bool_if_p:n *
\bool_if:nTF x

Updated: 2017-07-15

\bool_lazy_all_p:n *
\bool_lazy_all:nTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_and_p:nn *
\bool_lazy_and:nnTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_any_p:n x
\bool_lazy_any:nTF x

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_or_p:nn *
\bool_lazy_or:nnTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_not_p:n *

Updated: 2017-07-15

the line marked with skipped is not expanded because the result of \bool_lazy_any_-
p:n is known once the second boolean expression is found to be logically true. On the
other hand, the last line is expanded because its logical value is needed to determine the
result of \bool_lazy_and_p:nn.

\bool_if_p:n {(boolean expression)}
\bool_if:nTF {(boolean expression)} {(true code)} {(false code)}

Tests the current truth of (boolean expression), and continues expansion based on this
result. The (boolean expression) should consist of a series of predicates or boolean vari-
ables with the logical relationship between these defined using && (“And”), || (“Or”), !
(“Not”) and parentheses. The logical Not applies to the next predicate or group.

\bool_lazy_all_p:n { {(boolexpri)
\bool_lazy_all:nTF { {(boolexpri)
{(false code)}

} {(boolexprs)} --- {(boolexpry)} }
} {(boolexprs)} --- {(boolexprn)} } {(true code)}

Implements the “And” operation on the (boolean expressions), hence is true if all of
them are true and false if any of them is false. Contrarily to the infix operator &&,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
all:nTF are evaluated. See also \bool_lazy_and:nnTF when there are only two (boolean

expressions).

\bool_lazy_and_p:nn {(boolexpr:i)} {(boolexprs)}

\bool_lazy_and:nnTF {(boolexpri)} {(boolexprz)} {(true code)} {(false code)}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two (boolean expressions).

\bool_lazy_any_p:n { {(boolexpr;)
\bool_lazy_any:nTF { {(boolexpri)
{(false code)?}

} {(boolexprs)} --- {(boolexpry)} }

} {(boolexprs)} --- {(boolexprn)} } {(true code)}
Implements the “Or” operation on the (boolean expressions), hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator ||,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
any:nTF are evaluated. See also \bool_lazy_or:nnTF when there are only two (boolean

expressions).

\bool_lazy_or_p:nn {(boolexpr:)} {(boolexprs)}
\bool_lazy_or:nnTF {(boolexpr:i)} {(boolexprs)} {(true code)} {(false code)}

Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator ||, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two (boolean expressions).

\bool_not_p:n {(boolean expression)}

Function version of ! ((boolean expression)) within a boolean expression.

101

\bool_xor_p:nn *

Updated: 2017-07-15

\bool_do_until:Nn 3
\bool _do_until:cn w

Updated: 2017-07-15

\bool_do_while:Nn 3
\bool_do_while:cn

Updated: 2017-07-15

\bool_until_do:Nn 3¢
\bool_until_do:cn 3

Updated: 2017-07-15

\bool_while_do:Nn 3
\bool _while_do:cn %

Updated: 2017-07-15

\bool_do_until:nn 3¢

Updated: 2017-07-15

\bool_do_while:nn 3

Updated: 2017-07-15

\bool_until_do:nn 3¢

Updated: 2017-07-15

\bool_xor_p:nn {(boolexpr:i)} {(boolexprs)}

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operator.

4 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn (boolean) {{code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is false then the (code) is inserted into the input stream
again and the process loops until the (boolean) is true.

\bool_do_while:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is true then the (code) is inserted into the input stream again
and the process loops until the (boolean) is false.

\bool_until_do:Nn (boolean) {(code)}

This function firsts checks the logical value of the (boolean). If it is false the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is true.

\bool_while_do:Nn (boolean) {{code)}

This function firsts checks the logical value of the (boolean). If it is true the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is false.

\bool_do_until:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is false then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to true.

\bool_do_while:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is true then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to false.

\bool_until_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is false the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the {(boolean expression) is true.

102

\bool_while_do:nn v

Updated: 2017-07-15

\prg_replicate:nn x

Updated: 2011-07-04

*

\mode_if_horizontal_p:
\mode_if_horizontal:TF x

\mode_if_inner_p: *
\mode_if_inner:TF x

\mode_if_math_p: *
\mode_if_math:TF *

Updated: 2011-09-05

\mode_if_vertical_p:
\mode_if_vertical:TF *

*

\if _predicate:w *

\if_bool:N «*

\bool_while_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is true the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the {boolean expression) is false.

5 Producing multiple copies

\prg_replicate:nn {(integer expression)} {(tokens)}

Evaluates the (integer expression) (which should be zero or positive) and creates the
resulting number of copies of the (tokens). The function is both expandable and safe for
nesting. It yields its result after two expansion steps.

6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {(true code)} {(false code)}

Detects if TEX is currently in horizontal mode.

\mode_if_inner_p:
\mode_if_inner:TF {(true code)} {(false code)}

Detects if TEX is currently in inner mode.

\mode_if_math:TF {(true code)} {(false code)}

Detects if TEX is currently in maths mode.

\mode_if_vertical_p:
\mode_if_vertical:TF {(true code)} {(false code)}

Detects if TEX is currently in vertical mode.

7 Primitive conditionals

\if_predicate:w (predicate) (true code) \else: (false code) \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if_bool:N.)

\if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

103

\group_align_safe_begin: x
\group_align_safe_end: *

Updated: 2011-08-11

__prg_break_point:Nn *

__prg_map_break:Nn *

\g__prg_map_int

__prg_break_point: x

__prg_break:
__prg_break:n *

8 Internal programming functions

\group_align_safe_begin:

\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw would result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

__prg_break_point:Nn \(type)_map_break: {(code)}

Used to mark the end of a recursion or mapping: the functions \(type)_map_break: and
\(type)_map_break:n use this to break out of the loop. After the loop ends, the (code)
is inserted into the input stream. This occurs even if the break functions are not applied:
__prg_break_point:Nn is functionally-equivalent in these cases to \use_ii:nn.

__prg_map_break:Nn \(type)_map_break: {(user code)}

__prg_break_point:Nn \(type)_map_break: {(ending code)}

Breaks a recursion in mapping contexts, inserting in the input stream the (user code)
after the (ending code) for the loop. The function breaks loops, inserting their (ending
code), until reaching a loop with the same (type) as its first argument. This \(type)_-
map_break: argument is simply used as a recognizable marker for the (type).

This integer is used by non-expandable mapping functions to track the level of nesting
in force. The functions __prg_map_1:w, __prg_map_2:w, etc., labelled by \g__prg_-
map_int hold functions to be mapped over various list datatypes in inline and variable
mappings.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion:
the function __prg_break:n uses this to break out of the loop.

__prg_break:n {(code)} ... __prg_break_point:

Breaks a recursion which has no (ending code) and which is not a user-breakable mapping
(see for instance \prop_get:Nn), and inserts the (code) in the input stream.

104

\clist_new:N
\clist_new:c

\clist_const:Nn
\clist_const:(Nx|cn|cx)

New: 2014-07-05

\clist_clear:N

\clist_clear:c
\clist_gclear:N

\clist_gclear:c

\clist_clear_new:N
\clist_clear_new:c
\clist_gclear_new:N
\clist_gclear_new:c

Part XIV
The 13clist package
Comma separated lists

Comma lists contain ordered data where items can be added to the left or right end of the
list. The resulting ordered list can then be mapped over using \clist_map_function:NN.
Several items can be added at once, and spaces are removed from both sides of each item
on input. Hence,

\clist_new:N \1_my_clist
\clist_put_left:Nn \1_my_clist { ~a ~ , ~ {b} ~ }
\clist_put_right:Nn \1_my_clist { ~{c ~ 1}, d}

results in \1_my_clist containing a,{b},{c~},d. Comma lists cannot contain empty
items, thus

\clist_clear_new:N \1l_my_clist
\clist_put_right:Nn \1_my_clist { , ~ , , }
\clist_if_empty:NTF \1_my_clist { true } { false }

leaves true in the input stream. To include an item which contains a comma, or starts or
ends with a space, surround it with braces. The sequence data type should be preferred
to comma lists if items are to contain {, }, or # (assuming the usual TEX category codes

apply).

1 Creating and initialising comma lists

\clist_new:N (comma list)

Creates a new (comma list) or raises an error if the name is already taken. The declaration
is global. The {comma list) initially contains no items.

\clist_const:Nn (clist var) {(comma list)}

Creates a new constant (clist var) or raises an error if the name is already taken. The
value of the (clist var) is set globally to the (comma list).

\clist_clear:N (comma list)

Clears all items from the (comma list).

\clist_clear_new:N (comma list)

Ensures that the (comma list) exists globally by applying \clist_new:N if necessary,
then applies \clist_(g)clear:N to leave the list empty.

105

\clist_set_eq:NN \clist_set_eq:NN (comma listi) (comma listz)
\clist_set_eq: (cN|Nc|cc)
\clist_gset_eq:NN
\clist_gset_eq:(cN|Nc|cc)

Sets the content of (comma list;) equal to that of (comma lists).

\clist_set_from_seq:NN \clist_set_from_seq:NN (comma list) (sequence)
\clist_set_from_seq:(cN|Nc|cc)

\clist_gset_from_seq:NN

\clist_gset_from_seq:(cN|Nc|cc)

New: 2014-07-17

Converts the data in the (sequence) into a (comma list): the original (sequence) is un-
changed. Items which contain either spaces or commas are surrounded by braces.

\clist_concat:NNN \clist_concat:NNN (comma listi) (comma listz) (comma lists)
\clist_concat:ccc

\clist_gconcat :NNN
\clist_gconcat:ccc

Concatenates the content of (comma listz) and (comma lists) together and saves the
result in (comma list;). The items in (comma listy) are placed at the left side of the new
comma list.

\clist_if_exist_p:N (comma list)
\clist_if_exist:NTF (comma list) {(true code)} {(false code)}

\clist_if_exist_p:N «*
\clist_if_exist_p:c =*
\clist_if_exist:NTF %

*

o , Tests whether the (comma list) is currently defined. This does not check that the {comma
\clist_if_exist:cTF

list) really is a comma list.

New: 2012-03-03

2 Adding data to comma lists

\clist_set:Nn \clist_set:Nn (comma list) {(itemi),...,(itemn)}
\clist_set:(NV|No|Nx|cn|cV|co|cx)

\clist_gset:Nn

\clist_gset:(NV|No|Nx|cn|cV|co|cx)

New: 2011-09-06

Sets (comma list) to contain the (items), removing any previous content from the variable.
Spaces are removed from both sides of each item.

\clist_put_left:Nn \clist_put_left:Nn (comma list) {{itemi),...,(item,)}
\clist_put_left:(NV|No|Nx|cn|cV|co|cx)

\clist_gput_left:Nn

\clist_gput_left:(NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the (items) to the left of the (comma list). Spaces are removed from both sides
of each item.

106

\clist_put_right:Nn

\clist_put_right:Nn (comma list) {(item),...,{item,)}

\clist_put_right:(NV|No|Nx|cn|cV|co|cx)

\clist_gput_right:Nn

\clist_gput_right:(NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the (items) to the right of the (comma list). Spaces are removed from both
sides of each item.

3 Modifying comma lists

While comma lists are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update comma lists, while retaining the
order of the unaffected entries.

\clist_remove_duplicates:N \clist_remove_duplicates:N (comma list>
\clist_remove_duplicates:c

\clist_gremove_duplicates:N

\clist_gremove_duplicates:c

\clist_remove_all:Nn
\clist_remove_all:cn
\clist_gremove_all:Nn
\clist_gremove_all:cn

Updated: 2011-09-06

\clist_reverse:N
\clist_reverse:c
\clist_greverse:N
\clist_greverse:c

New: 2014-07-18

\clist_reverse:n

New: 2014-07-18

Removes duplicate items from the (comma list), leaving the left most copy of each item
in the (comma list). The (item) comparison takes place on a token basis, as for \t1_-
if_eq:nn(TF).

TEXhackers note: This function iterates through every item in the (comma list) and does
a comparison with the (items) already checked. It is therefore relatively slow with large comma
lists. Furthermore, it does not work if any of the items in the {(comma list) contains {, }, or #
(assuming the usual TEX category codes apply).

\clist_remove_all:Nn (comma list) {(item)}
Removes every occurrence of (item) from the (comma list). The (item) comparison takes

place on a token basis, as for \t1_if_eq:nn(TF).

TgXhackers note: The (item) may not contain {, }, or # (assuming the usual TEX
category codes apply).

\clist_reverse:N (comma list)

Reverses the order of items stored in the (comma list).

\clist_reverse:n {(comma list)}

Leaves the items in the (comma list) in the input stream in reverse order. Braces and
spaces are preserved by this process.

TgXhackers note: The result is returned within \unexpanded, which means that the
comma list does not expand further when appearing in an x-type argument expansion.

107

\clist_sort:Nn
\clist_sort:cn
\clist_gsort:Nn
\clist_gsort:cn

New: 2017-02-06

\clist_if_empty_p:N
\clist_if_empty_p:c
\clist_if_empty:NTF
\clist_if_empty:cTF

* ok A F

\clist_if_empty_p:n *
\clist_if_empty:nTF *

New: 2014-07-05

\clist_sort:Nn (clist var) {{comparison code)}

Sorts the items in the (clist var) according to the (comparison code), and assigns the
result to (clist var). The details of sorting comparison are described in Section 1.

4 Comma list conditionals

\clist_if_empty_p:N (comma list)
\clist_if_empty:NTF (comma list) {(true code)} {(false code)}

Tests if the (comma list) is empty (containing no items).

\clist_if_empty_p:n {(comma list)}

\clist_if_empty:nTF {(comma list)} {(true code)} {(false code)}

Tests if the (comma list) is empty (containing no items). The rules for space trimming
are as for other n-type comma-list functions, hence the comma list {~,~,,~} (without
outer braces) is empty, while {~,{},} (without outer braces) contains one element, which
happens to be empty: the comma-list is not empty.

\clist_if_in:NnTF

\clist_if_in:NnTF (comma list) {(item)} {(true code)} {(false code)}

\clist_if_in:(NV|No|cn|cV|co)TF

\clist_if_in:nnTF

\clist_if_in:(nV|no)TF

Updated: 2011-09-06

Tests if the (item) is present in the (comma list). In the case of an n-type (comma list),
spaces are stripped from each item, but braces are not removed. Hence,

\clist_if_in:nnTF { a , {b}~ , {b} , ¢ } { b } {true} {false}
yields false.

TgXhackers note: The (item) may not contain {, }, or # (assuming the usual TEX
category codes apply), and should not contain , nor start or end with a space.

5 Mapping to comma lists

The functions described in this section apply a specified function to each item of a comma
list.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed
around each item. If the result of trimming spaces is empty, the item is ignored.
Otherwise, if the item is surrounded by braces, one set is removed, and the result is
passed to the mapped function. Thus, if your comma list that is being mapped is
{ay,u{{v}. 3}, L, {},u{c},} then the arguments passed to the mapped function are ‘a’,
‘{b}.’, an empty argument, and ‘c’.

108

e

\clist_map_function:NN 3
\clist_map_function:cN
\clist_map_function:nN

Updated: 2012-06-29

\clist_map_inline:Nn
\clist_map_inline:cn
\clist_map_inline:nn

Updated: 2012-06-29

\clist_map_variable:NNn
\clist_map_variable:cNn
\clist_map_variable:nNn

Updated: 2012-06-29

v

\clist_map_break: i

Updated: 2012-06-29

When the comma list is given as an N-type argument, spaces have already been
trimmed on input, and items are simply stripped of one set of braces if any. This case is
more efficient than using n-type comma lists.

\clist_map_function:NN (comma list) (function)

Applies (function) to every (item) stored in the {comma list). The {function) receives one
argument for each iteration. The (items) are returned from left to right. The function
\clist_map_inline:Nn is in general more efficient than \clist_map_function:NN.

\clist_map_inline:Nn (comma list) {(inline functiom)}

Applies (inline function) to every (item) stored within the (comma list). The (inline
function) should consist of code which receives the (item) as #1. The (items) are returned
from left to right.

\clist_map_variable:NNn (comma list) (variable) {(code)}

Stores each (item) of the (comma list) in turn in the (token list) (variable) and applies
the (code). The (code) will usually make use of the (variable), but this is not enforced.
The assignments to the (variable) are local. The (items) are returned from left to right.

\clist_map_break:

Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed. This normally takes place within a conditional statement, for example

\clist_map_inline:Nn \1_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break: }
{
% Do something useful
}
}

Use outside of a \clist_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

109

\clist_map_break:n 5

Updated: 2012-06-29

\clist_count:N x
\clist_count:c *
\clist_count:n *

New: 2012-07-13

\clist_use:Nnnn =%
\clist use:cnnn *

New: 2013-05-26

\clist_map_break:n {(code)}

Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\clist_map_inline:Nn \1_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \clist_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\clist_count:N (comma list)

Leaves the number of items in the (comma list) in the input stream as an (integer
denotation). The total number of items in a (comma list) includes those which are
duplicates, i.e. every item in a (comma list) is unique.

6 Using the content of comma lists directly

\clist_use:Nnnn (clist var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the {clist var) in the input stream, with the appropriate (separator)
between the items. Namely, if the comma list has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which the
(separator between final two) is used. If the comma list has exactly two items, then they
are placed in the input stream separated by the (separator between two). If the comma
list has a single item, it is placed in the input stream, and a comma list with no items
produces no output. An error is raised if the variable does not exist or if it is invalid.
For example,

\clist_set:Nn \1_tmpa_clist {a , b, , ¢, {de} , £ }
\clist_use:Nnnn \1_tmpa_clist { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, c, de, and f” in the input stream. The first separator argument is not
used in this case because the comma list has more than 2 items.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type argument
expansion.

110

\clist_use:Nn *
\clist_use:cn x

New: 2013-05-26

\clist_get:NN
\clist_get:cN

Updated: 2012-05-14

\clist_get:NNTF
\clist_get:cNTF

New: 2012-05-14

\clist_pop:NN
\clist_pop:cN

Updated: 2011-09-06

\clist_gpop:NN
\clist_gpop:cN

\clist_use:Nn (clist var) {(separator)}

Places the contents of the {clist var) in the input stream, with the (separator) between
the items. If the comma list has a single item, it is placed in the input stream, and a
comma list with no items produces no output. An error is raised if the variable does not
exist or if it is invalid.

For example,

\clist_set:Nn \1_tmpa_clist {a , b, , ¢, {de} , £ }
\clist_use:Nn \1_tmpa_clist { ~and~ }

inserts “a and b and ¢ and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type argument
expansion.

7 Comma lists as stacks

Comma lists can be used as stacks, where data is pushed to and popped from the top
of the comma list. (The left of a comma list is the top, for performance reasons.) The
stack functions for comma lists are not intended to be mixed with the general ordered
data functions detailed in the previous section: a comma list should either be used as an
ordered data type or as a stack, but not in both ways.

\clist_get:NN (comma list) (token list variable)

Stores the left-most item from a (comma list) in the (token list variable) without removing
it from the (comma list). The (token list variable) is assigned locally. If the (comma list)
is empty the (token list variable) is set to the marker value \q_no_value.

\clist_get:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, stores the top item from the (comma list) in the (token list
variable) without removing it from the (comma list). The (token list variable) is assigned
locally.

\clist_pop:NN (comma list) (token list variable)

Pops the left-most item from a (comma list) into the (token list variable), i.e. removes the
item from the comma list and stores it in the (token list variable). Both of the variables
are assigned locally.

\clist_gpop:NN (comma list) (token list variable)

Pops the left-most item from a (comma list) into the (token list variable), i.e. removes
the item from the comma list and stores it in the (token list variable). The (comma list)
is modified globally, while the assignment of the (token list variable) is local.

111

\clist_pop:NNTF
\clist_pop:cNTF

New: 2012-05-14

\clist_gpop:NNTF
\clist_gpop:cNTF

New: 2012-05-14

\clist_pop:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, pops the top item from the (comma list) in the (token list
variable), i.e. removes the item from the (comma list). Both the (comma list) and the
(token list variable) are assigned locally.

\clist_gpop:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, pops the top item from the (comma list) in the (token list
variable), i.e. removes the item from the (comma list). The (comma list) is modified
globally, while the (token list variable) is assigned locally.

\clist_push:Nn

\clist_push:Nn (comma list) {(items)}

\clist_push:(NV|No|Nx|cn|cV|co|cx)

\clist_gpush:Nn

\clist_gpush: (NV|No|Nx|cn|cV|co|cx)

\clist_item:Nn *
\clist_item:cn *
\clist_item:nn x

New: 2014-07-17

\clist_show:N
\clist_show:c

Updated: 2015-08-03

\clist_show:n

Updated: 2013-08-03

Adds the {(items)} to the top of the (comma list). Spaces are removed from both sides
of each item.

8 Using a single item

\clist_item:Nn (comma list) {(integer expression)}

Indexing items in the (comma list) from 1 at the top (left), this function evaluates the
(integer expression) and leaves the appropriate item from the comma list in the input
stream. If the (integer expression) is negative, indexing occurs from the bottom (right) of
the comma list. When the (integer expression) is larger than the number of items in the
(comma list) (as calculated by \clist_count:N) then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

9 Viewing comma lists

\clist_show:N (comma list)

Displays the entries in the (comma list) in the terminal.

\clist_show:n {(tokens)}

Displays the entries in the comma list in the terminal.

112

\clist_log:N
\clist_log:c

New: 2014-08-22
Updated: 2015-08-03

\clist_log:n

New: 2014-08-22

\c_empty_clist

New: 2012-07-02

\1_tmpa_clist

\1_tmpb_clist

New: 2011-09-06

\g_tmpa_clist
\g_tmpb_clist

New: 2011-09-06

\clist_log:N (comma list)

Writes the entries in the (comma list) in the log file. See also \clist_show:N which
displays the result in the terminal.

\clist_log:n {(tokens)}

Writes the entries in the comma list in the log file. See also \clist_show:n which displays
the result in the terminal.

10 Constant and scratch comma lists

Constant that is always empty.

Scratch comma lists for local assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch comma lists for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

113

\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc

Updated: 2015-11-12

\char_set_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nN
\char_gset_active_eq:nc

New: 2015-11-12

Part XV
The 13token package
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TgX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such has two primary function categories:
\token_ for anything that deals with tokens and \peek_ for looking ahead in the token
stream.

Most functions we describe here can be used on control sequences, as those are tokens
as well.

It is important to distinguish two aspects of a token: its “shape” (for lack of a better
word), which affects the matching of delimited arguments and the comparison of token
lists containing this token, and its “meaning”, which affects whether the token expands
or what operation it performs. One can have tokens of different shapes with the same
meaning, but not the converse.

For instance, \if :w, \if_charcode:w, and \tex_if:D are three names for the same
internal operation of TEX, namely the primitive testing the next two characters for equal-
ity of their character code. They have the same meaning hence behave identically in many
situations. However, TEX distinguishes them when searching for a delimited argument.
Namely, the example function \show_until_if:w defined below takes everything until
\if:w as an argument, despite the presence of other copies of \if:w under different
names.

\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w

A list of all possible shapes and a list of all possible meanings are given in section 8.

1 Creating character tokens

\char_set_active_eq:NN (char) (function)

Sets the behaviour of the (char) in situations where it is active (category code 13) to be
equivalent to that of the {function). The category code of the (char) is unchanged by
this process. The (function) may itself be an active character.

\char_set_active_eq:nN {(integer expression)} (function)

Sets the behaviour of the (char) which has character code as given by the (integer
expression) in situations where it is active (category code 13) to be equivalent to that
of the (function). The category code of the (char) is unchanged by this process. The
(function) may itself be an active character.

114

\char_generate:nn * \char_generate:nn {(charcode)} {(catcode)}

New: 2015-09-09 Generates a character token of the given (charcode) and (catcode) (both of which may be
integer expressions). The (catcode) may be one of

o 1 (begin group)
e 2 (end group)

math toggle)

parameter)

(
(
(alignment)
(
(math superscript)
(

3

4
e 6

7

8 (math subscript)
o 11 (letter)

o 12 (other)

and other values raise an error.

The (charcode) may be any one valid for the engine in use. Note however that for
XHTEX releases prior to 0.99992 only the 8-bit range (0 to 255) is accepted due to engine
limitations.

\c_catcode_other_space_tl Token list containing one character with category code 12, (“other”), and character code
New: 2011-09-05 32 (Space).

115

2 Manipulating and interrogating character tokens

\char_set_catcode_escape:N \char_set_catcode_letter:N <character)
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N
\char_set_catcode_comment:N
\char_set_catcode_invalid:N

Updated: 2015-11-11

Sets the category code of the (character) to that indicated in the function name. De-
pending on the current category code of the (token) the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

\char_set_catcode_escape:n \char_set_catcode_letter:n {(integer expression)}
\char_set_catcode_group_begin:n
\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n
\char_set_catcode_alignment:n
\char_set_catcode_end_line:n
\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n
\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n
\char_set_catcode_comment:n
\char_set_catcode_invalid:n

Updated: 2015-11-11

Sets the category code of the (character) which has character code as given by the (integer
expression). This version can be used to set up characters which cannot otherwise be
given (cf. the N-type variants). The assignment is local.

116

\char_set_catcode:nn

Updated: 2015-11-11

\char_value_catcode:n x

\char_show_value_catcode:n

\char_set_lccode:nn

Updated: 2015-08-06

\char_value_lccode:n *

\char_show_value_lccode:n

\char_set_uccode:nn

Updated: 2015-08-06

\char_set_catcode:nn {(intexpr:)} {(intexpr:)}

These functions set the category code of the (character) which has character code as
given by the (integer expression). The first (integer expression) is the character code
and the second is the category code to apply. The setting applies within the current
TEX group. In general, the symbolic functions \char_set_catcode_{type) should be
preferred, but there are cases where these lower-level functions may be useful.

\char_value_catcode:n {(integer expression)}

Expands to the current category code of the (character) with character code given by
the (integer expression).

\char_show_value_catcode:n {(integer expression)}

Displays the current category code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_lccode:nn {(intexpri)} {(intexprs)}

Sets up the behaviour of the (character) when found inside \t1_lower_case:n, such that
(character;) will be converted into (characters). The two (characters) may be specified
using an (integer expression) for the character code concerned. This may include the
TEX ‘(character) method for converting a single character into its character code:

\char_set_lccode:nn { ‘\A } { ‘\a } % Standard behaviour
\char_set_lccode:nn { ‘\A } { ‘\A + 32 }
\char_set_lccode:nn { 50 } { 60 }

The setting applies within the current TEX group.

\char_value_lccode:n {(integer expression)}

Expands to the current lower case code of the {character) with character code given by
the (integer expression).

\char_show_value_lccode:n {(integer expression)}

Displays the current lower case code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_uccode:nn {(intexpri)} {(intexpr:)}

Sets up the behaviour of the (character) when found inside \t1_upper_case:n, such that
(character;) will be converted into (characters). The two {characters) may be specified
using an (integer expression) for the character code concerned. This may include the
TEX ‘(character) method for converting a single character into its character code:

\char_set_uccode:nn { ‘\a } { ‘\A } % Standard behaviour
\char_set_uccode:nn { ‘\A } { ‘\A - 32 }
\char_set_uccode:nn { 60 } { 50 }

The setting applies within the current TEX group.

117

\char_value_uccode:n * \char_value_uccode:n {(integer expression)}

Expands to the current upper case code of the (character) with character code given by
the (integer expression).

\char_show_value_uccode:n \char_show_value_uccode:n {(integer expression)}

Displays the current upper case code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_mathcode:nn \char_set_mathcode:nn {(intexpr:)} {(intexprs)}

Updated: 2015-08-06 ~ This function sets up the math code of (character). The (character) is specified as an
(integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_mathcode:n * \char_value_mathcode:n {(integer expression)}

Expands to the current math code of the (character) with character code given by the
(integer expression).

\char_show_value_mathcode:n \char_show_value_mathcode:n {(integer expression)}

Displays the current math code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_sfcode:nn \char_set_sfcode:nn {(intexpri)} {(intexprs)}

Updated: 2015-08-06 ~ This function sets up the space factor for the (character). The (character) is specified as
an (integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_sfcode:n * \char_value_sfcode:n {(integer expression)}

Expands to the current space factor for the {character) with character code given by the
(integer expression).

\char_show_value_sfcode:n \char_show_value_sfcode:n {(integer expression)}

Displays the current space factor for the (character) with character code given by the
(integer expression) on the terminal.

\1_char_active_seq Used to track which tokens may require special handling at the document level as they

New: 2012-01-23 are (or have been at some point) of category (active) (catcode 13). Each entry in the

Updated: 2015-11-11 Sequence consists of a single escaped token, for example \~. Active tokens should be
added to the sequence when they are defined for general document use.

\1_char_special_seq Used to track which tokens will require special handling when working with verbatim-

New: 2012-01-23 like material at the document level as they are not of categories (letter) (catcode 11) or

Updated: 2015-11-11 (0other) (catcode 12). Each entry in the sequence consists of a single escaped token, for

example \\ for the backslash or \{ for an opening brace.Escaped tokens should be added
to the sequence when they are defined for general document use.

118

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

\c_catcode_letter_token
\c_catcode_other_token

\c_catcode_active_tl

\token_to_meaning:N *
\token_to_meaning:c

>

\token_to_str:N *
\token_to_str:c

>

3 Generic tokens

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes but are also available to the programmer for other
uses.

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes and should not be used other than for category code
tests.

A token list containing an active token. This is used internally for test purposes and
should not be used other than in appropriately-constructed category code tests.

4 Converting tokens

\token_to_meaning:N (token)

Inserts the current meaning of the (token) into the input stream as a series of characters
of category code 12 (other). This is the primitive TEX description of the (token), thus for
example both functions defined by \cs_set_nopar:Npn and token list variables defined
using \tl_new:N are described as macros.

TgXhackers note: This is the TEX primitive \meaning.

\token_to_str:N (token)

Converts the given (token) into a series of characters with category code 12 (other). If
the (token) is a control sequence, this will start with the current escape character with
category code 12 (the escape character is part of the (token)). This function requires
only a single expansion.

TEXhackers note: \token_to_str:N is the TEX primitive \string renamed.

5 Token conditionals

\token_if_group_begin_p:N * \token_if_group_begin_p:N (token)
\token_if_group_begin:NTF * \token_if_group_begin:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a begin group token ({ when normal TEX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

119

\token_if_group_end_p:N
\token_if_group_end:NTF

*
*

\token_if_group_end_p:N (token)
\token_if_group_end:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an end group token (} when normal TEX category
codes are in force). Note that an explicit end group token cannot be tested in this way,
as it is not a valid N-type argument.

\token_if_math_toggle_p:N * \token_if_math_toggle_p:N (token)
\token_if_math_toggle:NTF * \token_if_math_toggle:NTF (token) {(true code)} {(false code)}

\token_if_alignment_p:N
\token_if_alignment:NTF

*
*

\token_if_parameter_p:N
\token_if_parameter:NTF

*
*

Tests if (token) has the category code of a math shift token ($ when normal TEX category
codes are in force).

\token_if_alignment_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an alignment token (& when normal TEX category
codes are in force).

\token_if_parameter_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a macro parameter token (# when normal TEX
category codes are in force).

\token_if_math_superscript_p:N * \token_if_math_superscript_p:N (token)
\token_if_math_superscript:NTF x \token_if_math_superscript:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a superscript token (= when normal TEX category
codes are in force).

\token_if_math_subscript_p:N x \token_if_math_subscript_p:N (token)
\token_if_math_subscript:NTF * \token_if_math_subscript:NTF (token) {(true code)} {(false code)}

\token_if_space_p:N
\token_if_space:NTF

* ot

\token_if_letter_p:N
\token_if_letter:NTF

\token_if_other_p:N
\token_if_other:NTF

Tests if (token) has the category code of a subscript token (_ when normal TEX category
codes are in force).

\token_if_space_p:N (token)
\token_if_space:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a space token. Note that an explicit space token
with character code 32 cannot be tested in this way, as it is not a valid N-type argument.

\token_if_letter_p:N (token)
\token_if_letter:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a letter token.
\token_if_other_p:N (token)

\token_if_other:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an “other” token.

120

\token_if_active_p:N x \token_if_active_p:N (token)
\token_if_active:NTF x \token_if_active:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an active character.

\token_if_eq_catcode_p:NN * \token_if_eq_catcode_p:NN (token:) (tokens)
\token_if_eq_catcode:NNTF * \token_if_eq_catcode:NNTF (token:) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same category code.

\token_if_eq_charcode_p:NN * \token_if_eq_charcode_p:NN (tokeni) (tokens)
\token_if_eq_charcode:NNTF * \token_if_eq_charcode:NNTF (token;) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same character code.

\token_if_eq_meaning p:NN * \token_if_eq_meaning p:NN (tokeni) (tokens)
\token_if_eq_meaning:NNTF * \token_if_eq_meaning:NNTF (token:) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same meaning when expanded.

\token_if_macro_p:N » \token_if_macro_p:N (token)
\token_if_macro:NTF * \token_if_macro:NTF (token) {(true code)} {(false code)}

Updated: 2011-05-23 Tests if the (token) is a TEX macro.

\token_if_cs_p:N x \token_if_cs_p:N (token)

\token_if_cs:NTF x \token_if_cs:NTF (token) {(true code)} {(false code)}
Tests if the (token) is a control sequence.
\token_if_expandable_p:N x \token_if_expandable_p:N (token)
\token_if_expandable:NTF x \token_if_expandable:NTF (token) {(true code)} {(false code)}
Tests if the (token) is expandable. This test returns (false) for an undefined token.
\token_if_long_macro_p:N x \token_if_long_macro_p:N <token>
\token_if_long_macro:NTF x \token_if_long_macro:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20 Lests if the (token) is a long macro.

\token_if_protected_macro_p:N x \token_if_protected_macro_p:N (token)
\token_if_protected_macro:NTF x \token_if_protected_macro:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is a protected macro: for a macro which is both protected and long
this returns false.

\token_if_protected_long_macro_p:N x \token_if_protected_long_macro_p:N (token)
\token_if_protected_long_macro:NTF * \token_if_protected_long_macro:NTF (token) {(true code)} {(false
code)}

Updated: 2012-01-20

Tests if the (token) is a protected long macro.

121

\token_if_chardef _p:N % \token_if_chardef_p:N (token)
\token_if_chardef:NTF % \token_if_chardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20 Lests if the (token) is defined to be a chardef.

TEXhackers note: Booleans, boxes and small integer constants are implemented as
\chardefs.

\token_if_mathchardef_p:N * \token_if_mathchardef_p:N (token)
\token_if_mathchardef:NTF * \token_if_mathchardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a mathchardef.

\token_if_dim_register_p:N x \token_if_dim_register_p:N (token)
\token_if_dim_register:NTF * \token_if_dim_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a dimension register.

\token_if_int_register_p:N * \token_if_int_register_p:N (token)
\token_if_int_register:NTF * \token_if_int_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a integer register.

TEXhackers note: Constant integers may be implemented as integer registers, \chardefs,
or \mathchardefs depending on their value.

\token_if_muskip_register_p:N x \token_if_muskip_register_p:N (token)
\token_if_muskip_register:NTF % \token_if_muskip_register:NTF (token) {(true code)} {(false code)}

New: 2012-02-15

Tests if the (token) is defined to be a muskip register.

\token_if_skip_register_p:N * \token_if_skip_register_p:N (token)
\token_if_skip_register:NTF x \token_if_skip_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a skip register.

\token_if_toks_register_p:N x \token_if_toks_register_p:N <token>
\token_if_toks_register:NTF x \token_if_toks_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a toks register (not used by WTEX3).

\token_if_primitive_p:N x \token_if_primitive_p:N (token)
\token_if_primitive:NTF x \token_if_primitive:NTF (token) {(true code)} {(false code)}

Updated: 2011-05-23 Tests if the (token) is an engine primitive.

122

\peek_after:Nw

\peek_gafter:Nw

\1_peek_token

\g_peek_token

\peek_catcode:NTF

Updated: 2012-12-20

6 Peeking ahead at the next token

There is often a need to look ahead at the next token in the input stream while leaving
it in place. This is handled using the “peek” functions. The generic \peek_after:Nw is
provided along with a family of predefined tests for common cases. As peeking ahead does
not skip spaces the predefined tests include both a space-respecting and space-skipping
version.

\peek_after:Nw (function) (token)

Locally sets the test variable \1_peek_token equal to (token) (as an implicit token, not as
a token list), and then expands the {function). The (token) remains in the input stream
as the next item after the (function). The (token) here may be ., { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

\peek_gafter:Nw (function) (token)

Globally sets the test variable \g_peek_token equal to (foken) (as an implicit token,
not as a token list), and then expands the (function). The (token) remains in the input
stream as the next item after the (function). The (token) here may be ., { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

Token set by \peek_after:Nw and available for testing as described above.

Token set by \peek_gafter:Nw and available for testing as described above.

\peek_catcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_catcode_ignore_spaces:NTF \peek_catcode_ignore_spaces:NTF (test token) {(true code)} {(false

Updated: 2012-12-20

code)}

\peek_catcode_remove:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same category code as the
(test token) (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_catcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

123

\peek_catcode_remove_ignore_spaces:NTF \peek_catcode_remove_ignore_spaces:NTF (test token) {(true

Updated: 2012-12-20 COde>} {<false COde>}

\peek_charcode:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same category code as the
(test token) (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

\peek_charcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_charcode_ignore_spaces:NTF \peek_charcode_ignore_spaces:NTF (test token) {(true code)} {(false

Updated: 2012-12-20

code)}

\peek_charcode_remove:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same character code as
the (test token) (as defined by the test \token_if_eq_charcode:NNTF). Explicit and
implicit space tokens (with character code 32 and category code 10) are ignored and
removed by the test and the (token) is left in the input stream after the (true code) or
(false code) (as appropriate to the result of the test).

\peek_charcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

\peek_charcode_remove_ignore_spaces:NTF \peek_charcode_remove_ignore_spaces:NTF <test token)

Updated: 2012-12-20 {(true code)} {(false code)}

\peek_meaning:NTF

Updated: 2011-07-02

Tests if the next non-space (token) in the input stream has the same character code as
the (test token) (as defined by the test \token_if_eq_charcode:NNTF). Explicit and
implicit space tokens (with character code 32 and category code 10) are ignored and
removed by the test and the (token) is removed from the input stream if the test is true.
The function then places either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_meaning:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token) (as
defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test and
the (token) is left in the input stream after the (true code) or (false code) (as appropriate
to the result of the test).

124

\peek_meaning_ignore_spaces:NTF \peek_meaning_ignore_spaces:NTF (test token) {(true code)} {(false

Updated: 2012-12-05

code)}

\peek_meaning_remove:NTF

Updated: 2011-07-02

Tests if the next non-space (token) in the input stream has the same meaning as the
(test token) (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_meaning_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the (token) is removed from the input stream if the test is true. The function then
places either the (true code) or (false code) in the input stream (as appropriate to the
result of the test).

\peek_meaning_remove_ignore_spaces:NTF \peek_meaning_remove_ignore_spaces:NTF (test token)

Updated: 2012-12-05 {(true code)} {(false code)}

\token_get_arg_spec:N *

Tests if the next non-space (token) in the input stream has the same meaning as the
(test token) (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

7 Decomposing a macro definition

These functions decompose TEX macros into their constituent parts: if the (token) passed
is not a macro then no decomposition can occur. In the latter case, all three functions
leave \scan_stop: in the input stream.

\token_get_arg_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX argument specification
in input stream as a string of tokens of category code 12 (with spaces having category
code 10). Thus for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1 y #2 }

leaves #1#2 in the input stream. If the (foken) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the arg spec. contains the string ->, then the spec function produces
incorrect results.

125

\token_get_replacement_spec:N x \token_get_replacement_spec:N (token)

\token_get_prefix_spec:N *

If the (token) is a macro, this function leaves the replacement text in input stream as
a string of tokens of category code 12 (with spaces having category code 10). Thus for
example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1~y #2 }

leaves x#1 y#2 in the input stream. If the (foken) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the arg spec. contains the string ->, then the spec function produces
incorrect results.

\token_get_prefix_spec:N (token)

If the (token) is a macro, this function leaves the TEX prefixes applicable in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1~y #2 }

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream

8 Description of all possible tokens

Let us end by reviewing every case that a given token can fall into. This section is quite
technical and some details are only meant for completeness. We distinguish the meaning
of the token, which controls the expansion of the token and its effect on TEX’s state,
and its shape, which is used when comparing token lists such as for delimited arguments.
Two tokens of the same shape must have the same meaning, but the converse does not
hold.

A token has one of the following shapes.

o A control sequence, characterized by the sequence of characters that constitute its
name: for instance, \use:n is a five-letter control sequence.

o An active